
Programming Modular Robots with Locally Distributed Predicates

Michael De Rosa, Padmanabhan Pillai,
Jason Campbell, Seth Copen Goldstein, Peter Lee

Abstract— We present a high-level language for programming
modular robotic systems, based on locally distributed predicates
(LDP), which are distributed conditions that hold for a con-
nected subensemble of the robotic system. An LDP program is
a collection of LDPs with associated actions which are triggered
on any subensemble that matches the predicate. The result is a
reactive programming language which efficiently and concisely
supports ensemble-level programming. We demonstrate the
utility of LDP by implementing three common, but diverse,
modular robotic tasks.

I. INTRODUCTION

There are a significant number of challenges to program-
ming modular robots. These challenges can be broadly be di-
vided into two areas: managing the ensemble and controlling
the individual modules. In this paper we present an approach
to programming the ensemble based on locally distributed
predicates (LDP). LDP lets a programmer specify how the
entire ensemble should behave by breaking the problem
down into how small groups of robots should interact. In this
manner LDP significantly reduces the disparate problems of
inter-robot timing and concurrency, resource management,
and the lack of global knowledge at any individual robot.

Traditional imperative programming languages, such as
C/C++, Java, do little to address the ensemble-level issues
involved in programming modular robots. These languages
are inherently oriented towards a single processing node,
and require significant additional effort when used in a
distributed setting. In addition to creating a representation
of the data needed for an algorithm, the programmer must
determine what information is available locally and what
must be obtained from remote nodes, the messages and
protocol used to transfer this data, mechanisms to route or
propagate information through multiple hops as needed, and
a means to ensure the consistency of this data. Furthermore,
in algorithms to control ensembles, it is often necessary
to express and test conditions that span multiple modules.
Languages that constrain the programmer to the perspective
of a single node make such algorithms difficult to implement.

Prior work in this field can be roughly divided into three
categories: logical declarative languages for programming
distributed systems, reactive programming techniques for
robots, and functional approaches with roots in sensor net-
work research. In the first category we have such tools
as P2 [1] and Meld [2], which provide a logic program-
ming facility for distributed systems (and modular robots in
particular, in the case of Meld). These tools are powerful,
in that programs written in them have certain provable
properties, but this provability limits the expressive range

of the languages. Subsumption architectures [3] and reac-
tive programming languages [4] provide other expressive
formats for programming single robots, but are not special-
ized for ensemble-level multi-robot programming. Functional
approaches include such languages as Regiment [5] and
Proto [6]. These approaches also raise the abstraction level,
but are less concerned with geometry (i.e., the neighbor
relationships) and actuation.

We extend prior work on distributed watchpoints [7] to
a reactive programming approach aimed at modular robots.
The language, LDP, is used to specify lists of actions that
are predicated on local distributed conditions. The language
can express conditions that span multiple modules, can
incorporate both temporal and spatial relations, and use var-
ious computational and logical operations. This mechanism
breaks free from the node-centric paradigm enforced by C-
like languages, and moves towards implementing algorithms
from an ensemble perspective. Furthermore, LDP relieves the
programmer from having to coordinate data distribution, as
the system automates the distribution and coordination of all
data needed to satisfy the conditions.

In the next section of the paper we give an overview of
LDP. We follow this description with detailed examples of
how LDP can be used to efficiently implement problems
from three different domains. In Section III we demonstrate
how LDP can implement a snake-gait in a chain-style mod-
ular robot. Section IV describes a typical data aggregation
example by creating a spanning tree and then combining
values from each robot’s sensors. Finally, in Section V we
demonstrate how LDP can be used in a metamodule system,
implementing a complete planner in 9 lines of LDP. Overall,
we show that LDP is effective for concisely expressing
real-world modular robotic programs, can greatly reduce
programmer effort in implementing complex distributed al-
gorithms, and can do so efficiently.

