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Abstract

Question Answering (QA) is the task of searching a large text collec-
tion for specific answers to questions posed in natural language. Though
they often have access to rich linguistic and semantic analyses of their
input questions, QA systems often rely on off-the-shelf bag-of-words In-
formation Retrieval (IR) solutions to retrieve passages matching a set of
terms extracted from the question.

There is a fundamental disconnect between the capabilities of the
bag-of-words retrieval model and the retrieval needs of the QA system.
Bag-of-words IR retrieves documents matching a query, but the QA sys-
tem really needs documents that contain answers. Through question
analysis, the QA system has compiled a sophisticated information need
representation for what constitutes an answer to the question. This rep-
resentation is composed of a set of linguistic and semantic constraints
satisfied by answer-bearing passages. Unfortunately, off-the-shelf IR li-
braries commonly used in QA systems can not, in general, check these
types of constraints at query-time. Poor quality retrieval can cause a QA
system to fail if no answer-bearing text is retrieved, if it is not ranked
highly enough, or if it is outranked or overwhelmed by false positives,
text that matches the query well, yet supports a wrong answer.

This thesis proposes two linguistic and semantic passage retrieval
methods for QA, one based on structured retrieval and the other on
rank-learning techniques. In addition, a methodology is proposed for
mapping annotated text consisting of labeled spans and typed relations
between them into an annotation graph representation. The annotation
graph supports query-time linguistic and semantic constraint-checking,
and serves as a unifying formalism for the QA system’s information need
and for retrieved passages. The proposed methods rely only on the rel-
atively weak assumption that the QA system’s information need can be
represented as an annotation graph. The two approaches are shown to
retrieve more answer-bearing text, more highly ranked, compared to a
bag-of-words baseline for two different QA tasks. Linguistic and seman-
tic passage retrieval methods are also shown to improve end-to-end QA
system accuracy and answer MRR.
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Chapter 1

Introduction

Since the time of the earliest digital computers, the amount of information available
in the form of electronic text has grown exponentially. Issues of scale inherent in
the management of large collections of information, such as the World Wide Web,
complicate efforts to provide access and to maintain an organizational structure.
Today’s ubiquitous search engines are the cutting edge of research in Information
Retrieval (IR), a field born in the 1950s out of the need to apply library science
techniques to collections of electronic text.

At the same time, computational linguists were harnessing the increasing pro-
cessing power of modern computers available in recent decades to build tools to
support machine understanding of human languages. As the capabilities of Natu-
ral Language Processing (NLP) technologies grew, researchers began to experiment
with combining them with already-mature IR technologies, giving rise to a new in-
formation management paradigm known as Question Answering (QA). Because of
the shift in focus toward retrieving linguistic units representing answers, rather than
text units such as passages or documents, QA was believed to be what users really
wanted on some level [63].

1.1 What is Question Answering?

At the highest level, a Question Answering (QA) system provides specific answers
to questions posed by users in human language. For example, a user interested in
professional tennis may ask a QA system, Who beat Federer?, to which the system
might reply Nadal, Murray, Djokovic, etc. In terms of input, a QA system supports
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natural language questions as opposed to queries formulated in a particular search
engine’s query syntax, such as beat AND federer. With respect to output, QA
systems retrieve answers, concise pieces of text that respond to the input question
in a linguistically justifiable way. In contrast, search engines return ranked lists of
documents, which the user must then read in order to locate the information he or
she was looking for.

Figure 1.1 shows a block diagram of a QA system, consisting of NLP technology
encapsulating an IR component. At the highest level of abstraction, a QA system
can be thought of as a pipeline consisting of an IR component bookended by NLP
components [22]. The first module in the pipeline, Question Analysis, analyzes a
natural language question input to system, producing an internal representation
for the system’s information need, which is a linguistic and semantic description of
the answer to the question. The information need is passed to the embedded IR
component, which uses it to retrieve passages likely to be answer-bearing. The final
NLP component, Answer Generation, uses the information need to pinpoint answers
among results retrieved by the IR module.

Figure 1.1: A QA system, consisting of an IR system encapsulated by NLP compo-
nents: front-end Question Analysis and back-end Answer Generation.

1.2 The Role of Retrieval in QA

Much of the primary early research in QA focused on developing robust Question
Analysis and Answer Generation modules, which did not exist before and without
which natural language questions could not be understood, nor answers be located
among retrieved text. In contrast, relatively little attention was paid to the IR
component, which was considered more mature technology. The builders of early QA
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systems often used off-the-shelf IR tools and incorporated them into their systems
with relatively little tuning [24].

Questions can not be answered without NLP, and if infinite processing power
were available, the straightforward approach to QA would be to analyze the entire
corpus, comparing each passage against the question to find the best answer. Real-
world limitations make it impossible to use this approach, so most QA systems use an
embedded IR component to narrow the search space for the answer to the question.
The role of retrieval in QA is to function as a fast, but coarse, first pass filter to
exclude from the search passages not likely to be answer-bearing [7]. The passages
selected by the IR component would then be subjected to the extensive NLP analysis
required to determine whether they contain answers to the question.

After the NLP components of the system, Question Analysis and Answer Gen-
eration, reached a certain level of maturity, QA system developers began to observe
that certain system failure modes were attributable to the quality of the IR compo-
nent [35], and that some part of the QA problem was in fact an IR problem, with
different requirements than the traditional ad hoc retrieval task [7]. If the IR mod-
ule fails to retrieve a passage containing the correct answer to the question, then
the downstream Answer Generation component can not recover, and the system will
reply with an incorrect answer. End-to-end QA system accuracy is also sensitive
to the quality of the ranking of passages coming out of the IR component. If the
answer-bearing passages are outnumbered by false positives or are ranked so low that
they can not be considered, the likelihood that the system will return the correct
answer is reduced.

These observed phenomena result from an underlying problem of mismatch of
representation between the IR and NLP components of the QA system. For each
input question, the Question Analysis module builds a sophisticated representation
of the system’s information need, which is a prescription for the answer to the in-
put question. This information need representation is composed of NLP primitives
such as linguistic and semantic constraints between question keyterms. The off-the-
shelf IR components first used for QA could not check these constraints at query
time, supporting only surface keyterm relationships, such as proximity, ordering and
frequency.

Because the primitive elements of a QA system’s information need representation
are not in general directly queryable by an off-the-shelf IR component, the system
must cast its information need into the weaker query representation supported by
the IR system. This cast results in the relaxation of the linguistic and semantic
constraints in the information need, and in the retrieval of false positives, those
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passages matching the IR query but not satisfying the higher-level constraints in the
information need. To identify the answer-bearing passages among the false positives,
the Answer Generation module must perform a potentially costly NLP analysis on
each retrieved passage, and compare it against the information need.

1.3 Tailoring IR to the Needs of QA Systems

If QA is ever to become fast and accurate enough to compete with the Google
information access paradigm, which emphasizes fast response to queries over accurate
constraint checking at the level of the information need, researchers must tailor IR
solutions for the QA task. Though they are also important to a successful QA system,
it is not sufficient to focus solely on the NLP components of the system.

Early work on improving IR for QA began by considering the IR system as a black
box. Different methods of expressing the question as a query were explored, including
different query operators, query expansion and term weighting schemes, often by
intuition [7, 21]. Variations in document representation and indexing strategies were
also tried, including indexing meta-information on terms [11] and index-time passage
segmentation [59]. Many researchers grew to distrust the rankings coming out of their
embedded IR systems, and attempted to exercise external control over the ranking
by querying within feedback loops [44] or with sequences of successively relaxed
queries [26], or by using pseudo-relevance feedback [36] or explicit post-retrieval
passage extraction and ranking modules [57].

In contrast, the work in this thesis goes inside the black box to adapt IR solutions
to the needs of a QA system. The goal is to get the IR component to shoulder more
of the burden of the QA task, by shrinking the search space as tightly as possible
around the region of relevant text without an appreciable increase in false negatives.
Conceptually, the IR system’s query representation needs to be evolved closer to
the QA system’s information need representation, to enable query-time checking of
the linguistic and semantic constraints that determine whether a passage is answer-
bearing or not. This is the vision that guides the research in linguistic and semantic
passage retrieval methods for QA systems documented in this thesis.

To illustrate the contrast between surface-level constraints queryable by many
off-the-shelf IR systems and the deeper linguistic and semantic constraints necessary
to determine whether text is answer-bearing, we return to the tennis fan’s example
question, Who beat Federer? There are two keyterms that can be extracted from the
question, beat and federer, both of which are required, but federer is more important.
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The wh-word becomes a placeholder for phrases identified as person names in the
text. There is an implicit proximity relationship that should hold among the keyterms
and the placeholder, but whether the ordering is important is unclear. In English,
word ordering is strongly predictive of semantics, but linguistic constructions such
as passive voice, topicalization and relative clause movement can defeat the intent
of the ordering constraint.

Table 1.1: Passages retrieved for the question, Who beat Federer?; passages 1 and 2,
shown in bold face, are answer-bearing.

Passage beat federer Proximity Ordering
1 Nadal beat Federer. • • • •
2 Federer was defeated by Nadal. • •
3 Federer beat Safin. • • •
4 Safin was beaten by Federer. • • • •

Table 1.1 shows four passages that a QA system’s IR component might retrieve for
the question, Who beat Federer? Passages 1 and 2 are answer-bearing, but passages 3
and 4 describe matches in which Federer prevailed, which are certainly more common
than those in which he was defeated. Note that a bag-of-words retrieval model can
not distinguish among passages 1, 2 and 4, because they both contain the keyterms
federer and beat, assuming that the various morphological forms are conflated. A
retrieval model that enforces the ordering constraints can not distinguish between 1
and 4, or 2 and 3.

For the question, Who beat Federer?, the relationship among the keyterms and
placeholder that is the most important to the QA system is not proximity or ordering,
but rather a semantic constraint that specifies that federer is the patient of the beat
event, that is, the player who is beaten. The agent of the event, or the winning
player, is represented by the placeholder that matches extents in the text that have
been identified as person names. In Table 1.1, the answer-bearing passages (1 and
2) satisfy these semantic constraints, and no others do.

Pondering the example, several research questions come to mind:

1. Can an IR system be built that allows for query-time constraint checking of
the linguistic and semantic constraints in the QA system’s information need?

2. What kinds of index structures and retrieval models would be useful?
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3. Would such an approach improve passage retrieval quality, where better quality
is defined as more answer-bearing passages, more highly-ranked, and fewer false
positives?

4. Would such an approach improve end-to-end QA system quality, where better
quality is defined to mean that the top-ranked answer is correct more often,
and the average rank of the highest-ranked correct answer is closer to the top?

1.4 Hypothesis

For a given QA system, there exists a linguistic and semantic passage retrieval tech-
nique that outperforms a non-linguistic and semantic baseline, providing measurably
better quality passage retrieval.

Furthermore, in a QA system utilizing a linguistic and semantic passage retrieval
technique to obtain better quality passage retrieval, the system will exhibit better
quality end-to-end performance.

1.5 Contributions of this Thesis

This thesis provides a general methodology for mapping any text annotation scheme
based on labeling spans of text, and relating those spans with typed relations, into
a unifying representation called the annotation graph. This formalism is used for
representing both QA system information needs and passages retrieved by a QA sys-
tem’s embedded IR module, and enables linguistic and semantic comparison between
the two.

In addition, this thesis proposes two specific linguistic and semantic passage re-
trieval strategies for QA systems, one based on structured retrieval methods, and the
other based on rank-learning techniques. Both methods support query-time checking
of the linguistic and semantic constraints expressed in an annotation graph. These
methods are generalized with respect to the specific types of constraints used, as
well as features of the text, such as language and domain. The only requirement
that a QA system must meet to be able to integrate either of these passage retrieval
methods is the relatively weak requirement that the system’s internal linguistic and
semantic representation can be reduced to an annotation graph.

This thesis provides concrete solutions to an issue that continually challenges the
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QA research community; namely, the issue of poor quality retrieval and its detri-
mental effect on QA system performance. This thesis provides QA systems access
to linguistic and semantic passage retrieval methods that can be used to improve
retrieval quality, thereby lessening the burden on downstream Answer Generation,
and can be made to operate fast, in order to take a step toward the eventual goal of
real-time QA. The results in this thesis suggest avenues for future research that can
take the field even further.

This work also has implications for the learning-to-rank field. In 2007, Croft
articulated a vision for the rank learning research community involving “different
types of information needs, more linguistic features, more integration with structured
data, [and] different applications” [13]. In applying rank-learning techniques to the
task of linguistic and semantic passage retrieval for QA, this thesis represents a step
toward that broad vision.

1.6 Outline of this Thesis

The remaining chapters of this thesis are organized as follows:

• Chapter 2 examines the interaction between Question Answering and Informa-
tion Retrieval, beginning with historical perspectives, summarizing the latest
approaches, and highlighting some of the issues that the methods proposed in
this thesis are intended to address.

• In Chapter 3, the concept of an annotation graph is introduced as a generalized
representation for a QA system’s information need. The chapter describes how
a variety of representations can be reduced to an annotation graph, given the
appropriate type system.

• Chapter 4 describes resources used in the experiments in the later chapters of
this thesis.

• The first of the linguistic and semantic passage retrieval strategies proposed
in this thesis, based on mapping the task of annotation graph retrieval into a
structured retrieval problem, is outlined in Chapter 5.

• Chapter 6 proposes another strategy for ranking text using the annotation
graph representation and rank-learning methods.
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• In Chapter 7, the rank-learning passage retrieval strategy introduced in Chap-
ter 6 is applied to a second, very different, problem instance. The effect of
passage retrieval quality on end-to-end QA system performance is also dis-
cussed in this chapter.

• The contributions of this thesis are summarized in Chapter 8.
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Chapter 2

Background and Related Work

This chapter studies historical and contemporary work on Question Answering (QA),
focusing on its relationship to Information Retrieval (IR). This chapter is not an
exhaustive survey of prior and related work, but instead seeks to analyze alternative
approaches to the task of retrieval for QA and to identify issues that are addressed
by subsequent chapters in this thesis.

2.1 Answering Questions over Structured and Un-

structured Data

Work on early Question Answering (QA) systems began in the early 1960s, during
which two separate, competing threads of research emerged. One school of thought
grew out of research in natural language interfaces for database systems, such as
Baseball [20] and Lunar [65], each of which used shallow parsing techniques and
dictionary-based approaches to translate user questions into database queries.

This approach matured into START1, the first publicly-available QA system on
the web, which uses hand-edited question matching schemata and generation tem-
plates to provide access to a structured knowledge base. Wolfram Alpha is a similar
project, but does not claim to offer full-blown QA capabilities, instead opting for
a simpler query syntax 2. The primary advantage of these approaches is that their
accuracy is very high, and that they support interesting modes of information ag-

1See: http://start.csail.mit.edu/
2See: http://www.wolframalpha.com/
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gregation, such as joins against the backing database. The primary disadvantage is
that coverage is low and the burden of knowledge engineering is high.

The other research thread explored Question Answering over unstructured text.
The Oracle system [45] worked by reformulating input questions into declarative
statements, then scanning a corpus for an exact match containing the same terms
in the same order. Protosynthex [54] adopted a more sophisticated matching
approach, using morphological normalization and dependency graph analysis to score
text matching the question.

More recently, Wendlandt and Driscoll proposed labeling documents with features
indicating the types of questions they could answer, such as amount and duration for
how much and how long questions [64]. They showed how these categories could be
combined with keyterm information to retrieve documents likely to contain answers
to questions, but do not explain how to enforce that the document contains the
answer to the specific question described by the keyterms.