II. LOCALLY DISTRIBUTED PREDICATES

Locally distributed predicates are useful for describing
and detecting distributed state configurations in subsets of
an ensemble. In contrast to classical global predicate eval-
uation [8], [9], which attempts to detect conditions over
the entire ensemble, LDP operates on fixed-size, connected
subgroups of modules. Thus, LDP is a more natural way to
program an ensemble and can be used to detect conditions
that occur in small groups of robots. Furthermore, LDP can
detect such conditions efficiently, as searching for a small,
connected subgroup is much less costly than inspecting the
entire ensemble.

TABLE I
LDP OPERATORS AND PRIMITIVES

Boolean & | !
Mathematical + - * / %
Comparison > < >= <= == ! =

Temporal prev() next()
Topological neighbors()

Set union size any · · ·

A. LDP Syntax

An LDP program consists of data declarations and a series
of statements, each of which has a predicate clause and a
collection of action clauses. When a predicate matches on
a particular sub-ensemble, the actions are carried out on
that sub-ensemble. Notice that LDP has no explicit control
structures, such as looping or function calls.

Each predicate begins with a declaration for each
module involved in the statement. These modules are
searched for in the order listed and, most importantly,
there must be a path between all modules in a matching
subensemble. The condition itself is composed of numeric
state variables (expressed as module.variableName,
temporal offsets (the operators prev() and next()),
and topology restrictions (via the neighbor relation
neighbors(moduleA,moduleB)). These primitives
can be linked together with the mathematical, boolean, and
comparison operators summarized in Table I.

The core language of LDP extends the condition grammar
for distributed watchpoints with the addition of set vari-
ables (variables prefixed with a $ are set variables, as in
moduleName.$setVar) and the requisite operators for
manipulating these variables. Specifically, we have imple-
mented intersection(), union(), size(), any(),
add(), and remove().

B. Distributed Predicate Detection

The core of the LDP execution model is the Pattern-
Matcher. A PatternMatcher contains all the information
needed to determine if the predicate for its associated state-
ment should be triggered. This object migrates around the
sub-ensemble until either it fails to match or it matches.
In addition to the active PatternMatchers, each robot has
a collection of continually running threads (one for each
statement in the program) which creates new PatternMatchers
at every event of importance, e.g., a clock tick, a new sensor
reading, etc. In its simplest form, a new PatternMatcher is
created for each statement on each robot at every time tick.

The PatternMatcher is an object which encapsulates a
search attempt for a particular predicate. Every Pattern-
Matcher contains an expression tree, which encodes the
boolean condition that the LDP is attempting to match. This
expression tree contains storage for state variable values, to
allow for comparison of state between multiple modules.

When a PatternMatcher is created the current module id
is bound to the first named module in the statement and
the local values of its state variables are filled in. The

expression tree is then examined for success or failure of
the boolean predicate. If the expression tree is successful,
then the action clauses of the statement are executed. If the
tree is unsuccessful, the PatternMatcher is discarded. If no
determination can be made, the PatternMatcher is forwarded
to all of the module’s neighbors, where the above process is
repeated.

PatternMatchers provide numerous opportunities for op-
timization, allowing for boolean short-circuiting, as well as
more intelligent search strategies than spreading to all neigh-
bors. Additionally, PatternMatchers allow for backtracking
in search paths, allowing for the detection of nonlinear
configurations of matching modules. These extensions, as
well as a full description of the distributed predicate detection
algorithm, are presented in detail in [10].

C. Triggering Actions

By themselves, distributed watchpoints were insufficient
to serve as a programming language, as they could not
trigger any action on predicate matches. For LDP, we add
a final clause to the predicate—the trigger. We define three
types of triggers: (1) setting a state variable to a value,
(2) changing the topology of the system, and (3) calling
an arbitrary function implemented by the robot’s runtime.
Any predicate may have more than one trigger action.
However, we require that all the actions must be executed
on the same module. This eliminates the need for locking
or synchronization across multiple actions and/or modules.
Notice that the trigger actions may be executed on any
module in the matching subensemble. Thus, we use the route
gathered during the initial search for the subensemble to
notify the acting module of the predicate’s match.

D. Implementing LDP

Using LDP in any give modular robotic system is straight-
forward. The system must call an initialization step that sets
up the LDP data structures, e.g., the PatternMatcher and
state history queues.1 The runtime requires the invocation of
three basic routines which (1) enumerate a module’s current
neighbors, (2) transmit PatternMatchers between neighboring
robots, and (3) invoke the statement threads at appropriate
intervals, e.g., the tick() function. Finally, the system must
ensure that incoming LDP messages trigger the appropriate
callback.

Each application that uses LDP must additionally imple-
ment variable initialization, access, and modification for any
state variables used in the program. The programmer must
also implement any custom library functions that will be
called from LDP actions.

III. EXAMPLE PROGRAM: PHASE AUTOMATA FOR
SNAKE-STYLE GAIT

Phase automata [11] are a technique for scalably de-
scribing cyclic gaits in chain-style modular robots, such

1More detail on implementing LDP can be found in [10].
Note to reviewers: a draft copy of this paper can be found at
http://www.cs.cmu.edu/∼claytronics/LDP/Watchpoints-IJRR.pdf

+a -a

0.5 T

0.5 T
φ

jo
in

t a
ng

le

time + offset

Fig. 1. a) Snake gait phase automaton, b) Joint angle vs. time graph, and c) Resulting snake gait in chain-style modules. Black modules are actuating
negative joint angle, white modules are actuating a positive joint angle.

// per-module state variables
int id; // the id number of module
int parent = -1; // the id number of the previous module in the chain
float time; // the current time at the module
float offset = 0; // the module’s phase offset
float angle = 0; // the joint angle of the module’s central joint. Changing this value actuates the module’s motor.

// set up parents and phase offset
1 forall (a) where (a.id == 1) do a.parent = a.id;
2 forall (a,b) where (a.prev(1).parent != a.parent) & (a.id < b.id)

do b.parent = a.id, b.phase = a.phase + 0.1;
// perform movement

3 forall (a) where ((a.time + a.phase) % 1.0 == 0.5) & (a.parent != -1) do a.angle = 15.0;
4 forall (a) where ((a.time + a.phase) % 1.0 == 0.0) & (a.parent != -1) do a.angle = -15.0;

Fig. 2. Complete Source Code for Snake Gait Example, 4φ = 0.1, α = 15.0, T = 1.0

as Polypod [12] and Superbot [13]. A phase automaton
consists of a set of multiple states with associated actions,
whose transitions are governed either by external events or
an internal globally-synchronized clock. A phase automaton
additionally possesses an initial time offset φ, which can vary
from module to module.

A simple phase automaton for a snake-like robot is shown
in Figure 1a. In this automaton, the joint angle of a particular
module is set to either +α or −α in a cyclic manner, with
period T . The initial phase offset φ is determined by a
module’s position in the chain, and increases by a constant
4φ at each module. This automaton produces the gait shown
in Fig.1c.

To implement this automaton in a modular robotic system,
there are two fundamental tasks: distributing the correct
phase offset to each module, and setting the joint angle to
the correct value based on the current time and offset. Figure
2 shows the complete code for these two steps. This example
program assumes that the modules have unique id numbers
that are ordered in increasing fashion from the “head” of the
chain, which has id 1.

The first statement sets the parent of the head module
to be its own id. The second statement triggers only when
a module has changed its parent variable, and traverses one
link of the chain at a time, setting the parent and phase
variables of successive modules.