The Murax system is an open-domain QA system that answers questions over a
corpus of encyclopedia articles [28]. It is one of the earliest examples of the pipelined
architecture widely considered to be the standard approach to the QA problem [22].
Murax uses part-of-speech tagging and shallow chunking to analyze the question,
to formulate queries for a Boolean retrieval system that ranks by keyterm proximity,
and to extract answers in the form of noun phrases from retrieved text. Murax
was a successful system that many later QA systems were modeled after, but it
later became clear, when similar techniques were applied to newswire text, that the
informative and well-curated nature of the encyclopedia text was responsible for
much of the system’s success.

2.2 Open-Domain QA Evaluations at TREC and

CLEF

Between 1999 and 2007, research and development in open-domain QA was fueled
by interest from the U.S. National Institute of Standards and Technology (NIST),
which organized large-scale evaluations for QA systems as part of its annual Text RE-
trieval Conferences3 (TRECs). The Cross-Language Evaluation Forum4 (CLEF; pro-
nounced “clay”, as in the French word for “key”), organized by the Istituto di Scienza

3See: http://trec.nist.gov
4See: http://www.clef-campaign.org/
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e Tecnologie dell’Informazione of the Italian Consiglio Nazionale delle Ricerche, is
often considered the European counterpart to TREC, and has organized compar-
ative evaluations in monolingual and cross-lingual QA since 2003. Each year, the
task became more difficult by including new question types, such as definition and
list questions, requiring tighter answer bounds and better support for answers. This
section discusses some of the notable advances in the state-of-the-art of QA made
by various participants in TREC and CLEF evaluations.

The predictive annotation approach [51] involves pre-processing the collection
with named entity recognition, then indexing the location of those entities within
the text. This approach inherits philosophically from Wendlandt and Driscoll’s
method [64], but the positional information in the index allows the system to enforce
proximity relationships between keyterms and entities at query-time, ensuring that
the entities in the text answer the question described by the keyterms. In terms of
storing semantic information in the index, the predictive annotation approach in-
spires, in part, the structured retrieval approach to linguistic and semantic passage
retrieval proposed in Chapter 5.

There has also been a great deal of work on query expansion among TREC par-
ticipants who observed that there are relatively few keyterms available for extraction
from the question. Hovy, et. al. [23] report improved retrieval quality using a form
of controlled synonymy based on WordNet [17]. Greenwood has explored the use of
WordNet pertainyms for query expansion, boosting performance on questions con-
taining a location name [21]. Paşca and Harabagiu [44] present an approach in which
queries are expanded using morphology, lexical derivations and semantic equivalents,
a kind of highly-controlled synonymy based on hand-maintained resources. Indis-
criminate query expansion and pseudo-relevance feedback were shown to be poor
retrieval strategies for QA [37, 31].

Many QA systems participating in TREC over the years utilized a two-stage
retrieval approach consisting of a document retrieval stage, followed by a sliding-
window passage scoring algorithm [9]. Tellex, et. al., survey a variety of pub-
lished passage scoring functions used for QA, and find that those that favor keyterm
proximity provide the best end-to-end system performance [57]. Monz proposes a
density-based passage scoring function that incorporates a document-level similarity
score [38]. The main disadvantage of the two-stage approach is that passage ranking
quality depends on a document retrieval step able to reliably retrieve documents
containing relevant passages.

Cui, et al. [14] propose a method of passage scoring based on dependency graph
similarity between the passage and the question using the Minipar dependency
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parser [30]. The method considers paths through the dependency graph between
keyterm pairs, and uses a version of IBM Translation Model 1 to estimate the like-
lihood that the path between a pair of passage keyterms represents the same re-
lationship that exists between that pair of keyterms in the question. The method
was shown to be effective against a weak baseline, and appears to require significant
amounts of training data. In Section 6.8, the rank-learning approach proposed in
this thesis is compared against the Cui approach.

In 2005, TREC offered a relationship question task, which emphasized retrieval
of short passages describing the relationships between two entities, be they familial,
financial, political, etc. Narayanan and Harabagiu [40] proposed a method of an-
swering these questions based on probabilistic inference over a rich semantics based
in part on the ASSERT shallow semantic parser [49]. Subsequently, the JAVELIN
system attempted to improve on this work by introducing a retrieval strategy in
which the same type of semantic relationships between keyterms were represented
in the index and made available for query-time checking [42, 41]. The JAVELIN re-
trieval approach for relationship questions was among the first to integrate semantics
directly into the retrieval process, and is a direct ancestor of the structured retrieval
method discussed in Chapter 5.

Tiedemann proposed a similar approach for answering CLEF questions in Dutch,
decomposing the output of a dependency parser into components that can be in-
dexed [58]. The approach encodes specific pairwise relationships between keyterms
as artificial index terms, which can then be queried upon using standard retrieval
models. Unlike the structured retrieval approach described in Chapter 5, this method
is not capable of checking relations among groups of three keyterms or larger, because
they are not stored in the index.

2.3 Recent Work in Linguistic and Semantic IR

for QA

Pizzato and Mollá [47] investigate indexing and retrieval of text annotated using a
proprietary, lightweight representation based on semantic role labeling. This method
is similar to the JAVELIN approach to relationship questions [42, 41] and the struc-
tured retrieval approach to linguistic and semantic passage retrieval for QA proposed
in Chapter 5, but it uses a vector-space retrieval model instead. The vector represen-
tation consists of weighted term counts, as in the classic vector-space model, but also
counts of terms playing specific semantic roles, as well as counts of pairwise semantic
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relationships between terms. It was shown that the method is effective, but sensitive
to gaps in coverage by the semantic role labeling tool, which is, of course, true of
any system relying on text annotation.

Verberne, et. al., surveyed a variety of learning-to-rank paradigms for their appli-
cability to the QA task, concluding that a pairwise approach using Support Vector
Regression was the most appropriate strategy [61]. They were among the first to
use linguistically-motivated features in a rank-learning context. Their feature set
was based largely on term overlap between the question and a passage to be scored
within different syntactic categories, such as verb and subject. A second set of fea-
tures measured these same overlaps after expansion through WordNet synsets [17].
This approach is similar in spirit to the rank-learning approach proposed in Chap-
ter 6, which takes the concept to the next level by using a feature set based on
decomposition of the QA system’s information need into atomic linguistic and se-
mantic constraints.

2.4 Evaluation of IR for QA

The evaluation methodology for the linguistic and semantic passage retrieval methods
proposed in this thesis differs in two key ways from that which is shared by the bulk
of the related approaches described in this chapter. The first fundamental difference
is in the standard used to determine whether a retrieved passage is answer-bearing
or relevant to a given question. Much of the prior work uses a lenient evaluation
standard that considers a passage relevant if it matches a hand-edited answer pattern.
Unfortunately, this standard tends to overestimate relevance. Consider the example
passage Fenway Park opened in 1912, which, if retrieved in response to the question
When did the Titanic sink? would be considered relevant because it matches the
answer pattern, despite clearly not answering the question. The experiments in this
thesis consider a passage relevant to a question if and only if it is contained in a
test collection constructed by a human assessor charged with judging passages as to
whether they contain and support the answer to the question. See Chapter 4 for
more information on the test collections used in this thesis.

The work presented in this thesis not only uses a different standard for ground
truth in evaluation, but also a different metric for calculating the quality of a ranked
list of passages. Many prior approaches rely on a metric known as Reciprocal Rank,
in which a ranking is measured using the reciprocal of the one-based rank of the top-
ranked passage that is relevant. A ranking in which the first passage is relevant would
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receive the maximum score of 1.0, while a ranking in which the first two passages
are not relevant, but the third passage is relevant, would receive a score of 0.3333.
This work uses Average Precision, which scales not only with the proportion of the
universe of known relevant passages that are retrieved, but with the rank of each
of these passages. Average Precision is maximized when all relevant passages are
retrieved at the top of the ranked list, and when there are no non-relevant passages
ranked ahead of any relevant passages. Because Average Precision does a better
job of capturing the density of relevant passages at the top of the ranking, it is the
preferred metric for the experiments in this thesis.

2.5 Related Tasks

The task of Recognizing Textual Entailment (RTE) was proposed as a general model
for semantic inference and for abstracting over semantic variation in text [15]. Given
a snippet of text, the task challenges systems to determine whether a second text
fragment, known as the hypothesis, follows from the first. If so, the hypothesis is
said to be entailed by the first text. As a simple example, the hypothesis John loves
Mary is entailed by texts such as John is enamored with Mary, John and Mary were
married, and perhaps even John bought Mary flowers.

QA and RTE are related in that a piece of text that answers a question entails
a hypothesis formulated by inserting the answer to the question into a declarative
statement derived from that question. The linguistic and semantic passage retrieval
methods proposed for the QA task in this thesis are based on computing the essential
similarity between an information need and a piece of text in terms of partial satis-
faction of linguistic and semantic constraints. These methods would apply naturally
to the task of RTE, and would fall somewhere in the middle of the continuum of
approaches applicable to the task, which is anchored by full-blown logical inference
and theorem proving on one end and by superficial methods such as word overlap on
the other end.
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Chapter 3

Representing the Information
Need as an Annotation Graph

This chapter gives the formal definition of an annotation graph, a generalized, unify-
ing representation for the information need of a Question Answering (QA) system,
as well as for retrieved passages. The information need is a linguistic and semantic
prescription for the answer to a question posed to a QA system. The information
need is the output of the system’s Question Analysis module, which is responsible
for all of the front-end Natural Language Processing (NLP) required to understand
the input question. This same representation serves as the input to the system’s
downstream modules; the embedded Information Retrieval (IR) component uses it
to perform passage retrieval, and the Answer Generation module uses it to locate
answers among the retrieved passages.

All schemes of text annotation that consist of typed text spans and typed bi-
nary relations between pairs of spans can be reduced to the annotation graph rep-
resentation described here. This includes broad classes of named entity recognition,
syntactic parsing and semantic analysis commonly used in QA systems. The pas-
sage retrieval techniques proposed in subsequent chapters are applicable to all QA
systems whose internal information needs can be represented as annotation graphs.

3.1 What is an Annotation Graph?

An annotation graph is the unifying linguistic and semantic representation used for
information needs as well as retrieved passages. Formally, an annotation graph G is
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defined as a tuple consisting of three elements: a set of elements E (vertices), a set of
relations R (edges), and a construct to be defined presently called the type system,
given by T .

G = (E = {e1, . . . , e|E|}, R = {r1, . . . , r|R|}, T )

Type systems are vocabularies of the types of elements and the types of relations
that can be instantiated in a particular annotation graph. Formally, a type system is
a tuple that consists of two sets, Te and Tr, which define all valid types for elements
and relations, respectively.

T = (Te = {te1, . . . , te|Te|}, T r = {tr1, . . . , tr|Tr|})

See Section 3.2 for a concrete example of a relatively simple, text-based type
system. Subsequent chapters of this thesis will define richer type systems as a part
of their treatment of linguistic and semantic strategies for passage retrieval for QA
systems. All type systems mentioned in this thesis are collected in Appendix A for
easy reference.

3.1.1 Elements

In a type system, an element type tei is defined as a name and an optional parent
pointer. If the parent is not null, it must point to another element type defined in
the same type system. This is the mechanism whereby single inheritance for element
types is implemented in the type system. If type tc has parent tp, an instance of type
tc can participate in any relation defined for type tp. Note that the parent pointer
used to implement the inheritance mechanism in the type system is not a relation or
a relation type that can be instantiated on a per-graph basis.

tei = (name, parent ∨ ∅)

In an annotation graph, each element ei is defined as an instance of an element
type defined in the type system:

ei = (te); te ∈ Te
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3.1.2 Relations

A relation type in a type system tri declares an asymmetric relation that can be
defined to hold between an instance of the domain element type, or any type derived
from it, and an instance of the range element type, or any type derived from that
type.

tri = (name, ted, ter); ted, ter ∈ Te

In an annotation graph, each relation ri is defined by its relation type as given in
the type system, an element of the domain type and an element of the range type:

ri = (tr, ed, er); tr ∈ Tr; ed, er ∈ E; ed = (ted); er = (ter)

3.2 The Annotation Graph as a Model for Text

The annotation graph is general enough to represent a wide variety of data, but the
remainder of this thesis concerns itself with annotation graphs that represent text. In
the most general sense, text refers to a grouping of primitive elements called terms.
This section describes several techniques for modeling text as annotation graphs that
are common to the experiments described in later chapters.

When representing a collection of passages as annotation graphs, the passage
graphs share the same type system, and this type system defines one element for
every term that occurs in at least one of the passages. The common type system
also must define, at a minimum, an element type keyterm as a supertype for each of
the individual term element types. For a minimal model for the structure of text, it
is necessary to define an element type, such as sentence, and a single relation type,
enclosure, which is defined to hold between a sentence and a keyterm. The formal
definition of this type system, Tbow, which models a bag-of-words representation of
text, can be found in Section A.1.

Note that the element type sentence is given in monospace type. Throughout
this thesis, it is a matter of convention that leaf element types representing concrete
annotations are distinguished using monospace type. With respect to text, an an-
notation is defined as a text field, which is a contiguous sequence of keyterms, to
which some special semantics is attached. A group of keyterms participating in an
enclosure relation with an instance of specific annotation type is “tagged” with the
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semantics associated with that type. The semantics of the sentence annotation type
is quite simple; enclosure of a keyterm within the sentence simply means that the
sentence contains that keyterm.

Additional element and relation types can be added to the type system to model
other aspects of the text. It is possible, for example, to represent the order of
keyterms in the sentence. To model these surface patterns, a relation type called
precedence can be defined to hold between pairs of keyterms. Adding this relation
type allows passages containing the same keyterms in different orders, which would
map to identical annotation graphs under Tbow, to be distinguished at the level of the
annotation graph representation. Section A.2 gives the formal definition for this type
system, denoted Tsurf . Tsurf contains all of the element and relation type definitions
in Tbow, so it can be written that Tsurf ⊃ Tbow.

3.3 Question Analysis and the Information Need

In a QA system, the Question Analysis module is responsible for the front-end NLP
analysis required to distill the input question into an information need representation
under a given type system. Consider the example question, Who beat Federer?
Figure 3.1 shows what the information need representation would look like under
Tbow and Tsurf .

Gin, bow = (Ebow, Rbow, Tbow) Gin, surf = (Esurf , Rsurf , Tsurf )

Ebow =


e1 = (sentence),
e2 = (beat),
e3 = (federer)

 Esurf =


e4 = (sentence),
e5 = (beat),
e6 = (federer)


Rbow =

{
(enclosure, e1, e2),
(enclosure, e1, e3)

}
Rsurf =


(enclosure, e4, e5),
(enclosure, e4, e6),
(precedence, e5, e6)


Figure 3.1: Information needs corresponding to the input question Who beat Fed-
erer? expressed under Tbow, as defined in Section A.1, and Tsurf , as defined in Sec-
tion A.2. The difference is that Gin, surf models the precedence constraint between
the keyterms.

The type systems defined thus far do not define the types of linguistic and seman-
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tic constraints a QA system might need to answer the question, Who beat Federer?
Consider the following passages, shown in Table 3.1 that might be retrieved for this
question:

Table 3.1: Passages retrieved for the question, Who beat Federer?; passages 1 and
2, shown in bold face, are answer-bearing. The three right-hand columns indicate
whether the corresponding annotation graphs under Tsurf satisfy the constraints in
the information need Gin, surf , which is shown in Figure 3.1.

enclosure enclosure precedence
sentence sentence beat

Passage beat federer federer
1 Nadal beat Federer. • • •
2 Federer was defeated by Nadal. •
3 Federer beat Safin. • •
4 Safin was beaten by Federer. • • •

The essential relationship between beat and federer is not well-modeled by mutual
enclosure in a sentence; the counter-example is passage 2, which does not contain the
term beat or a morphological variant thereof. Nor is the precedence relation between
beat and federer predictive of relevance. Passages 1 and 4 satisfy the precedence
relation, but, of the two, only passage 1 can be considered answer-bearing, so passage
4 is a false positive. Passages 2 and 3 do not satisfy the precedence relation, but
because passage 2 is answer-bearing, it is a false negative.