The next two lines implement the actual snake gait of the
phase automaton. For each module, these statements check to
see if the current time, modified by the phase φ and period T ,
corresponds to one of the transition points of the automaton.
If so, the joint angle of the module is set appropriately. It is
interesting to note that the first two statements are broadly
applicable to any chain-style robot, and that they may be

reused for different gaits.
There are several interesting features of the phase au-

tomaton code which bear closer examination. As all of the
statements in the program run simultaneously and concur-
rently, it is necessary to enable and disable the various steps
of the algorithm by the use of gating subpredicates. These
are predicates which match only once, or only for a certain
period of time. There are two such subpredicates in Figure 2.
The first, a.prev(1).parent != a.parent in line 2,
ensures that the predicate matches only on the tick after the
parent variable has changed. This prevents the continual
(and unnecessary) reassignment of parents to the modules
in the chain. The second subpredicate a.parent != -1,
in lines 3 and 4, prevents the predicate from matching (and
motion from occurring) until a parent and phase offset have
been assigned to the module.

We evaluated the snake gait program on chains of 5 to 20
modules, and found that the resulting gait appeared visually
similar to that presented in the original paper . The additional
gaits (rolling and centipede) described in [11] could also be
implemented using similar LDP programs.

IV. EXAMPLE PROGRAM: DATA AGGREGATION

A common task in modular robots, and distributed systems
in general, is the aggregation of a distributed set of values
at a central point. In this example program, we implement
distributed averaging of a scalar variable over the entire
ensemble. This is useful for such tasks as distributed sensing,
localization, and center of mass estimation.

To obtain the average of a variable over all modules, we
use a technique popular in sensor networks. We begin by
designating one module as the root of a spanning tree, and
having all modules transmit their value up the hierarchy of

int isSeed; // set to 1 on the spanning tree’s root, 0 otherwise
int id; // the id number of module
int parent = -1; // the id number of the parent module in the tree
set<int> $notChildren = {}; // the set of module ids of neighbors who are not children
set<int> $children = {}; // the set of module ids of neighbors who are children, and have provided data
set<int> $neighbors; // the set of a module’s neighbors’ ids. Updated when accessed
int isLeaf = 0; // set to 1 is a module is a leaf
int sensor; // the variable to average over
int sum = 0; // sum of all sensor values received
int count = 0; // number of modules that have transmitted data
int average = 0; // average of the sensor value over all modules

// build spanning tree
1 forall (a) where (a.isSeed == 1) do a.parent = a.id;
2 forall (a,b) where (a.parent != -1) & (a.parent != a.prev(1).parent) & (b.parent == -1)

do b.parent = a.id;
// build notChildren sets

3 forall (a,b) where (a.parent != -1) & (a.parent != a.prev(1).parent) & (a.parent != b.id)
do b.$notChildren.add(a.id);

// start propagation at leaves
4 forall (a) where (size(a.$neighbors) == size(a.$children) + size(a.$notChildren))

do a.isLeaf = 1;
// propagate data up

5 forall (a,b) where (a.isLeaf != a.prev(1).isLeaf) & (b.id == a.parent)
do b.sum = b.sum + a.sum + a.sensor,
b.count = a.count + b.count + 1,
b.$children.add(a.id);

// get average
6 forall (a) where (a.count > 0) do a.average = a.sum / a.count;

Fig. 4. Complete Source Code for Data Aggregation Example

R R

R R R

a)

d)

b)

e)

c)

f)

Fig. 3. Data Aggregation Algorithm: a) Available communications links
b) Establishment of spanning tree rooted at R c) Leaves propagating
data upwards (shaded circles) d-e) Additional levels of propagation f)Data
aggregation complete

the tree to the root, where it is accumulated (Fig.3). The
naı̈ve implementation of such an algorithm would be for each
module to transmit its variable’s value, and for that value to
be propagated all the way to the root of the tree, where the
root module would add it to a running total.