In this example, it is necessary to introduce a type system with more abstract
semantic types, corresponding to units of meaning rather than units of text, to select
the answer-bearing passages, but not select false positives. Consider Tsrl ⊃ Tsurf ,
defined in Section A.3, which introduces new element and relation types necessary
to model a simple version of semantic role labeling. In Tsrl, predicate verbs are
annotated as targets, and noun phrases participating in the event represented by
the verb are labeled as either agent, for the initiator or source of the action, or
patient, for that to or upon which the action is performed. An attachment relation
is introduced to link targets to their arguments. See Figure 3.2 for a representation
of the information need corresponding to the question Who beat Federer? under Tsrl.
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Gin, srl = (E, R, Tsrl)

E =



e1 = (sentence),
e2 = (target),
e3 = (agent),
e4 = (patient),
e5 = (beat),
e6 = (federer)


; R =



(enclosure, e1, e2),
(enclosure, e1, e3),
(enclosure, e1, e4),
(enclosure, e1, e5),
(enclosure, e1, e6),
(enclosure, e2, e5),
(enclosure, e4, e6),
(precedence, e5, e6),
(attachment, e2, e3),
(attachment, e2, e4)


Figure 3.2: Information need corresponding to the input question Who beat Federer?
expressed under Tsrl, which is defined in Section A.3. Note that the agent, which is
the focus of the question, is specified in the information need, but does not participate
in any enclosure relations with keyterms.

3.4 The Passage Retrieval Process

Within the context of a QA system, the IR component performs passage retrieval
in response to an information need Gin represented as an annotation graph. From
the formal perspective, the process consists of mapping a scoring function f over
each passage in the collection, in order to compute some type of similarity metric
between the information need and each passage. The passages can then be ranked
in descending order of score.

f(Gin, Gpassage) = score

Consider a matching function fbow that scores based on the overlap of enclosure
relations holding between the sentence and specific keyterms between the informa-
tion need and passage annotation graphs. If Gin contains n of these relations, the
score is incremented 1

n
for each relation that is also present in Gpassage. For example,

passages 1, 3 and 4 would achieve the maximum score of 1.0, while passage 2 would
score 0.5, because it is does not satisfy the requested enclosure relation between the
sentence and beat, or a morphological variant of it. Assuming ties are broken by
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passage number, the complete ranking under fbow is given in Table 3.2. The average
precision for this ranking is 0.75.

Table 3.2: Passage ranking under fbow for the question, Who beat Federer?. Answer-
bearing passages are given in bold face.

Score Number Passage
1.0 1 Nadal beat Federer.
1.0 3 Federer beat Safin.
1.0 4 Safin was beaten by Federer.
0.5 2 Federer was defeated by Nadal.

While fbow scoring function is easy to understand, it does not do a good job of
approximating the QA system’s information need. Despite the fact that it is answer-
bearing, passage 2 is penalized for missing a requested enclosure relation between
the sentence and a specific keyterm. Perhaps a better scoring function, call it fsurf ,
would be able to assign value for the precedence relation between beat and Federer
in Gin, surf , shown in Figure 3.1. Assuming that it is worth equal credit compared
to the enclosure relations, the passages 1 and 4 would both score the maximum 1.0,
passage 3 would score 0.67, and passage 2 would score 0.33 in the ranking shown
in Table 3.3. As before, the average precision of this ranking is 0.75. One answer-
bearing passage is tied for the top ranking, and the other is ranked last, so there is
still room to improve upon this ranking. Note that there is no way to assign relative
weights to the three different constraints in this example so as to rank both passages
1 and 2 ahead of passages 3 and 4, because passages 1 and 4 are indistinguishable
under Tsurf .

Table 3.3: Passage ranking under fsurf for the question, Who beat Federer?. Answer-
bearing passages are given in bold face.

Score Number Passage
1.0 1 Nadal beat Federer.
1.0 4 Safin was beaten by Federer.
0.67 3 Federer beat Safin.
0.33 2 Federer was defeated by Nadal.

21



To recover the optimal ranking for this example, it is necessary to be able to
distinguish between passages 1 and 4, which differ only in terms of the mapping of
Nadal and Federer to agent and patient under Tsrl. Consider a scoring function
fsrl, which assigns credit for the overlap in attachment relations between the informa-
tion need and passage annotation graphs in addition to the enclosure and precedence
relations. For the optimal ranking of the passages, shown in Table 3.4, it would
be necessary to weight the attachment relations higher than both the enclosure and
precedence relations, which is a reasonable thing to do because they carry more infor-
mation about answers in text insofar as the QA system is concerned. With a weight
of 0.5 on attachment relations, and 0.25 each for the other relations, the passages
are ranked in order 1, 2, 4, 3, with scores 1.0, 0.625, 0.5 and 0.25, respectively. The
average precision of this ranking is 1.0.

Table 3.4: Passage ranking under fsrl for the question, Who beat Federer?. Answer-
bearing passages are given in bold face.

Score Number Passage
1.0 1 Nadal beat Federer.
0.625 2 Federer was defeated by Nadal.
0.5 4 Safin was beaten by Federer.
0.25 3 Federer beat Safin.

Unfortunately, many of the off-the-shelf IR systems commonly used by QA sys-
tem developers do not support constraint-checking at the level of Tsrl, and instead,
operate at level closer to Tbow or Tsurf . Internally, these IR systems ignore the higher-
order constraints and focus instead on relations that can be represented in their query
languages, including keyterm proximity, frequency and ordering. As a result, pas-
sages that are not answer-bearing, but that score well based on lower-level relations,
can be ranked highly. It is up to the downstream Answer Generation module, which
is able to consider the full complement of linguistic and semantic constraints, to
identify the answer-bearing passages among the false positives.

This thesis proposes methodologies for retrieval-time checking of linguistic and
semantic constraints on text in service of reducing false positives, to improve both
passage retrieval quality and end-to-end QA system accuracy. The generalized anno-
tation graph formalism is assumed as the underlying representation for the linguistic
and semantic constraints studied here, which derive from the NLP performed by the
system’s Question Analysis module, which includes named entity recognition, syn-
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tactic parsing and semantic chunking. Any QA system whose information need can
be reduced to an annotation graph can make use of the linguistic and semantic pas-
sage retrieval methods proposed in this thesis. Chapter 5 outlines a passage retrieval
strategy based on a structured retrieval model, while Chapters 6 and 7 discuss a
method that applies rank-learning techniques.
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Chapter 4

Experimental Methodology

This chapter introduces a variety of resources used in this thesis, including Natural
Language Processing (NLP) and Information Retrieval (IR) tools, as well as data
resources. Subsequent chapters detailing experiments will reference the descriptions
here. Many of the items described here are used in more than one of the subsequent
chapters in this thesis.

4.1 Test Collections

The test collections described here are the basis for the experiments in passage re-
trieval for Question Answering (QA) described in this thesis. Test collections consist
of a set of questions, each of which has a corresponding set of answers and set of
passage retrieval relevance judgments over a given text collection.

4.1.1 TREC QA 2002 “MIT 109”

As described in Section 2.2, the U.S. National Institute of Standards and Technology
(NIST) held comparative evaluations for QA systems between 1999 and 2007 as part
of their annual Text REtrieval Conferences1 (TRECs). This test collection consists
of 109 factoids, or factual, short-answer questions, drawn from the TREC 2002 QA
track main task. An example of a factoid question is question 1398, What year was
Alaska purchased?, the answer to which is 1867.

1See: http://trec.nist.gov
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The text collection used in the TREC 2002 QA track was the AQUAINT cor-
pus [19]. The corpus consists of 1,033,162 documents (approximately 375 million
words; 3.0 GB) of English newswire text covering three years of Associated Press
(1998 through 2000), three years of the New York Times (1998 through 2000), and five
years of the English-language stories from the Xinhua News Agency (1996 through
2000)

For each question, TREC provides a few2 examples of relevant documents se-
lected from the AQUAINT corpus, but these are explicitly not guaranteed to be
exhaustive. This fact makes TREC questions difficult to use as training or evalu-
ation data, because unjudged documents can not be assumed to be non-relevant.
The particular 109 questions in this test collection were chosen because there ex-
ists a freely-available3, extensive set of document-level relevance judgments over the
AQUAINT corpus, developed at MIT, beyond what TREC provides [5, 7, 32]. For
our example question, TREC provides 6 relevant documents, and the test collection
provides an additional two.

For passage retrieval at the level of individual sentences, these document-level
judgments were converted to sentence-level judgments according to the following
procedure. The answer patterns for the TREC 2002 main task, provided by Ken
Litkowski of CL Research and distributed by NIST4, were used to identify sen-
tences containing the answer to a particular question located in documents judged
to be relevant for that question. Each of these sentences was manually judged to be
answer-bearing or not, according to the definition that an answer-bearing sentence
must completely contain the answer to the question without requiring inference or
aggregation outside of the sentence.

To illustrate the concept of an answer-bearing sentence, consider the question,
Who killed Kennedy? Even in a document describing the assassination, the sentence
Oswald killed him can not be considered answer-bearing, because it requires anaphora
resolution to understand that him refers to Kennedy. A sentence such as Oswald
assassinated Kennedy is answer-bearing, because synonymy is allowed. Similarly,
Everest is the tallest mountain would be considered an answer bearing sentence for
the question, What is the highest point on Earth?.

For our example question, an answer-bearing sentence from AQUAINT docu-
ment APW19980907.1163 reads Alaska’s economy has been based on its vast wealth

2In the TREC 2002 QA track main task, on average, approximately 4 relevant documents were
provided for each of the 500 factoid questions.

3See: http://www.umiacs.umd.edu/~jimmylin/downloads/qa-test-collection.tar.gz
4See: http://trec.nist.gov/data/qa/2002 qadata/main task QAdata/patterns.txt
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of natural resources since the United States bought the territory from Russia in 1867.
Another example of an answer-bearing sentence from document APW19990329.0045
is In 1867, U.S. Secretary of State William H. Seward reached agreement with Russia
to purchase the territory of Alaska for $7.2 million, a deal roundly ridiculed as “Se-
ward’s Folly.” The following sentence from document APW19981012.1283 can not
be considered answer bearing, because it fails to support one aspect of the question
premise; it does not necessarily indicate that a purchase has taken place: In 1867,
the United States took formal possession of Alaska from Russia.

4.1.2 CLEF-QA 2004/2006

Considered the European counterpart to TREC, the Cross Language Evaluation
Forum5 (CLEF) began running comparative evaluations in both monolingual and
cross-lingual QA in 2003. This test collection consists of 200 questions each from the
20046 and 20067 Italian monolingual QA tracks. The CLEF questions consist of a
mix of factoid (82%), list (2%) and definition (16%) questions. See Figure 4.1 for an
example of a CLEF factoid question in Italian, with gloss.

Quale stato si contendono da 40
which.sg state.sg refl. contend.pres.ind.3p.pl for 40
anni il Pakistan e l’ India?
year.pl the.masc.sg Pakistan and the.sg India

Figure 4.1: Italian-language factoid question number 0122 from the CLEF 2006 QA
track. In English, the question reads For what state have Pakistan and India been
contending for 40 years? The answer is Kashmir.

The Italian-language text collection used in this track consists of 157,558 doc-
uments (approximately 26 million words; 352 MB) of newswire text drawn from
stories published in La Stampa (a Torinese daily) in 1994, including newswire con-
tent from Ansa (Agenzia Nazionale Stampa Associata), and stories published by the
Schweizerische Depeschenagentur (SDA), the Swiss national news agency, in 1994
and 1995. The collection was prepared by stopping the 100 most frequent terms,
mostly closed class terms such as determiners, conjunctions, prepositions and articu-
lated prepositions, auxiliaries, and forms of common verbs such as essere, avere and

5See: http://clef-campaign.org/
6See: http://clef-qa.itc.it/2004/down/test04/clefqa04-test-IT-IT.txt
7See: http://clef-qa.itc.it/down/qa test06/clefqa06 test IT-IT.txt
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andare.

As for the English-language test collection, the organization of the track provided
sample relevant documents, and the judgments were broadened by a native speaker
of the language. The same procedure and definition for answer-bearing sentences was
used to compile a set of sentence-level judgments from the document-level relevance
judgments. See Figure 4.2 for two answer-bearing sentences for our example question.

AGZ.940127.0056.814630
India e Pakistan hanno
India and Pakistan aux.3p.pl
combattuto per il Kashmir
combat.past.part for the.masc.sg Kashmir
due guerre, nel 1947
two war.pl in+the.masc.sg 1947
e nel 1956.
and in+the.masc.sg 1956

AGZ.940907.0080.82456
Nel suo intervento il
in+the.masc.sg his/her.masc.sg statement the.masc.sg
primo ministro pachistano ha
prime.masc.sg minister.sg Pakistani aux.3p.sg
anche sollevato la questione
also raise.past.part the.fem.sg issue.sg
del Kashmir, il territorio
of+the.masc.sg Kashmir the.masc.sg territory.sg
che da 40 anni
that for 40 year.pl
il Pakistan contende alla
the.masc.sg Pakistan contend.pres.ind.3p.sg with+the.fem.sg
vicina India.
nearby.fem.sg India

Figure 4.2: Two answer-bearing sentences for Italian-language CLEF question
20060122, which corresponds to: For what state have Pakistan and India been con-
tending for 40 years? The answer is Kashmir.

Additionally, a set of block-level relevance judgments was created for the Italian-
language data. A block is defined as a sliding three-sentence window, except in cases
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where document structure existing in the corpus defines a paragraph containing
fewer than three sentences. A block is considered answer-bearing if any one of the
sentences it contains is answer-bearing on its own, or if the answer to the question is
split across two or three sentences, as in the case of anaphora or ellipsis. A typical
example of this phenomenon can be found in Figure 4.3, which shows two sentences
that are answer-bearing when taken together, but not individually. The first sentence
refers to the two countries, which are identified in the second sentence as India and
Pakistan. The answer Kashmir, however, is in the first sentence, and referred to as
the contested territory in the second.

AGZ.940921.0085.862679/862680
La “linea di controllo”
the.fem.sg line.sg of control.sg
è in realtà la
be.pres.ind.3p.sg in reality.sg the.fem.sg
linea del cessate il
line.sg of+the.masc.sg cease.sg the.masc.sg
fuoco stabilita dopo l’
fire.sg established.fem.sg after the.sg
ultima guerra tra i
last.fem.sg war.sg between the.masc.pl
due paesi per il
two country.pl for the.masc.sg
Kashmir, combattuta nel 1965.
Kashmir fought.fem.sg in+the.masc.sg 1965
Il primo conflitto armato
the.masc.sg first.masc.sg conflict.sg armed.masc.sg
tra India e Pakistan
between India and Pakistan
per il territorio conteso
for the.masc.sg territory.sg contested.masc.sg
si verificò nel 1947.
refl. occur.past.3p.sg in+the.masc.sg 1947

Figure 4.3: Two sentences from an answer-bearing block for Italian-language CLEF
question 20060122, which corresponds to: For what state have Pakistan and India
been contending for 40 years? The answer is Kashmir.
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4.2 English-Language NLP Tools

The NLP tools described in this section were used to prepare the AQUAINT corpus
for the English-language QA experiments.

4.2.1 MXTerminator

MXTerminator is a sentence segmentation tool based on a maximum-entropy model [52].
It is the first step in the corpus preparation process because some downstream tools,
such as ASSERT, discussed below, require input to be in the form of an individual
sentence. In addition, the sentence boundaries are used as a unit of retrieval for the
English-language passage retrieval experiments.

The tool works by considering each occurrence of sentence-final punctuation as
a potential sentence break. MXTerminator’s model classifies each occurrence as
to whether or not it is a true sentential boundary using lexical features, such as
capitalization and membership in dictionaries of known abbreviations, of the words
to the left and the right of the occurrence. The model is shown to be approximately
98% accurate on newswire text, and casual observation of the segmented AQUAINT
data seems to confirm this.

4.2.2 BBN Identifinder

BBN Identifinder is a widely-used tool for Named Entity Recognition [4], which is
based on a hidden Markov model. Each token in running text is classified by the
model as to which of a set of named entity types it belongs to, or none at all, based
on the previous token’s classification, and features of the previous and current token,
including capitalization and presence of digits and symbols, as well as the bigram
score with respect to the trained model for that class. The model is shown to achieve
up to 95% in F-measure on English-language data.

The version of Identifinder used in this thesis can recognize the following types:
date, location, money, org, percent, person, time, and weekday. Of these, only
date, location, org and person occur in the TREC 2002 “MIT 109” test collection,
either explicit in the question text, or as the expected answer type. For the example
question, What year was Alaska purchased?, the token Alaska is recognized as a
location, and the expected answer type is determined to be date. Similarly, in the
answer-bearing sentence, In 1867, the United States took formal possession of Alaska
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from Russia., 1867 is labeled as a date, while United States, Alaska and Russia are
recognized as entities of type location.

4.2.3 ASSERT

ASSERT is a shallow semantic parser [50] that identifies verbs, as well as the noun
phrase or prepositional phrase chunks that represent their arguments. The model is
trained on PropBank [27], which is a set of hand-edited semantic role labels on the
Penn Treebank [33]. ASSERT is implemented as a two-level classification problem
using Support Vector Machines (SVMs). The tool works by first applying a syntactic
parser to input text, then, for each verb, classifying each node in the constituent
structure tree as to whether or not that node represents an argument to that verb,
using features of the tree such as the path between the verb and candidate argument.
The second level of classification employs a set of one-versus-all SVMs to determine
the argument’s semantic role label. The authors evaluated the tool on a sample of
the AQUAINT corpus and reported that precision and recall of argument labels were
65.2% and 61.5%, respectively.

ASSERT gives verbs the label target, while arguments are labeled with semantic
roles according to PropBank [27]. In general, role labels can vary among verb frames,
but the developers of PropBank have made an effort to label arg0, the agent, or actor,
in a predicate, and arg1, the patient, or to whom or upon what the action is per-
formed, consistently across verb frames. In addition to these, the following argument
types are represented in the test collections used in the experiments in this thesis:
higher-order complements representing roles such as beneficiary and instrument for
certain verb frames, arg2, arg3 and arg4; and the following adjuncts: argm-adv

(adverbial), argm-dir (directional), argm-loc (locative), argm-mnr (manner) and
argm-tmp (temporal).

Our example question, What year was Alaska purchased?, contains a single target
verb, purchased. The PropBank verb frame for purchase contains a single sense that
prescribes five roles: arg0 represents the purchaser, arg1 represents the thing pur-
chased, arg2 represents the seller, arg3 represents the price paid and arg4 represents
the beneficiary [27]. The ASSERT analysis of the question would label Alaska as
arg1, and would label what year as a temporal adjunct argm-tmp, which is where
one would expect the answer to the question to occur, as in the answer bearing sen-
tence shown in Figure 4.4. Note that there will also be ASSERT output for the verb
reached, which is omitted from the figure for clarity.
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[arg0 U.S. Secretary of State William H. Seward] reached agreement with [arg2 Rus-
sia] to [target purchase] [arg1 the territory of Alaska] [arg3 for $7.2 million], a deal
roundly ridiculed as “Seward’s Folly.”

Figure 4.4: ASSERT analysis showing predicate-argument structure for the verb
purchased for an answer-bearing sentence for the question What year was Alaska
purchased?

4.3 Italian-Language NLP Tools

The NLP tools described in this section were used to prepare the La Stampa and
SDA text collections for the Italian-language QA experiments.

4.3.1 TextPro

TextPro, made freely-available for research purposes by the Fondazione Bruno Kessler,
is a powerful suite of tools for Italian NLP, supporting lemmatization, morphological
analysis, part-of-speech tagging, sentence segmentation and Named Entity Recogni-
tion [46]. TextPro’s sentence segmenter, which appears to be a rule and dictionary-
based approach, was used to provide individual sentences for input to the Chaos
parser, described below.

Lemmatization is the process of converting an inflected form of a noun or verb
to its lemma, or dictionary form. For verbs, this is normally the infinitive, and for
nouns, the masculine singular form is selected. This is more important for a highly-
inflected language such as Italian than for English, where a more simple stemming
algorithm will do. TextPro’s lemmatization feature is based on a morphological
analyzer developed in Prolog and appears to the casual observer to be fairly accurate,
but it was not used in the experiments in this thesis because it would create a
significant alignment problem between the TextPro output and that of the Chaos
parser, which tokenizes and lemmatizes its input differently.

4.3.2 Chaos

Chaos [3] is a chunk-level dependency parser for both Italian and English main-
tained by the Artificial Intelligence Research Group at the Università di Roma “Tor
Vergata.” The parser produces analyses in a proprietary representation called the
eXtended Dependency Graph (XDG), in which the nodes are constituents and the
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Figure 4.5: Chaos analysis for the Italian-language CLEF question 20060122 corre-
sponding to For what state have Pakistan and India been contending for 40 years?
(above), and for an answer-bearing sentence for that question (below).

edges are inter-constituent dependencies, which are usually grammatical functions,
such as subject, and direct and indirect objects. Plausibility scores are associated
with the edges allowing ambiguities such as prepositional attachments to be neatly
packed within the representation.

The XDG formalism bears many similarities to the ASSERT representation used
in the English-language experiments in this thesis. Both tools center their analyses
on verbs in a sentence, identifying chunks of text that have special relationships with
the verb, be they semantic roles, in the case of ASSERT, or grammatical functions,
in the case of Chaos. The difference between the two tools is the level of abstraction.
Semantic role labeling abstracts over the syntactic distinctions of active and passive
voice, in which the patient, or arg1, becomes the grammatical subject of the sentence
and the agent, or arg0, moves to a prepositional, or oblique, argument.
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Figure 4.5 shows an example of Chaos output corresponding to our example
question, Quale stato si contendono da 40 anni il Pakistan e l’India? (above), as
well as for an answer-bearing sentence for that question (below). The root of the
dependency graph is a verb; contendono in the question, and hanno combattuto
in the answer. Inter-constituent dependencies are shown as labeled arcs between
constituents. V Obj identifies the direct object, which is the interrogative phrase
quale stato in the question, and due guerre in the answer. Temporal and other types
of prepositional arguments are labeled as V PP, such as da 40 anni in the question and
nel 1947 e nel 1956 in the answer. It is a feature of the Chaos parser that nel 1956
is not connected directly to the verb, but is instead attached to nel 1947 through a
coordinating conjunction. The same phenomenon is evident in the subjects of the
verbs in both the question and the answer, which are labeled V Sog, standing for
soggetto, which means subject in Italian.

4.4 Information Retrieval Tools

The IR tools tools described in this section form the foundation of the passage
retrieval strategies studied in this thesis.

4.4.1 Indri Search Engine

Indri is the latest search engine in the open-source Lemur toolkit for Language Mod-
eling and Information Retrieval 8. The Indri retrieval model is a combination of the
language modeling approach [48, 29] and the inference network model [60]. It sup-
ports rich structured queries like previous systems based on the inference network
model, for example InQuery [10], but the probabilities are estimated using language
modeling instead of the Okapi ranking function [34, 56].

The Indri index structures and retrieval model directly support the concept of a
field, which is a typed extent defined over a contiguous sequence of tokens. Fields
can enclose each other and overlap each other arbitrarily. Fields are commonly used
as a means for separating distinct portions of documents, or different document
representations, so that they can be independently scored. Examples include title
and body fields, chapter, section, subsection, paragraph and sentence fields, and
fields containing the URL and anchor text for web documents. For the AQUAINT

8See: http://www.lemurproject.org
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Figure 4.6: Indri index representation for the sentence, India e Pakistan hanno com-
battuto per il Kashmir due guerre, nel 1947 e nel 1956. Fields representing annota-
tions are shown as boxes above the row of tokens at the bottom. Parent pointers are
represented as arrows.

corpus used in the English-language QA experiments, field types derived from NLP
analysis include named entity types, such as date and person, target verbs, and
arguments such as arg0 and argm-tmp9.

The version of Indri used throughout this thesis extends the notion of a field
to include a parent pointer, through which a field can optionally point to another
field within the same document [43, 8]. This pointer provides a means of checking
relationships between fields that do not enclose one another. Support for this relation
makes it possible to represent the relationships between verbs and their arguments
in the index, and to check the relationship at query time, because neither field type
encloses the other.

Indexing a corpus processed with Chaos requires some additional effort because
Indri does not support typed pointers. If it were to, the Chaos representation could
be indexed directly with field names corresponding to the constituent types, and
inter-constituent dependencies being represented as typed pointers between fields.
This issue is mitigated by naming the non-verb constituent fields after the inter-
constituent dependency type. For example, in Figure 4.5, the phrase due guerre
would be indexed as a field of type V Obj, not Nom. Similarly, the phrase India e
Pakistan, also of type Nom, would be indexed as V Sog because it is the relationship
to the verb that is more important than the constituent type. There will actually be
two V Sog fields for the verb in this example; one corresponding to India, and the
other corresponding to India e Pakistan, which is constructed by following the inter-
constituent dependency between India and Pakistan. See Figure 4.6 for a graphical
depiction of the index representation for the sentence corresponding to the lower
portion of Figure 4.5.

9The on-disk size of the index scales with the number of field instances and is about 7.7 GB,
77% larger than the AQUAINT corpus indexed without fields.
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4.4.2 Committee Perceptron

The Committee Perceptron is an on-line algorithm for learning linear ranking func-
tions for learning-to-rank tasks [16]. It is a generalization of the Voted Perceptron [12]
and Pocket Perceptron algorithms [18]. Committee Perceptron has been shown to
perform at least as well as the state-of-the art RankSVM algorithm [25], while re-
quiring much less training time. Like RankSVM, the Committee Perceptron learns a
function that minimizes the number of non-preferred passages ranked ahead of pre-
ferred passages; this, in turn, maximizes a lower bound on Mean Average Precision.

The Committee Perceptron is trained on pairwise preference relationships be-
tween pairs of judged passages S = R×N = {pnq,prq}, which come from sampling
sets of relevant and non-relevant passages, R and N , respectively, for each training
question and pairing them, such that a pairwise preference relationship is expressed
preferring each relevant training passage over each non-relevant training passage.

Passages are represented as feature vectors piq = [f1(pi, q), . . . , fM(pi, q)] where
the fj; j = 1 . . .M are the feature values. Features are scaled to zero-mean unit-
variance per-question prior to training and testing.

The training process involves iterating over passage pairs in S and updating a
hypothesis weight vector wi, also of length M , on each ranking mistake, as in a
standard perceptron. The update rule adds or subtracts the difference between the
relevant passage and the non-relevant passage to the current weight vector: wi+1 =
wi + (prq − pnq).

Prior to the hypothesis update, however, the algorithm maintains the committee.
If the committee size is smaller than the maximum committee size Ncom, the current
hypothesis wi is added to the committee. If the committee is full, and the current
hypothesis’ success counter ci is greater than the success counter of the least success-
ful hypothesis in the committee, that least successful hypothesis is evicted in favor
of the current hypothesis. The success counter is incremented for each consecutive
correctly-ranked pair of items.

At the end of the training process, the committee K contains the Ncom best
hypotheses, which are weight vectors wk of length M , with their associated success
counters ck. Each of these hypotheses constitutes a passage ranking function that
scores passages by taking the dot product of the weight vector and the passage feature
vector. The overall scoring function is an average of the hypotheses, weighted by the
success counters. For a complete description of the committee perceptron algorithm,
refer to Table 4.1 [6].
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For the rank-learning experiments in this thesis, the parameters are set to default
values known to be broadly applicable to passage retrieval tasks: the committee size
Ncom = 30, and the number of passage pairs to sample T = 10, 000. These parameter
values were shown to be effective without the need for any additional tuning in the
experiments described in Chapters 6 and 7.
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Table 4.1: Committee Perceptron Algorithm for Passage Ranking, courtesy of El-
sas [6]

Input:
Number of passage pairs to sample T
Committee size Ncom

List of training relevant/non-relevant passage pairs S = R×N = {(pnq,prq)}

Output:
Set of feature weight vectors and their success counters K = {(wk, ck)|k = 1 . . . Ncom}

1. Initialize i = 0, success counter ci = 0, initial parameters w0, committee K = ∅.

2. For t = 0, . . . , T :

From S, sample query q and relevant/non-relevant passages (pnq,prq)

If Score(pnq,wi) ≥ Score(prq,wi) then
(wmin, cmin) ∈ K s.t. cmin = mink ck ∈ K

If ci > cmin then: add (wi, ci) to K

If |K| > Nsub: remove (wmin, cmin) from K

update: wi+1 = wi + (prq − pnq) and i = i + 1

Else update: ci = ci + 1

3. Output:

Committee K

Score∗(piq,w1, . . . ,wNcom) = piq ·
P

k wk×ckP
k ck
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Chapter 5

Structured Retrieval

This chapter introduces an approach to linguistic and semantic passage retrieval
for Question Answering (QA) based on mapping the problem of annotation graph
retrieval onto the existing structured retrieval features of the Indri search engine,
described in Section 4.4.1. Indri’s structured retrieval operators make it possible to
check the linguistic and semantic constraints in the annotation graph at retrieval
time.

The experiments presented here and originally published in [8], evaluate whether
the structured retrieval approach can provide a better quality passage ranking when
compared to a baseline retrieval approach consisting of keyterms drawn from ques-
tion, with named entity support for the expected answer type, which is considered
to be a strong baseline for QA.

5.1 Structured Retrieval for Question Answering

Structured retrieval is an Information Retrieval (IR) paradigm in which documents
are viewed as sets of typed, contiguous regions of text called fields. Structured
retrieval allows these fields to be scored against a query individually, and for these
per-field scores to be combined into an overall, document-level score. The classic
structured retrieval application is the case of a document representation consisting
of a title field and a body field. The intuition that a term match inside the title
field is more predictive of relevance than a match inside the body field is encoded
into the scoring function by placing more of the weight on the title field match score
when combining it with the body field match score. To apply structured retrieval
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techniques to a QA task, the fundamental insight is that the same mechanism that
can be used to represent document structure as fields can also be used to represent
linguistic and semantic annotations on text [43, 8].

5.2 A Type System for English QA

The structured retrieval experiments in this chapter make use of the type system
Tbbn+assert, which, defined in Section A.6, supports sentence segmentation by MX-
Terminator, Named Entity Recognition by BBN Identifinder and Semantic Role La-
beling by ASSERT. See Section 4.2 for more information on these English-language
Natural Language Processing (NLP) tools.