Propagating each value independently is clearly inefficient,
and so instead we implement summing and averaging at each
level of the tree, so that only one data value must be passed
up to a module’s parent. The difficulty with this technique
lies in knowing when all of a module’s children have sent
it information, so that the module can propagate the sum
to a higher level of the tree. To solve this, we have each
module maintain two set variables. One tracks immediate

neighbors that are known not to be its children. The other
tracks immediate neighbors that are its children and have
already provided it with data. When the size of these two sets
sums to the total number of neighbors that a module has, it
can transmit its own information up the tree. This algorithm
is not the most efficient or robust choice [14], [15], but it
serves to clearly illustrate how one might implement such a
task.

The code in Figure 4 is an implementation of this aver-
aging algorithm. It has 6 statements, spread over 5 different
phases. The first two statements establish a spanning tree
rooted at the designated module. The next statement adds all
of module a’s neighbors who are in the tree but not children
of a to the set a.$notChildren. The next statement
begins propagation at each level by setting the isLeaf
variable to 1 once all children have provided data. If a
module becomes a leaf, the fifth statement adds its running
count and total to that of its parent, and adds it to
the parent’s $children set. Finally, the sixth statement
continually sets the known average to be the total of all
reported values divided by the count of reporting modules.
The code as presented computes the average only once, but
the addition of a “reset” mechanism is a simple change.

We evaluated the performance of the data aggregation
algorithm on a simulated robot ensemble. The modules were
arranged in a square lattice, in flat planes with sizes ranging
from 5 by 5 (25 modules) to 20 by 20 (400 modules). In all
cases, the number of messages required was exactly three

Step 0 Step 15 Step 30 Step 45 Step 60 Step 75 Step 90 Step 105

Fig. 5. Metamodule-based Shape Planner. Grey metamodules at top of structure are being created, while those at the bottom are generating deletion trees
(red arrows) and being destroyed.

int isSeed; // set to 1 on the metamodule which initiates the motion planner, 0 otherwise
int id; // the id number of metamodule
int parent = -1; // the id number of the parent metamodule in the deletion tree
int inside; // set to 1 if the metamodule is inside the target shape, 0 otherwise
set<int> $notChildren = {}; // the set of metamodule ids of neighbors who are not children
set<int> $spaces; // the set of adjacent free locations where an additional metamodule should be created,

// updated when accessed
set<int> $neighbors; // the set of a metamodule’s neighbors’ ids. Updated when accessed

function create(int); // creates a new metamodule adjacent to the calling one at a given space
function destroy(); // destroys the current metamodule by dispersing it into adjoining metamodules

// propagate FINAL state from seed outward
1 forall (a) where (a.isSeed == 1) do a.state = FINAL;
2 forall (a,b) where (a.state == FINAL) & (b.inside == 1) do b.state = FINAL;

// create new metamodules at edges of start shape
3 forall (a) where (a.state == FINAL) & (size(a.$spaces) > 0) do a.create(a.$spaces.any());

// propagate PATH state to all metamodules outside start shape
4 forall (a,b) where (a.state == FINAL) & (b.inside == 0) &

(b.state == NEUTRAL) do b.state = PATH;
5 forall (a,b) where (a.state == PATH) & (b.state == NEUTRAL) do b.state = PATH;

// build deletion trees from FINAL out through PATH metamodules
6 forall (a,b) where (b.state == PATH) & (b.parent == -1) &

((a.parent != -1) | (a.state == FINAL)) do b.parent = a.id;
// build notChildren sets

7 forall (a,b) where (a.parent != -1) & (a.parent != b.id); b.$notChildren.add(a.id);
8 forall (a,b) where (a.state == FINAL) do b.$notChildren.add(a.id);

// delete PATH metamodules with no children
9 forall (a) where (a.state == PATH) &

(size(a.$neighbors) == size(intersect(a.$notChildren,a.$neighbors))) do a.destroy();

Fig. 6. Complete Source Code for the Basic Metamodule Planner Example

times the number of discrete communications links between
the modules. Each phase of the algorithm (spanning tree con-
struction, not-child set construction, and data aggregation)
required that each adjacent pair of modules exchange one
message. In terms of time complexity, the algorithm required
time linear in the depth of the spanning tree to complete.