To illustrate an example of the type of information need that would be generated
by a Question Analysis module utilizing this type system, consider question 1402
from the TREC 2002 “MIT 109” test collection, defined in Section 4.1.1, What year
did Wilt Chamberlain score 100 points? The expected answer to this question is a
year, so the wh-word becomes a placeholder of entity type date. The verb score is the
target verb for the predicate-argument structure in the question. A person named
Wilt Chamberlain is the one doing the scoring, so he is tagged with the agentive
Semantic Role Label, arg0. Similarly, the 100 points is the patient, or arg1, of the
action. The answer would be expected to show up in a temporal adjunct argm-tmp

attached to the target. See Figure 5.1 for a depiction of this information need.

5.3 Structured Query Operators

With annotations represented as fields in the Indri index, and relations expressed
using enclosure or parent pointers, as described in Section 4.4.1, the same structured
query operators that allow for scoring a document based on the score of its fields
can support query-time linguistic and semantic constraint checking1. Constraints
consisting of enclosure relations between annotations and keyterms in the informa-
tion need can be checked using the same query syntax that checks term occurrences
within fields, for example: #combine[person]( wilt chamberlain ). Enclosure be-
tween annotation pairs can be checked using nested #combine operators, or the
#any:field operator, which matches occurrences of fields enclosed within other fields,

1Indri queries containing many nested structured query operators take more time to evaluate
than bag-of-words queries. See Zhao and Callan (2009) [67] for discussion of this issue.
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G1402 = (E, R, Tbbn+assert)

E =


e1 = (sentence), e6 = (person), e10 = (chamberlain),
e2 = (target), e7 = (date), e11 = (score),
e3 = (arg0), e8 = (year), e12 = (100),
e4 = (arg1), e9 = (wilt), e13 = (points)
e5 = (argm-tmp),



R =



(enclosure, e1, e2), (enclosure, e1, e11), (enclosure, e5, e7),
(enclosure, e1, e3), (enclosure, e1, e12), (enclosure, e5, e8),
(enclosure, e1, e4), (enclosure, e1, e13), (enclosure, e6, e9),
(enclosure, e1, e5), (enclosure, e2, e11), (enclosure, e6, e10),
(enclosure, e1, e6), (enclosure, e3, e6), (attachment, e2, e3),
(enclosure, e1, e7), (enclosure, e3, e9), (attachment, e2, e4),
(enclosure, e1, e8), (enclosure, e3, e10), (attachment, e2, e5),
(enclosure, e1, e9), (enclosure, e4, e12),
(enclosure, e1, e10), (enclosure, e4, e13),



Figure 5.1: Information need corresponding to the input question What year did Wilt
Chamberlain score 100 points? expressed under Tbbn+assert.
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as in: #combine[argm-tmp]( #any:date ). Constraints consisting of attachment
relations between targets and arguments use a “dot-slash” syntax, which instructs
the retrieval model to score “child” fields, or fields whose parent pointers point to
the current field, as in: #combine[./arg1]( 100 points ).

5.4 Experimental Methodology

Experiments first published in [8] test the effectiveness of the structured retrieval
techniques described above for the task of passage retrieval within the context of
a QA system. The experiments used the TREC 2002 “MIT 109” test collection
described in Section 4.1.1 in a sentence retrieval task. The test collection was split
55/54 into a training and test set, with a roughly equal distribution of question types.
The training set was used to select the optimal smoothing parameters, which turned
out to be Jelinek-Mercer with the document weight λD = 0.2 and the collection
weight λC = 0.2.

5.4.1 Query Formulation

To measure retrieval quality in isolation and arrive at an upper bound for the ap-
propriateness of structured retrieval techniques to this task, these experiments used
gold-standard query formulation. Queries were formulated under both Tbbn+assert,
defined in Section A.6, and Tbbn, shown in Section A.4, which lacks the target,
argument and attachment definitions.

Two queries were automatically formulated for each answer-bearing sentence for
each question in the test collection, one using the Tbbn type system, and the other
using Tbbn+assert. The queries are based on keyterms from the question occurring
within the answer-bearing sentence. The annotation graph representation of the
sentence is pruned by removing all words that do not occur in the question. In
addition, extra enclosure relations are removed such that each keyterm or entity
participates in exactly one enclosure relation with its smallest enclosing element,
where size is computed by the number of keyterms enclosed. Ties are broken in
favor of entities. Enclosure relations in which a larger element encloses an argument
are also removed. The remaining graph looks like a query tree and the linguistic
and semantic constraints expressed in the graph can be checked using Indri query
operators, as described in Section 5.3.

To illustrate the gold-standard query formulation, take question 1402 from TREC
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2002, What year did Wilt Chamberlain score 100 points? There are 14 sentences in
the AQUAINT corpus judged to be answer-bearing, 12 of which are unique. One
answer bearing sentence is On March 2, 1962, in Hershey, PA, Wilt Chamberlain
scored 100 points against the Knicks. The question keyterms Wilt, Chamberlain,
score, 100 and points occur in this sentence. All other words are pruned, and a
placeholder named entity of type date is introduced to stand in for the expected
answer type. Assume that morphological normalization is in use so that scored and
score are considered to be the same word, and also that named entity recognition
software has identified Wilt Chamberlain as a person, and March 2, 1962 as a date.
Figure 5.2 shows the pruned annotation graph representation of this sentence under
Tbbn.

Gsent, bbn = (E, R, Tbbn)

E =



e1 = (sentence),
e2 = (date),
e3 = (person),
e4 = (wilt),
e5 = (chamberlain),
e6 = (score),
e7 = (100),
e8 = (point)


; R =



(enclosure, e1, e2),
(enclosure, e1, e3),
(enclosure, e1, e4),
(enclosure, e1, e5),
(enclosure, e1, e6),
(enclosure, e1, e7),
(enclosure, e1, e8),
(enclosure, e3, e4),
(enclosure, e3, e5)


Figure 5.2: Pruned annotation graph for the sentence, On March 2, 1962, in Hershey,
PA, Wilt Chamberlain scored 100 points against the Knicks under type system Tbbn.

The pruned annotation graph representation for the sentence Gsent, bbn can be
mapped directly into Indri query syntax according to the following procedure. For
a sentence retrieval task, the outermost query clause is a #combine[sentence] op-
erator, which retrieves, scores and ranks sentence extents directly. The enclosure
relations between the sentence and entities map directly map directly into the In-
dri concept of extent enclosure. Enclosure of a keyterm element becomes standard
keyterm enclosure. An entity containing other entities or keyterms is represented by
an inner #max( #combine[entity]( ... )) clause. The #max operator selects the
best matching of the enclosed instances of type entity to score the enclosing extent,
in the case where there are more than one2. If the field is empty, it becomes a place-

2 When a nested #combine operator returns more than one matching extent, the scores will
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holder of the form #any:entity operator. The complete Indri query formulated for
this sentence under the Tbbn type system is shown in the top half of Figure 5.4, which
can be found at the end of this section.

Under Tbbn+assert, the annotation graph representation of the answer-bearing sen-
tence is richer. ASSERT identifies score as the target verb in the sentence. A
person named Wilt Chamberlain is the arg0, 100 points is in the arg1 position.
The date instance occurs within an argm-tmp, which is a temporal adjunct to the
verb. Figure 5.3 shows the pruned graphical representation of the sentence under
Tbbn+assert.

The annotation graph Gsent, bbn+assert can also be mapped directly into Indri query
syntax, but the mapping is a bit more complicated. As before, the outermost operator
is a #combine[sentence] that retrieves sentences directly. This operator contains
clauses for all annotations and keyterms that are directly enclosed by the sentence.
Again, empty annotations become placeholders of the form #any:annotation, while
non-empty annotations become clauses of the form #max( #combine[annotation](
... )). Arguments that are attached to targets are mapped into clauses of the
form #max( #combine[./argument]( ... )), which uses parent pointers to check
the target-argument attachment relation. In the bottom half of Figure 5.4, the
complete query under Tbbn+assert for this sentence is shown.

5.4.2 Experimental Conditions

There are two experimental conditions, the single structure and the every structure
cases. In the single structure case, the QA system is searching for a specific answer-
bearing structure known to be usable for answer extraction, and formulates a query
to retrieve it explicitly, so this case can be thought of as an exact match application.
To model this situation, each answer-bearing sentence is considered a unique topic,
where only retrieved sentences that share the same annotation graph representation
under the type system are treated as relevant. There are 369 such topics in the
training set, and 250 in the test set.

In the every structure case, the QA system considers every answer-bearing struc-
ture useful for a particular question. In this case, one query is run for each answer-

be added together, resulting in an extremely low score, which will bring down the score of the
enclosing extent. The #max operator is not the only way to choose among a list of scored extents,
but it was the best method available at the time of the original publication of the experiments
in this chapter [8]. See Zhao and Callan (2008) [66] for an exploration of a variety of evidence
combination techniques that can provide a composite score for a list of scored extents.
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Gsent, bbn+assert = (E, R, Tbbn+assert)

E =



e1 = (sentence),
e2 = (target),
e3 = (arg0),
e4 = (arg1),
e5 = (argm-tmp),
e6 = (date),
e7 = (person),
e8 = (wilt),
e9 = (chamberlain),
e10 = (score),
e11 = (100),
e12 = (point)



, R =



(enclosure, e1, e2),
(enclosure, e1, e3),
(enclosure, e1, e4),
(enclosure, e1, e5),
(enclosure, e1, e6),
(enclosure, e1, e7),
(enclosure, e1, e8),
(enclosure, e1, e9),
(enclosure, e1, e10),
(enclosure, e1, e11),
(enclosure, e1, e12),
(enclosure, e2, e10),
(enclosure, e3, e7),
(enclosure, e3, e8),
(enclosure, e3, e9),
(enclosure, e4, e11),
(enclosure, e4, e12),
(enclosure, e5, e6),
(enclosure, e7, e8),
(enclosure, e7, e9)


Figure 5.3: Pruned annotation graph for the sentence On March 2, 1962, in Hershey,
PA, Wilt Chamberlain scored 100 points against the Knicks under the type system
Tbbn+assert.
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#combine[sentence](

score 100 point #any:date

#max( #combine[person]( wilt chamberlain ) ) )

#combine[sentence](

#max( #combine[target]( score
#max( #combine[./arg0](

#max( #combine[person]( wilt chamberlain ) ) ) )

#max( #combine[./arg1]( 100 point ) )

#max( #combine[./argm-tmp]( #any:date ) ) ) ) )

Figure 5.4: Comparison of query formulation strategies for type systems Tbbn (above)
and Tbbn+assert (below) for the answer-bearing sentence,On March 2, 1962, in Her-
shey, PA, Wilt Chamberlain scored 100 points against the Knicks.

bearing sentence for a particular question, and the results are combined by Round
Robin [62], a common meta-search technique that, despite its simplicity, was found
to be the most effective for this task [8]. It is difficult, in general, to combine the
results from the individual queries for a particular question, because the scores of
the retrieved sentences are not directly comparable. It is a feature of Indri that very
complex queries will produce scores orders of magnitude smaller than the scores re-
sulting from simpler queries. Round Robin is successful in this application because
it ignores score and only considers rank when merging result lists.

5.5 Experimental Results and Discussion

Table 5.1 compares the Mean Average Precision of the structured retrieval approach
to linguistic and semantic passage retrieval, the Indri queries formulated under
Tbbn+assert, to the baseline queries formulated under Tbbn. For each case, the dif-
ference between the Tbbn+assert and Tbbn queries is statistically significant, with a
p < 0.0001 according to Fisher’s randomization test [55]. It can immediately be seen
from the single structure results that, when the task is to find a specific semantic
representation, more information than can be represented in Tbbn is required. The
every structure case shows that the baseline is more effective when there are more
types of passages that the QA system finds useful, but for this case as well, Tbbn+assert

produces a better quality ranking.

Figure 5.5 shows a comparison of the recall of the two approaches. As can be
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Table 5.1: Comparison of Mean Average Precision for Single and Every Structure
cases

Single Structure (N = 250) Every Structure (N = 54)
Data Tbbn Tbbn+assert p-value Tbbn Tbbn+assert p-value
Train 0.0774 0.4837 < 0.0001 0.1417 0.2922 < 0.0001
Test 0.0872 0.4650 < 0.0001 0.1613 0.3423 < 0.0001

seen from Figures 5.5a and 5.5c, the extra information encoded in the Tbbn+assert

type system allows for much greater recall than Tbbn for the single structure case.
For example, at rank 200, Tbbn+assert provides a 96.9% and 46.6% improvement over
Tbbn on the training and test topics, respectively. Figures 5.5b and 5.5d compare the
two type systems for the every structure case. The advantage that Tbbn+assert enjoys
over Tbbn is less pronounced, but the improvement at rank 200 is still 12.8% and
11.4% for the training and test topics, respectively.

Figure 5.5 shows that Tbbn+assert has superior recall of answer-bearing sentences
on average, compared to the Tbbn type system, but tells little about the types of
queries for which Tbbn+assert is most helpful. In an attempt to isolate the conditions
where the additional element and relation types defined in Tbbn+assert are most useful,
Table 5.2 compares Mean Average Precision for queries used in the single structure
experiment having different levels of complexity. The complexity level is defined as
the number of #combine operators in the Tbbn+assert query, not counting the outer
#combine[sentence] operator. The table also gives p-values according to Fisher’s
randomization test [55] for the difference between Mean Average Precision using
Tbbn and Tbbn+assert. For complexity levels greater than zero, use of Tbbn+assert yields
statistically significant (at the 0.01 level) improvements in MAP, except for levels 9
and 10 in the test data, for which there are too few examples to show significance.

Figure 5.6 shows the average recall at rank 200 for queries at different levels of
complexity. The confidence intervals were constructed by simulating the distribu-
tion of average recall by averaging samples from a beta distribution fitted to the
observed recall values using the method of moments estimator. The figure shows
that Tbbn+assert provides better recall when queries are more complex.

The results of these experiments demonstrate that the additional element and
relation types represented by Tbbn+assert provide superior recall of relevant sentences
at higher ranks compared with the Tbbn baseline in the single structure case. The
more specific queries boost precision at early ranks, but sacrifice recall. The every
structure case shows us that this recall penalty can be mitigated by evaluating the
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Figure 5.5: Recall of answer-bearing sentences for both Tbbn and Tbbn+assert type
systems, for both the single structure and every structure cases. Training topics are
above and test topics are below.

48



Table 5.2: Mean Average Precision for single structure case by complexity level. The
N column gives the number of queries at each complexity level.

Cplxty Training Data Test Data
Level N Tbbn Tbbn+assert p-value N Tbbn Tbbn+assert p-value
0 21 0.1282 0.1516 0.3740 11 0.2167 0.2103 1.0000
1 49 0.0565 0.1758 < 0.0001 33 0.0551 0.2001 < 0.0001
2 50 0.0971 0.2973 < 0.0001 54 0.0727 0.2953 < 0.0001
3 46 0.1005 0.3907 < 0.0001 40 0.0567 0.3242 0.0001
4 66 0.1202 0.5788 < 0.0001 44 0.1524 0.6170 < 0.0001
5 40 0.0635 0.6435 < 0.0001 21 0.0795 0.7083 < 0.0001
6 28 0.0499 0.6370 < 0.0001 19 0.0301 0.5648 < 0.0001
7 27 0.0447 0.6199 < 0.0001 10 0.0372 0.8524 0.0021
8 20 0.0144 0.7667 < 0.0001 8 0.1073 1.0000 0.0009
9 9 0.0057 0.8333 0.0044 3 0.0444 1.0000 0.2514
10 11 0.0096 0.9545 0.0009 1 0.0333 0.1429 1.0000

Figure 5.6: Recall at rank 200 for varying complexity of structure in the answer-
bearing sentences. Points show the estimate of average recall, with error bars covering
a 95% confidence interval.
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Tbbn+assert queries individually and combining via Round Robin meta-search.

The queries used in these experiments can be thought of as endpoints of a con-
tinuum of complexity; the Tbbn queries are the least complex, and the fully-specified
queries under Tbbn+assert are the most complex. The conclusion that target-argument
structure improves retrieval effectiveness when queries are perfectly formulated is a
valid one, but one may question whether it is applicable to realistic systems that
would have difficulty formulating queries equal in quality to those formulated by a
human. This raises the interesting research question of whether partially structured
queries situated somewhere in the middle of this continuum would outperform a
baseline query with no predicate-argument structure. A QA system may be able
to formulate partially-structured queries with greater accuracy, because it is a less
difficult task, but the problem is determining which parts of a complete structure
should be included in the query, and which should be left out. Later chapters in this
thesis explore this very question.

5.6 Surface Patterns

Sentence retrieval based on Tbbn is similar to proximity-based or density-based passage-
scoring functions favored in the QA community, and is therefore a strong baseline
for a QA application. Surface patterns, however, are an even stronger baseline. This
section experiments with Tsurf+bbn, a type system defined in Section A.7 capable of
representing ordering constraints among keyterms as well as entity based constraints.
The experiments described above are repeated, substituting Tsurf+bbn for Tbbn, in or-
der to compare Tbbn+assert against the stronger baseline. Figure 5.7 shows the example
sentence discussed above, as represented under Tsurf+bbn. Queries under Tsurf+bbn are
formulated by organizing keyterms into a clause of the form #od( keyterm . . . ), as
shown in Figure 5.8, such that precedence relations are respected from left-to-right.
Placeholders for entity types are included in the enclosing #combine[sentence] op-
erator, but outside the #od operator. Use of the #od version of the operator, as
opposed to the #odN version, enforces precedence within a window of unlimited size.

Table 5.3 compares Tbbn, Tsurf+bbn and Tbbn+assert in terms of Mean Average Pre-
cision, including p-values according to Fisher’s randomization test [55], which is used
to test whether the moves from Tbbn to Tsurf+bbn, and from Tsurf+bbn to Tbbn+assert,
result in statistically significant improvements. For both the training and test sets,
Tsurf+bbn provides a statistically significantly better quality ranking at the 0.01 level,
when compared to Tbbn. Additionally, on the test data, it can be shown that Tbbn+assert
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Gsent, surf+bbn = (E,R, Tsurf+bbn)

E =



e1 = (sentence),
e2 = (date),
e3 = (person),
e4 = (wilt),
e5 = (chamberlain),
e6 = (score),
e7 = (100),
e8 = (point)


, R =



(enclosure, e1, e2),
(enclosure, e1, e3),
(enclosure, e1, e4),
(enclosure, e1, e5),
(enclosure, e1, e6),
(enclosure, e1, e7),
(enclosure, e1, e8),
(enclosure, e3, e4),
(enclosure, e3, e5),
(precedence, e4, e5),
(precedence, e4, e6),
(precedence, e4, e7),
(precedence, e4, e8),
(precedence, e5, e6),
(precedence, e5, e7),
(precedence, e5, e8),
(precedence, e6, e7),
(precedence, e6, e8),
(precedence, e7, e8)


Figure 5.7: Pruned annotation graph for the sentence On March 2, 1962, in Hershey,
PA, Wilt Chamberlain scored 100 points against the Knicks under the type system
Tsurf+bbn. Note the addition of the precedence relations.

#combine[sentence]( #any:date

#od( wilt chamberlain score 100 point ) )

Figure 5.8: Query formulated under type system Tsurf+bbn for the sentence, On March
2, 1962, in Hershey, PA, Wilt Chamberlain scored 100 points against the Knicks.
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is statistically significantly better than Tsurf+bbn at the 0.01 level.

Table 5.3: Comparison of Mean Average Precision among Tbbn, Tsurf+bbn and
Tbbn+assert for the every structure case

Training Data (N = 55) Test Data (N = 54)
Type System MAP p-value MAP p-value
Tbbn 0.1417 − 0.1613 −
Tsurf+bbn 0.2612 0.0002 0.2484 0.0088
Tbbn+assert 0.2922 0.1485 0.3423 0.0016

Figure 5.9 shows a comparison between the three type systems Tbbn+assert, Tsurf+bbn,
and Tbbn. Tsurf+bbn enjoys a clear advantage over Tbbn for the training data. That ad-
vantage fades by approximately rank 250 for the test data, but Tsurf+bbn still retrieves
more relevant items at low ranks than Tbbn does. This is consistent with Table 5.3,
as relevant items retrieved at low ranks boosts Mean Average Precision.

5.7 Degraded Annotation Quality

The section explores the effectiveness of the structured retrieval approach to linguistic
and semantic passage retrieval for QA in a scenario in which the accuracy of the NLP
analysis tools can not be guaranteed. To examine the difference in performance as
NLP accuracy varies, it is necessary to select a text collection for which there exist
gold-standard analyses.

This experiment uses a portion of the Penn Treebank containing one million words
of Wall Street Journal (WSJ) text published in 1989 [33]. The text is hand-labeled
for sentence boundaries, parts-of-speech and syntactic structure. The PropBank
annotation project [27] contains hand-annotated verb predicate-argument structures
and semantic role labels for verb arguments over this text collection.

For comparison, a version of the WSJ text with lower-accuracy semantic role
labeling markup is constructed using the output of the ASSERT tool. Although
ASSERT was trained on the PropBank data, it appears to be only 88.8% accurate
in terms of number of arguments correctly identied and labeled. Gold-standard
syntactic analysis was not made available to ASSERT as it annotated the WSJ text,
so some portion of the errors are undoubtedly due to ASSERT’s underlying syntactic
parser.
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Figure 5.9: Average recall of answer-bearing sentences for type systems Tbbn+assert,
Tsurf+bbn, and Tbbn. Training topics are shown above, and test topics, below.
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There are no sets of questions with associated relevance judgments readily avail-
able for use with the WSJ text collection, but it is small enough that it is possible to
use an automatic procedure to generate an exhaustive list of all questions answerable
by PropBank-style verb predicate-argument structures, along with their associated
sentence-level relevance judgments.

For each sentence in the WSJ data, PropBank [27] contains zero or more hand-
annotated predicate-argument structures, each of which contains zero or more ar-
guments. These structures were grouped first by the predicate verb, and then by
combinations of arguments shared in common. Each group is defined by a particular
verb, and a particular set of arguments. A sentence containing s predicate-argument
structures, where the i-th structure has ai arguments, will appear in g groups:

g =
s∑

i=1

ai∑
j=1

(
ai

j

)
Consider the following predicate-argument structure from document WSJ 0427,

expressed in ASSERT’s notation:

[arg0 Dow Jones] [target publishes ] [arg1 The Wall Street Journal, Barron’s mag-
azine, other periodicals and community newspapers]

This sentence’s two-argument structure puts it into three groups corresponding
to the questions it can answer:

1. [arg1 What] does [arg0 Dow Jones] [target publish]?

2. [arg0 Who] [target publishes] [arg1 The Wall Street Journal, Barron’s maga-
zine, other periodicals and community newspapers]?

3. Does [arg0 Dow Jones] [target publish] [arg1 The Wall Street Journal, Bar-
ron’s magazine, other periodicals and community newspapers]?

These groups also contain other sentences that have similar structures. For ex-
ample, Group 1 contains two structures also having the target publish and the arg0

Dow Jones. Once the grouping is complete, each group contains only and all of the
sentences in the corpus containing predicate-argument structures that answer a par-
ticular question. Each group, then, constitutes exhaustive sentence-level relevance
judgments for its corresponding question. Of the questions generated by this method,
96.3% had only one relevant sentence. These questions were discarded, as they would
have skewed the averages, leaving 10,690 questions with associated judgments .
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This experiment measures the difference in Mean Average Precision between the
structured retrieval approach and the baseline, when ASSERT-generated labels are
substituted for the gold-standard PropBank labels. ASSERT can omit, mis-label or
incorrectly identify the boundaries of an annotation. As an example, consider the
following gold-standard PropBank structure from WSJ 0003:

[arg1 A form of asbestos] [argm-tmp once] [target used] [arg2-pnc to make Kent
cigarette filters]

The corresponding ASSERT output is:

[arg0 A form of asbestos] [argm-tmp once] [target used] to make Kent cigarette
filters

ASSERT has fundamentally altered the meaning of the annotation by considering
a form of asbestos to be the arg0, or agent, of the verb used as opposed to the arg1,
or patient. ASSERT has also missed the arg2-pnc (purpose, not cause). Queries are
formulated under Tbow and Tassert as defined in Sections A.1 and A.5, respectively.
Each set of queries is evaluated on the WSJ data with PropBank labels and with
ASSERT labels.

Table 5.4: Comparison of Mean Average Precision for Tassert and Tbow retrieval ap-
proaches with PropBank (gold-standard) and ASSERT (degraded) labels.

% Increase p-value
Approach Labels MAP over baseline (N = 10,690)
Baseline Tbow − 0.7684 − −
Tassert ASSERT 0.8698 13.19% < 0.0001
Tassert PropBank 0.9581 24.68% < 0.0001

Table 5.4 compares the Tassert and Tbow retrieval approaches in terms of Mean
Average Precision, separately for PropBank and ASSERT labels. The table includes
p-values according to Fisher’s randomization test [55]. The accuracy of the baseline
Tbow approach is not affected by degraded annotation quality, since it completely
ignores them when ranking results. It is clear that the Tassert approach is somewhat
sensitive to the quality of the labels, but it still manages to produce a statistically
significant improvement in MAP at the 0.0001 level over Tbow.
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5.8 Conclusions

The structured retrieval approach proposed in this chapter was shown to significantly
outperform a bag-of-words with named entity baseline in terms of Mean Average
Precision, and to compare favorably against the baseline in terms of recall. The
method was shown to be particularly effective for the most complex questions, those
having the most linguistic and semantic constraints. It was shown that methods
utilizing target-argument information from ASSERT are sensitive to the quality of
the annotation of corpus.

Structured retrieval shows genuine promise as an approach to high-precision lin-
guistic and semantic passage retrieval for QA systems, but the question remains as
to whether it is reasonable to expect that a QA system will be able to predict a priori
which of the linguistic and semantic constraints in its information need are the most
important for retrieving answer-bearing passages. Choosing incorrectly would result
in missing relevant text that fails to satisfy a certain constraint at best, or at worst,
retrieving text that supports incorrect answers.

Errors in Question Analysis can result in the formulation of structured queries
that do not match any structure in the text collection. These types of queries do
not lend themselves to partial matching of the linguistic and semantic constraints
encoded within, even though they may be near misses that fail to match on a single
term. When structured queries do not match completely, retrieval quality degrades
below the level of queries formulated under Tbbn, even though answer-bearing sen-
tences exist that may be good matches for the queries on the basis of constraints
involving keyterms and entities alone. Hope for better partial matching of structured
queries lies in more recent work on structured retrieval models, including field-specific
smoothing, modeling structural mismatch between query and sentence, and different
methods of evidence combination [66, 67].

For QA system developers, it is important to note that the high precision numbers
obtained in the experiments in this chapter will not immediately translate to other
applications, because the experiments relied on unrealistically high-quality queries.
To maximize the performance of the structured retrieval approach, a system must
be able to successfully predict linguistic and semantic features that correlate highly
with answer-bearing text, based on those of the question. The chapter provides no
solution to this issue, yet assumes one exists in order determine whether structured
retrieval techniques are appropriate for use in QA systems. The work presented here
represents the best case assumption for Question Analysis quality, and should be
considered an upper bound for retrieval effectiveness.
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The strong assumptions required to get the best performance from the structured
retrieval method, combined with the observation that querying linguistic and seman-
tic constraints individually may perform better than querying large groups simulta-
neously, lead naturally to consideration in subsequent chapters of a rank-learning
approach that uses features based on linguistic and semantic constraints individu-
ally and in small groups. The training component of such an approach would relieve
QA system developers from having to decide a priori which of the constraints are
most useful for passage ranking.

57



58



Chapter 6

Learning-to-Rank

This chapter studies a rank-learning approach to passage retrieval for Question An-
swering (QA) that is able to leverage linguistic and semantic features. The approach
is designed to provide greater functionality than, and to address several of the weak-
nesses of, the passage retrieval strategy based on structured retrieval techniques
described in the previous chapter.

Experiments in this chapter test the hypothesis that the rank-learning passage re-
trieval approach, using Tbbn+assert as introduced in the previous chapter, can retrieve
more relevant passages and rank them more highly, which constitutes a better quality
passage ranking compared to a standard baseline, for the particular test collection
under consideration. It is further hypothesized that the rank-learning approach com-
pares favorably to the structured retrieval method proposed in the previous chapter.

6.1 Learning-to-Rank for Question Answering

Consider a QA system based on Tbbn+assert as defined in Section A.6. The information
need annotation graph produced by the Question Analysis module is a rich source
of linguistic and semantic information that can be used to inform passage retrieval.
The structured retrieval method presented in the previous chapter maps information
need annotation graphs under Tbbn+assert into complex Indri queries.

In contrast, the rank-learning approach proposed in this chapter decomposes the
information need into atomic linguistic and semantic constraints, rather than using
the annotation graph as a whole. These atomic constraints are used as features in a
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trained Committee Perceptron model [16], which is used to re-rank the output from
a baseline retrieval strategy, consisting of Indri queries formulated under Tbbn, as
described in Section 5.4.1. As explained in Section 4.4.2, the Committee Perceptron
model is trained using pairwise preference relations between known relevant and
non-relevant passages in the training data.

Learning-to-rank techniques are particularly applicable to the task of passage
retrieval for QA for several reasons. In contrast to the structured retrieval approach
studied in the previous chapter, rank-learning techniques allow for the linguistic and
semantic constraints of interest to the QA system to be checked individually and in
small groups, as opposed to all at once. Furthermore, each feature will be individually
weighted, which can enable a more fine-grained partial matching functionality.

Another advantage of rank-learning techniques is that it is not necessary to deter-
mine a priori which constraints, or groups of constraints, are the most predictive of
answer-bearing passages; this information comes naturally from the training process.
If retrieval model scores for consistent baselines, such as bag-of-words retrieval, are
included as features, the training process will emphasize them just enough to ensure
that the ranking function will degrade to the baseline in the absence of higher-level
linguistic and semantic constraints.

6.2 Selecting Constraints for a Type System

The rank-learning method proposed in this chapter relies on features derived from
atomic linguistic and semantic constraints to rank passages. These features come
from a decomposition of the annotation graph representing the information need
according to a set of constraints specific to an individual type system. The QA
system developer selects the constraints using a semi-automatic process described
in this section, which must be performed once for every QA problem instance that
relies on a new type system.

6.2.1 Automatic Enumeration of Constraints

The first step of the process is an algorithm that enumerates all possible constraints
based on the definitions of element and relation types in the type system. A con-
straint can be thought of as a snippet of an annotation graph containing elements
and relations between them. A first-order constraint contains two elements joined
by a single relation. The first order constraints that a type system supports come
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directly from the relation type definitions in the type system. The algorithm, shown
in Table 6.1, builds higher-order constraints by extending lower-order constraints,
adding a single element and relation each time.

Consider the type system Tbbn+assert, and its definition, which is given in Sec-
tion A.6. There are eight relation types defined, so step 2 of the algorithm initializes
set C1 with 56 first-order constraints by substituting leaf element types for annota-
tion, argument and entity.