V. EXAMPLE PROGRAM: METAMODULE PLANNER

As our final example, we explore the problem of dis-
tributed shape planning for an ensemble of lattice-style mod-
ular robots. We use an extension of the shape change algo-
rithm described in [16]. The algorithm produces a distributed
asynchronous plan for a group of modules to transform from
a feasible start state to a feasible goal state, while maintaining
global connectivity throughout the execution of the plan.
Furthermore, the algorithm provides provable guarantees of
completeness: if there exists a globally connected path, it
will be found. A film strip of the planner in action is shown
in Fig.5.

A. The planning algorithm

The basic planner in [16] finds a sequence of rearrange-
ments to go from a starting configuration to reach a target
shape while maintaining global connectivity. The algorithm
operates on metamodules, i.e., particular structures of mod-
ules, which are assumed to provide an abstraction where one
metamodule can spawn a new metamodule in an adjoining
empty spot, or absorb an adjacent metamodule to create an
empty spot2. Initially, the ensemble of metamodules is in the
start shape. During execution, metamodules are created and
destroyed to reach the target shape.

The plan starts with a seed metamodule, which is in the

2In the full version of this algorithm, the modules that form new meta-
modules and are absorbed from deleted ones are treated as resources, and are
passed around by the metamodules to where they are needed. For simplicity
and space considerations, in this paper we show the basic version of the
algorithm that does not consider resources. An LDP implementation of the
full algorithm is available at http://www.cs.cmu.edu/∼claytronics/LDP/mm-
planner-full.txt.

intersection of the start and goal shapes. The seed meta-
module recruits every neighboring metamodule in the goal
shape to enter the final state. It marks every neutral neighbor
not in the goal shape as a candidate for removal, with state
path. To avoid breaking global connectivity when removing
metamodules, the planner uses path state metamodules to
grow trees out from the portions of the ensemble to be
preserved into the regions to be deleted, and only deletes
metamodules at the leaves. Every path metamodule has a
link from its parent, and as long as the link is not broken, the
module will remain connected to the goal shape. Eventually,
the path-trees will have no further space to expand, at which
point, the leaves can be trimmed without loss of connectivity.
In Fig.5, the start shape is indicated by the lighter colored
metamodules, the goal shape by the darker colored ones, and
trees are indicated by red arrows.

B. Implementation

The implementation of the motion planner runs at the
metamodule level, on structured subgroups of modules. This
allows for the creation and destruction of metamodules, as
their constituent modules can be absorbed or provided by
other nearby metamodules. To implement this application,
we must port the LDP runtime to the metamodule level,
which requires implementing communication and state vari-
able storage across multiple modules. The code for the
planning algorithm is shown in Fig.6. The state variables
isSeed, inside, and $spaces are dependent on the start
and goal shapes of the specific plan, and are initialized and
managed by the low-level support code.

The first two lines spread the final state to the seed, and
then to every contiguous metamodule which is inside the
target shape. The third line causes new metamodules to be
created at final locations with free spaces for creation. The
fourth and fifth lines propagate the path state outwards from
the edges of the final region to all metamodules that are
outside the goal shape. The sixth line creates a forest of
trees rooted at the edges of the final region, and spreading
into the path deletion region. Statements seven and eight
create notChildren sets, in a similar fashion to the
data aggregation of Section IV. Finally, the ninth statement
deletes path metamodules with no remaining children.

VI. DISCUSSION & CONCLUSIONS

We have demonstrated the utility of LDP by implementing
three common classes of modular robotic algorithm. LDP
provides a concise abstraction of distributed state, and helps
to separate the actions of the algorithm from the support code
necessary in traditional imperative languages.

As with any language, there are certain tasks which are
more or less difficult to express in LDP. In particular, dis-
tributed state comparison and simple temporal relationships
are quite naturally written in LDP. The lack of any explicit
control structures or ordering makes certain other tasks more
difficult. In particular, in order to impose an execution order
of different “phases” on the program, we must use gating
subpredicates to bound the times when certain statements

can be active. This is especially important for statements
which we want executed exactly once on each module.

Finally, we note that the design of the LDP language
and runtime is deliberately amenable to extension with new
primitives and operators. The addition of new primitives
(such as per-edge variables or subexpression quantification)
would allow LDP to address more specialized application
domains. As LDP is derived from the distributed watchpoint
language, it is also possible to debug LDP programs in a
distributed fashion within the language.

REFERENCES

[1] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica,
“Implementing declarative overlays,” in Proceedings of ACM Sympo-
sium on Operating System Principles (SOSP), 2005.

[2] M. Ashley-Rollman, S. Goldstein, P. Lee, T. Mowry, and P. Pillai,
“Meld: A declarative approach to programming ensembles,” in Pro-
ceedings of the IEEE International Conference on Robots and Systems
IROS ’07, 2007.

[3] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal Of Robotics And Automation, RA-2, pp. 14–23, April 1986.

[4] G. Berry, “The esterel v5 language primer,” Centre de Mathematiques
Appliquees, Ecole des Mines and INRIA, Tech. Rep., 1999. [Online].
Available: http://www-sop.inria.fr/meije/esterel/esterel-eng.html

[5] R. Newton, G. Morrisett, and M. Welsh, “The regiment macropro-
gramming system,” in IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks. New York,
NY, USA: ACM Press, 2007, pp. 489–498.

[6] J. Beal and J. Bachrach, “Infrastructure for engineered emergence on
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, no. 2, pp.
10–19, 2006.

[7] M. DeRosa, S. Goldstein, P.Lee, J. Campbell, and P. Pillai, “Dis-
tributed watchpoints: Debugging large multi-robot systems,” in Pro-
ceedings of the IEEE International Conference on Robotics and
Automation ICRA ’07, 2007.

[8] C. M. Chase and V. K. Garg, “Detection of global predicates: Tech-
niques and their limitations,” Distributed Computing, vol. 11, no. 4,
pp. 191–201, 1998.

[9] R. Cooper and K. Marzullo, “Consistent detection of global predi-
cates,” in Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, published in ACM SIGPLAN Notices, vol. 26,
1991, pp. 167–174.

[10] M. De Rosa, S. C. Goldstein, P. Lee, J. Campbell, and P. Pillai,
“Distributed watchpoints: Debugging large modular robotic systems,”
International Journal of Robotics Research (special issue, to appear)w,
2007.

[11] Z. Ying, M. Yim, C. Eldershaw, D. Duff, and K. Roufas, “Phase au-
tomata: a programming model of locomotion gaits for scalable chain-
type modular robots,” in Proceedings of 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, (IROS 2003), 2003.

[12] D. Duff, M. Yim, and K. Roufas, “Evolution of polybot: A modular
reconfigurable robot,” in Proc. of COE/Super-Mechano-Systems Work-
shop, 2001.

[13] B. Salemi, M. Moll, and W.-M. Shen, “SUPERBOT: A deployable,
multi-functional, and modular self-reconfigurable robotic system,”
in Proceedings of the IEEE International Conference on Intelligent
Robots and Systems IROS ’06, 2006.

[14] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and deltas: efficient
and robust aggregation in sensor network streams,” in SIGMOD ’05:
Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM Press, 2005, pp.
287–298.

[15] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks,” in SenSys ’04:
Proceedings of the 2nd international conference on Embedded net-
worked sensor systems. New York, NY, USA: ACM Press, 2004, pp.
250–262.

[16] D. Dewey and S. Srinivasa, “A metamodule shape planner for modular
robots,” in Proceedings of the IEEE International Conference on
Robotics and Automation ICRA ’08 (in submission), 2008.