The main loop of the algorithm begins at step 3. At each iteration, the algorithm
builds a set of order-i constraints based on the constraints of order i − 1. The
algorithm iterates through the set of relation type definitions Tr, and then loops
through the constraints in Ci−1. For each element in the constraint of order i − 1
that is equal to or inherits from the domain or range element type of the current
relation type definition, the constraint is augmented by the relation to form a new
order-i constraint. In addition, a new element, having a leaf type that inherits from
the respective range or domain element type for that relation, is introduced as the
appropriate target or source for the new relation.

To illustrate this process by example, consider the following first-order constraint,
which contains a single enclosure relation between an arg0 and a person:

(E = {(a0, arg0), (p, person)}, R = {(enclosure, a0, p)}, Tbbn+assert)

To build a second-order constraint, the algorithm can introduce an attachment
relation with a target as its source:

(E = {(t, target), (a0, arg0), (p, person)},
R = {(attachment, t, a0), (enclosure, a0, p)}, Tbbn+assert)

The algorithm also introduces a constraint for each element e the arg0 can en-
close, which can be a target, as shown below, or any sub type of argument or entity,
for a total of 15 new second-order constraints:

(E = {(a0, arg0), (p, person), (e, target)},
R = {(enclosure, a0, p), (enclosure, a0, e)}, Tbbn+assert)

Two new second-order constraints can be constructed because both the arg0 and
the person element can enclose a keyterm. Constraints are only lexicalized given a
specific information need, so during the enumeration process, keyterm is considered
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a leaf type. It can be thought of as a wildcard having the semantics that it matches
any sub-element type of keyterm found in the information need. Here, arg0 is shown
participating in an enclosure relation with a keyterm:

(E = {(a0, arg0), (p, person), (k, keyterm)},
R = {(enclosure, a0, p), (enclosure, a0, k)}, Tbbn+assert)

The final group of 22 new second-order constraints are built by introducing an
enclosing element for arg0 or person, both of which can be enclosed by a sentence

or any leaf element type inheriting from argument. This constraint enforces enclosure
of the arg0 within a sentence:

(E = {(s, sentence), (a0, arg0), (p, person)},
R = {(enclosure, s, a0), (enclosure, a0, p)}, Tbbn+assert)

The example shows that just one of the 56 first-order constraints allowable under
Tbbn+assert yields a 40 second-order constraints constructed by adding a single relation
and element to the original constraint. The algorithm repeats this process for the
remaining 55 first-order constraints before turning its attention to the second-order
constraints. Clearly, for all but the smallest type systems, in terms of number of
element and relation type definitions, this algorithm will enumerate a large number
of higher-order constraints.

6.2.2 Generalized Constraints

An additional, but potentially powerful, class of constraints not enumerated by the
algorithm described above are known as generalized constraints. The constraints
discussed thus far enforce specific types of elements with specific types of relations
between them, with the exception of keyterm. In contrast, generalized constraints
specify two or more keyterms, but refer to the information need for the relations and
intermediate elements that associate them. One example of a generalized constraint
is Paths( N ), described in the Section 6.3. This constraint is satisfied if a passage
annotation graph contains a pair of keyterms from the information need, such that
they are related by the same path of N relations in the passage as they are in the
information need.
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Table 6.1: Algorithm for Enumeration of Constraints for a Type System

Input:
Type system T = (Te, Tr)
Maximum order n (to generate constraints of order 1 through order n)

Output:
Set of sets of constraints, one for each order {C1, . . . , Cn}

1. Initialize C1...n = ∅

2. For each tr = (name, domain, range) ∈ Tr:

For each d, r ∈ Te such that d and r are concrete leaf types inheriting from
domain and range, respectively:

Add (E = {(e1, d), (e2, r)}, R = {(name, e1, e2)}, T ) to C1

3. For i = 2, . . . , n:

For each tr = (name, domain, range) ∈ Tr:

For each constraint c = (Ec, Rc, T ) ∈ Ci−1:
For each element e ∈ Ec of type domain or a subtype:

For each r ∈ Te such that r is a concrete leaf type inheriting from
range:
Add to Ci: (E = Ec ∪ {(x, r)}, R = Rc ∪ {(name, d, x)}, T ).

For each element r ∈ Ec of type range or a subtype:
For each d ∈ Te such that d is a concrete leaf type inheriting from
domain:
Add to Ci: (E = Ec ∪ {(x, d)}, R = Rc ∪ {(name, x, r)}, T ).

Note: keyterm is always considered a leaf type for the purposes of this algorithm.
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6.2.3 Constraint Selection

Once the universe of constraints has been enumerated using the automatic process
and generalized constraints, if desired, have been defined, the final task remaining
for the QA system developer is to decide which of the constraints to use. For the
smallest type systems, it may be appropriate to use all of the constraints, but for
larger type systems, it may be advantageous to reduce the space of constraints by,
for example, removing constraints that are redundant or sparsely predictive. There
are a number of well-known methods for feature selection, such as Chi-square or
mutual information, that apply naturally to this problem. Intuition plays a role as
well. For example, under Tbbn+assert, every sentence has a sentence tag. Therefore,
any higher-order constraint checking any type of enclosure relation involving the
sentence can be removed immediately because it is redundant; there is another
constraint in the universe, of one degree lower order, that is always satisfied if and
only if the redundant constraint is satisfied.

6.3 Linguistic and Semantic Constraints for Tbbn+assert

This section describes the constraint types selected for Tbbn+assert for use in the
experiments presented in this chapter. The procedure described in the previous
section was employed, automatically enumerating all constraints up to order 3, then
applying the following principles, based on intuition, to narrow the result down:

1. An element may participate in at most one enclosure relation with
another non-keyterm element.

This principle eliminates the redundancy inherent in constraints that specify
an element enclosing, or being enclosed by, more than one other element. The
principle also prohibits transitive enclosure, which is a reasonable thing to do
because the NLP tools underlying Tbbn+assert enforce transitivity of enclosure.
Therefore, all enclosure information is captured sufficiently by the first-order
constraints consisting of a single enclosure relation between two elements. The
exclusion for keyterms is required for proper keyterm precedence constraint-
checking, which requires that a pair of keyterms be mutually enclosed in an
annotation.

2. When attachment relations are present between targets and arguments,
consider only keyterm enclosure.

64



Intuition suggests that the attachment relations and the target and argument

annotations can be used to understand the long-distance semantic dependencies
between keyterms. While there may also be interesting semantic dependencies
between keyterms and entities, the decision was made to avoid proliferation of
constraints mixing attachment relations and entity enclosure under the assump-
tion that first-order constraints checking argument-entity and entity-keyterm
enclosure would be sufficient to capture these dependencies.

3. No nesting of predicate-argument structures.

Though this is allowed by the underlying NLP tools, the experiments in this
chapter ignore the possibility of enclosure of targets and other arguments
inside arguments. Nested targets and arguments are treated as if they are at
the sentence level.

4. For keyterm precedence, keyterms must be enclosed in the same
annotation.

Even though the type system technically admits this, it would not make sense to
check precedence for keyterms enclosed in different annotations, or not enclosed
in any annotation.

After narrowing the space of constraints, the following first-order constraints
remained:

• KEnc( annotation ): Keyterm Enclosure within an Annotation

(E = {(a, annotation), (k, keyterm)}, R = {(enclosure, a, k)}, Tbbn+assert)

Satisfaction of this constraint by a passage involves matching an enclosure
relation between an instance of the specified annotation, and any keyterm in the
information need also enclosed by an instance of that same annotation. There
are 16 constraints of this type, one corresponding to each leaf sub-element type
of annotation.

• AEnc( annotation, annotation ): Annotation-Annotation Enclosure

(E = {(a1, annotation), (a2, annotation)}, R = {(enclosure, a1, a2)}, Tbbn+assert)
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This constraint checks for enclosure relations between instances of the specified
annotation types in the passage annotation graph, and can be checked for any
pair of annotations for which an enclosure relation is defined in Tbbn+assert.
There are 15 AEnc( sentence, annotation ) constraints, as sentence can
enclose any other type of annotation. There are 40 AEnc( argument, entity
) constraints.

• Att( annotation, annotation ): Attachment between Annotations

(E = {(t, target), (a, argument)}, R = {(attachment, t, a)}, Tbbn+assert)

Under Tbbn+assert, attachment can only hold between a target and an argu-
ment. This constraint is important because there can be multiple targets

in a passage, and it is also possible for a target to have multiple arguments
attached to it with the same role label. There are 10 of these constraints, one
for each leaf sub-element type of argument.

The automatic procedure enumerated several interesting candidates higher-order
constraints, though several were rejected on the basis of intuition that they would
be redundant. One example of a redundant higher-order constraint is the order-n
constraint consisting solely of attachment relations. This was rejected on the grounds
that the first-order single attachment constraints could capture this information.
Some additional second-order constraints were not used because they are subsumed
by the third-order constraints shown below:

• KPrec( annotation ): Keyterm Precedence within an Annotation

(E = {(e, annotation), (k1, keyterm), (k2, keyterm)},
R = {(enclosure, e, k1), (enclosure, e, k2), (precedence, k1, k2)}, Tbbn+assert)

This constraint is composed of two enclosure relations between the annotation
and each keyterm, and a single precedence relation between the keyterm pair.
There are 16 constraints of this type.

• Att-KEnc2( annotation, annotation ): Attachment, with double Keyterm
Enclosure
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(E = {(t, target), (a, argument), (kt, keyterm), (ka, keyterm)},
R = {(attachment, t, a), (enclosure, t, kt), (enclosure, a, ka)}, Tbbn+assert)

This constraint represents a specific type of relationship between two keyterms,
in which each participates in an enclosure relation with an instance of one each
of the specified annotation types, which are connected through an attachment
relation. Note that a passage can satisfy all of KEnc( target ), KEnc( arg1

) and Att( target, arg1 ) without satisfying Att-KEnc2( target, arg1 ),
which additionally requires that the target and arg1 instances be the same
throughout.

The following generalized constraints were introduced to capture features specific
to a particular information need.

• Ans: Expected Answer Type

(E = {(s, sentence), (e, entity)}, R = {(enclosure, s, e)}, Tbbn+assert)

This constraint is similar to AEnc( sentence, entity ), except that the
entity type is not specified. Instead, the expected answer type of the question,
as specified in the information need, is used. This constraint will fail to match
if information need does not specify an expected answer type that is a type of
entity. The process that fills in the particular entity type for this constraint is
similar to the lexicalization of the keyterm placeholders in the other constraints
that occurs when a constraint meets an information need annotation graph for
a given question.

• ExpAtt( annotation, N ): Coverage of Expected Attached Annotations

(E = {(t, target), (a1, argument), . . . , (aN , argument)},
R = {(attachment, t, a1), . . . , (attachment, t, aN)}, Tbbn+assert)

This constraint checks for the presence of a target with the same N argu-
ments attached as are specified in the information need. The specific argument
roles are only specified given an information need corresponding to a particular
question.
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• Paths( N ): Coverage of Expected Keyterm Paths

(E = {(a1, annotation), (a2, annotation), (k1, keyterm), (k2, keyterm), . . .},
R = {(enclosure, a1, k1), (enclosure, a2, k2), . . .}, Tbbn+assert)

This constraint is the most powerful among those that represent long-distance
semantic relationships between keyterms because it considers all paths through
the annotation graph between a pair of keyterms. A path in this case refers to
an acyclic traversal of enclosure and attachment relations and entity, argument
and target elements between a1 and a2, which enclose the respective keyterms.
The parameter N represents the length of the path in terms of enclosure and
attachment relations, not including keyterm enclosure. Note that a path of
length zero means a1 = a2. There may be more than one path of any given
length that relates a pair of keyterms.

The following additional fifth-order constraint was suggested by intuition, because
the automatic process was not run to order 5:

• Att2-KEnc3( annotation, annotation, annotation ): Double Attach-
ment, with triple Keyterm Enclosure

(E = {(t, target), (a1, argument), (a2, argument),
(kt, keyterm), (k1, keyterm), (k2, keyterm)},
R = {(attachment, t, a1), (attachment, t, a2), (enclosure, t, kt),
(enclosure, a1, k1), (enclosure, a2, k2)}, Tbbn+assert)

This constraint is based on Att-KEnc2( annotation, annotation ), except
that it adds a second attachment relation to a different annotation type, which
must enclose a keyterm from the information need.

The selected linguistic and semantic constraint types can be used to decompose
an annotation graph representing an information need and extract features useful for
ranking. It is at this point that keyterm placeholders in the constraint types become
lexicalized. As an example of this process, Figure 6.1 shows how the information need
annotation graph for question 1398, What year was Alaska purchased?, decomposes
into constraints. For clarity, the figure shows only one constraint of each type,
identified by number below:
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1. KEnc( sentence ): This constraint is satisfied by any passage having a
sentence that participates in an enclosure relation with a keyterm year, Alaska
or purchased.

2. KPrec( sentence ): For a passage to satisfy this constraint, it must have
at least two of the three keyterms year, Alaska or purchased, occurring in the
same order and enclosed within the same sentence instance.

3. AEnc( sentence, location ): This constraint is satisfied if the passage con-
tains a sentence participating in an enclosure relation with a location.

4. Att( target, arg1 ): This constraint checks for an attachment relation holding
between a target and an arg1.

5. Ans: This constraint is equivalent to AEnc( sentence, date ), enforcing
enclosure between the sentence and the entity type that is the expected answer
type specified in the information need, which in this case, is date.

6. ExpAtt( target, 2 ): This constraint checks for a target having the same
two arguments attached as in the information need, which in this case, are arg1
and argm-tmp.

7. Att-KEnc2( target, arg1 ): For a passage to satisfy this constraint, it must
contain a target attached to an arg1, each of which must enclose a keyterm
that is enclosed in the same annotation in the information need. Here, the only
options are purchased and Alaska, so this constraint enforces that Alaska is the
thing purchased, as opposed to the buyer.

8. Att2-KEnc3( target, arg1, argm-tmp ): Similar to the above, this constraint
is checking for a target attached to both an arg1 and an argm-tmp, each of
which must match a keyterm against the information need. Note that any
passage that satisfies this constraint also satisfies Att-KEnc2( target, arg1
) and Att-KEnc2( target, argm-tmp ).

9. Paths( 2 ): This generalized constraint is satisfied by any path traversing
entity, argument and target elements along enclosure and attachment relations
between a pair of keyterms, so long as it matches the information need. The
constraint shown in Figure 6.1(9) is just one of many paths not covered by
other constraints.
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Figure 6.1: Example of decomposition of the information need for the question, What
year was Alaska purchased?, into annotation graph snippets representing atomic
linguistic and semantic constraints. One example constraint of each type is shown.

6.4 Constraint Satisfaction and Feature Extrac-

tion

To determine the degree to which a passage satisfies the linguistic and semantic
constraints expressed in an information need, the information need is decomposed
according to the constraint types selected for the type system in use. All of the
linguistic and semantic constraints shown in Figure 6.1 consist of small annotation
graph components. Each constraint is compared against the passage annotation
graph to determine if it is satisfied. Despite the fact that the constraint types are
query-independent, some of the matching is query-specific; keyterm elements are
lexicalized and normalized morphologically, and generalized constraints are instan-
tiated, according to the specific elements and relations in the information need. A
passage either wholly satisfies a constraint or does not satisfy it at all. In aggregate,
the count of satisfied constraints can be used to determine the degree of similarity
between the passage and the information need.

Satisfaction of a constraint is based on the concept of annotation sub-graph align-
ment; a constraint is considered satisfied by a passage represented as an annotation
graph if there exists an alignment of the constraint sub-graph to the passage anno-
tation graph1. In this case, an alignment consists of a mapping between elements

1Sub-graph alignment is known to be an NP-complete problem [2], but the problem instances
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of the constraint sub-graph and elements of the passage annotation graph such that
all mapped elements are of the same type, and all relations that hold between el-
ements in the constraint sub-graph also hold between the mapped elements in the
passage graph. Satisfied constraints become features useful for ranking by counting
the number of distinct alignments of the constraint to the passage that exist. See
Figure 6.2 for an illustration of a constraint graph aligning to a passage annotation
graph. In the example shown, there are two distinct sub-alignments, so the feature
value according to the constraint Att( target, arg1 ) is 2. This method of feature
extraction can be thought of as similar to a Tree Kernel, which uses piecewise tree
comparison to construct feature vectors [39].

Figure 6.2: Constraint annotation sub-graph (in bold) aligning to the annotation
graph for the answer-bearing passage, In 1867, ... Seward reached agreement ... to
purchase Alaska. The constraint is Att( target, arg1 ), as shown in Figure 6.1(4).
Note that there are two distinct alignments of the constraint to the passage. The
enclosing sentence and the precedence relations that exist between keyterm pairs
are not shown to increase legibility.

6.5 Experimental Methodology

When applying rank-learning methods to the task of passage retrieval for QA, the
approach is to use the trained model to re-rank the top results retrieved by a baseline
retrieval strategy. The improvement in passage retrieval quality can then be mea-
sured by comparing the Mean Average Precision of the baseline approach to that of

are small enough to be tractable for this application.
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the re-ranked results. The test collection for these experiments will be the TREC
2002 “MIT 109” test collection, as defined in Section 4.1.1

As in the previous chapter, the baseline passage retrieval approach consists of
Indri queries, which are used to retrieve an initial set of up to 1000 sentences for each
question. The Indri queries are formulated under Tbbn according to the procedure
in Section 5.4.1, which includes keyterms from the question, as well as the expected
named entity answer type and any overt entities in the question. See Section A.4
for a definition of the Tbbn type system, and the upper portion of Figure 5.4 for an
example of a query formulated under Tbbn.

The learning-to-rank approach evaluated in these experiments consists of a Com-
mittee Perceptron model [16] that uses 162 features based on sub-graph alignment
counts for the constraint types described above, as well as the baseline Indri score,
for a total of 163 features. The complete list of features are given in Table 6.2.
Feature definitions are type-system dependent, but do not vary on a per-question
basis. Despite this, the range of values a feature may take on can vary from ques-
tion to question2, so all feature values are scaled to zero-mean, unit-variance on a
per-question basis.

Experiments used 5-fold cross validation, in which the Committee Perceptron
model was trained on 4 of the folds, and the trained model was used to re-rank the
passages for the questions in the remaining fold. Mean Average Precision values
reported are averaged across the five folds. For more information about the Com-
mittee Perceptron, including information about training and parameter settings, see
Section 4.4.2.

With respect to the baseline Tbbn Indri queries, the improvement in passage re-
trieval quality afforded by the rank-learning strategy was measured separately for
eight different groups of features to determine the relative utility of the different
types of linguistic and semantic constraints. These eight feature groups are given
below, arranged in order of increasing size. The last column of Table 6.2 identifies
the features used in each of the following tests.

1. Keyterms Only evaluates the effect of the enclosure of keyterms within the
sentence.

2. Surface Patterns evaluates the effect of the enclosure of, and pairwise prece-
dence between, keyterms within the sentence.

2One reason for this is that questions have different numbers of keyterms.

72



3. Named Entities + Keyterms evaluates the effect of enclosure of both
keyterms and entities within the sentence.

4. Named Entities + Surface Patterns evaluates the effect of enclosure of
both keyterms and entities, and of pairwise keyterm precedence, within the
sentence.

5. Semantic Roles Only evaluates the effect of the enclosure of targets and
arguments within the sentence, as well as the attachment of arguments to their
targets, without considering keyterm information.

6. Semantic Roles + Keyterms combines the features in the Semantic Roles
Only and Keyterms Only groups with the enclosure relations that occur
between targets and keyterms, and between arguments and keyterms.

7. Semantic Roles + Surface Patterns adds to the previous feature group
precedence relations between keyterm pairs occurring within sentence, target
and argument annotations.

8. Semantic Roles + Named Entities + Surface Patterns encompasses all
constraints described above, in addition to arbitrary long-distance semantic re-
lationships between keyterm pairs represented by paths through the annotation
graph.

6.6 Experimental Results and Discussion

This section presents and analyzes the results of experiments designed to measure
the improvement in passage retrieval quality when rank-learning techniques are used
to re-rank baseline retrieval output. Results are given in terms of Mean Average
Precision (MAP), averaged over five folds, and are reported for each of the feature
groups numbered 1 through 8, individually. For each test, the p-value for Fisher’s
randomization test [55] is given.

Only 48 of the 109 questions in the TREC 2002 “MIT 109” test collection
(44.03%) turned out to contain verbs analyzable by ASSERT. ASSERT does not
cover certain verbs, including is, do and become, not included in its training data.
Said in another way, the information needs corresponding to these questions under
Tbbn and Tbbn+assert are identical, so there is little expectation that re-ranking would
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Table 6.2: Learning-to-Rank Features, with group membership. Features are param-
eterized by leaf element types defined in Section A.6. N identifies the length of the
path through the annotation graph

Feature Name Feature Feature
Count Groups

Baseline Indri Score 1 1-8
KEnc( sentence ) 1 1,2,6-8
KPrec( sentence ) 1 2,4,7,8
KEnc( entity ) 4 3,4,8
AEnc( sentence, entity ) 4 3,4,8
Ans 1 3,4,8
KPrec( entity ) 4 4,8
Att( argument ) 10 5-8
AEnc( sentence, target ) 1 5-8
AEnc( sentence, argument ) 10 5-8
ExpAtt( target, N ) 4 5-8
KEnc( target ) 1 6-8
KEnc( argument ) 10 6-8
Att-KEnc2( target, argument ) 10 6-8
Att2-KEnc3( target, argument, argument ) 45 6-8
KPrec( target ) 1 7,8
KPrec( argument ) 10 7,8
AEnc( argument, entity ) 40 8
Paths( N ) 6 8
Total 163 8
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improve retrieval quality for these questions. To get an accurate assessment of the
impact of re-ranking, it may be instructive to take a closer look at this subset of 48
questions. In the analysis below, this subset will be referred to as the Deep Structure
Questions when discussing results and observations specific to these questions. The
remaining 61 questions will be referred to as Shallow Structure Questions.

6.6.1 Full Question Set

For the full set of 109 questions, 5-fold cross validation is performed, with approx-
imately 88/22 train/test queries in each fold. Table 6.3 shows the results on this
question set.

Table 6.3: Passage Retrieval Quality using Rank-Learning Techniques on the TREC
2002 “MIT 109” test collection

MAP % over Indri Tbbn p-value (N = 109)
Indri Tbbn 0.1901 − −

Feature Group 1 0.2076 9.21 0.0057
2 0.2134 12.26 0.0142
3 0.2142 12.68 0.0036
4 0.2170 14.15 0.0582
5 0.2000 5.21 0.0560
6 0.2157 13.47 0.1171
7 0.2156 13.41 0.1061
8 0.2329 22.51 0.0332

The learning-to-rank techniques compare favorably against the Indri Tbbn baseline,
demonstrating the feasibility and effectiveness of a rank learning approach to passage
retrieval for QA. The structured retrieval approach discussed in the previous chapter,
however, shows a noticeably larger improvement over the same baseline. The reason
for the disparity is that the rank-learning method does not have access to the same
high-quality question analysis used in the structured retrieval experiments.

The rank-learning method uses features of the question and information need
only, without trying to predict features of likely answer-bearing passages, yet still
shows improvement over the Indri baseline that is statistically significant at the 0.05
level for feature groups 1 through 3, as well as feature group 8. It can therefore be
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concluded that the rank-learning approach is robust to the specific types of features
used, managing to show some improvement regardless of which features are available.

Of particular interest is how the method is able to use bag-of-words features alone
to improve over the baseline. These features tend to moderate the IDF penalty
for common terms that is captured by the Indri score, so it may be possible to
do parameter tuning for these short queries to mitigate the difference. The best-
performing feature group is group 8, which benefits from the inclusion of features
based on the powerful Paths( N ) family of generalized constraints.

The semantic role features (groups 5 through 7) show large gains, but the improve-
ments over the baseline are not statistically significant for the full set of questions.
This result questions the effectiveness of the semantic role features. In these tests,
fewer questions are helped by the trained model, resulting in improvements that
are not significant. In feature group 6 for example, the baseline model outperforms
the trained model on 26% of the questions, and the trained model outperforms the
baseline on 30% of the questions. For the questions that are helped by the trained
model, performance is improved by more than 430% on average. For the questions
hurt by the trained model, performance is decreased by 35% on average.

Because this net gain in performance is not consistent across questions, an ele-
vated p-value is observed. Significance testing attempts to predict whether results
from the experimental method and the baseline are drawn from the same, rather
than two different, underlying distributions. Significant differences between the two
methods are more likely when the experimental method improves performance for
more questions by a smaller amount, rather than few questions by a larger amount.
Observing this latter behavior, it could be that the difference in the two methods
may be a chance occurrence.

An alternative hypothesis is that there exist two distinct sub-populations of ques-
tions, those for which re-ranking is helpful, and those for which it is not. As described
above, there are many questions for which the ASSERT semantic role labeler fails to
provide target and argument annotations, and as a result, the semantic role feature
values are all zeroes. These features, although potentially predictive for some ques-
tions, are not predictive for all questions. Combining these two different question
populations in the training set may have detrimental effects on the learning algorithm
by diluting the “signal” provided by the semantic role features.

To confirm this suspicion, the learned feature weights for the model trained on
the full question set can be inspected. Table 6.4 shows the 15 largest (in terms
of absolute value) features learned on the full question set, averaged across all five
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Table 6.4: Top 15 (in absolute value) mean feature weights across folds, trained on
the full feature set and full question set.

Feature Name Mean Weight
Att-KEnc2( target, arg1 ) 203.99
Paths( 5 ) 161.90
Paths( 2 ) 138.04
AEnc( sentence, date ) 128.02
Ans 113.67
KPrec( sentence ) 94.82
Paths( 4 ) 82.90
Baseline Indri Tbbn score 74.20
KEnc( date ) 57.32
KEnc( org ) 55.52
Paths( 1 ) -69.22
Att2-KEnc3( target, arg1, arg2 ) -70.28
KEnc( person ) -78.54
KPrec( person ) -96.54
Paths( 3 ) -180.33

cross validation folds. Though some of the semantic role features claimed the largest
magnitude weights, 6 of the 15 most influential features are drawn from the surface
patterns and named entity feature groups. This is a portrait of the model’s difficulty
deciding between semantic role features, which are key for certain questions and
irrelevant for many, and surface patterns and named entity features, which provide
modest help for all questions.

6.6.2 Deep vs. Shallow Question Structure

Across the full question set, disappointing performance for the semantic role features
was observed, and the hypothesis was that the behavior could be explained by the
fact that relatively few of the questions (48 of 109, or 44.03%) are Deep Structure
Questions as described above. Because the Shallow Structure Questions have no
target or arguments, the semantic role features are always all zeroes, and are useless
for ranking passages with respect to the information needs corresponding to these
questions. To be able to accurately measure the power of the semantic role features,

77



it is necessary to take a more careful look at the Deep Structure Questions.

Table 6.5: Passage Retrieval Quality using Rank-Learning Techniques on the sets of
Deep and Shallow Structure Questions.

Deep Structure Questions
MAP % over Indri Tbbn p-value (N = 48)

Indri Tbbn 0.1978 − −
Feature Group 1 0.2319 17.24 0.0790

2 0.2176 10.01 0.2167
3 0.2067 4.50 0.3605
4 0.2366 19.62 0.0152
5 0.2159 9.15 0.1269
6 0.2694 36.20 0.0723
7 0.2717 37.36 0.0573
8 0.2788 40.95 0.0194
Shallow Structure Questions

MAP % over Indri Tbbn p-value (N = 61)
Indri Tbbn 0.1845 − −

Feature Group 1 0.1835 -0.60 0.5039
2 0.2014 9.10 0.0951
3 0.1902 3.03 0.2761
4 0.1864 0.98 0.4619
5 0.1846 0.00 1.0000
6 0.1831 -0.81 0.5097
7 0.1858 0.65 0.4691
8 0.1869 1.25 0.4531

Table 6.5 reports the results for the model trained and tested on the Deep Struc-
ture (top half) and Shallow Structure (bottom half) sets separately. As before, these
tests report Mean Average Precision figures averaged across the five folds.

From the top half of Table 6.5, it can clearly be seen that, for the Deep Structure
Questions, the semantic role features have a noticeable positive impact on passage
retrieval performance, realizing over 35% improvements in Mean Average Precision
when those features are used in combination with keyterm information. For feature
group 8, the improvement is statistically significant at the 0.05 level, but is not able
to reach the 0.01 level of significance, likely due to the reduced sample size. Feature
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group 5, which uses semantic role features alone, shows less of an improvement
because the semantic role features are most useful when describing linguistic and
semantic relationships among keyterms that are not implied by surface patterns
alone.

For the Shallow Structure Questions the picture is vastly different. In the bottom
half of Table 6.5, the only features that result in moderate improvement are the
surface patterns. As expected, feature group 5 shows zero improvement, because for
these questions, the feature values in this group other than the Baseline Retrieval
Score are always zeroes. What is interesting about these questions is that named
entities are of limited use in re-ranking the passages, as the baseline Indri queries
already capture much of the information provided by these features. Much of the
small variations in performance across feature groups 4-7 are attributable to random
sampling of the passage-pairs during the training process.

Looking at the features that are assigned the highest weight by the learning
algorithm, there is a distinct shift towards strongly favoring semantic role features for
the Deep Structure Questions. Table 6.6 shows the top 15 (in absolute value) feature
weights learned with the full feature group (8) on the Deep Structure Questions,
averaged across all five cross validation folds. The top two of these top 15 features
encode long-distance linguistic and semantic relationships between keyterms that
are not implied by the surface representation. Ten of the top 15 make use of some
semantic role information. It is interesting to note that the most basic surface pattern
features, KEnc( sentence ) and KPrec( sentence ), are not a part of the top 15
most useful features, all of which make use of some named entity and/or semantic
role information. This fact suggests that semantic role features are indeed powerful
for ranking passages with respect to Deep Structure Questions.

6.7 Comparison to the Structured Retrieval Method

Table 6.7 compares the rank-learning passage retrieval strategy proposed in this chap-
ter, and the approach based on structured retrieval techniques discussed in Chapter 5.
The approaches are compared against the common Indri Tbbn baseline method, on
the 54 questions drawn from the TREC 2002 “MIT 109” test collection that were
not used for training the structured retrieval approach. The learning-to-rank method
can not rank sentences not retrieved by the baseline, unlike the structured retrieval
approach. To compare the two approaches on ranking quality alone, the relevant
sentences not retrieved from by the baseline were removed from the judgment set.
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Table 6.6: Top 15 (in absolute value) mean feature weights across folds, trained on
the full feature set and the Deep Structure Questions.

Feature Name Mean Weight
Paths( 5 ) 264.45
Paths( 4 ) 211.60
Ans 183.01
Att-KEnc2( target, arg1 ) 174.95
AEnc( sentence, date ) 99.87
Baseline Indri Tbbn score 98.42
KEnc( date ) 91.33
KPrec( arg2 ) 81.71
Att-KEnc2( target, arg0 ) 69.97
KEnc( org ) 65.65
KPrec( arg0 ) 55.12
Att( target, argm-mnr ) -54.89
AEnc( sentence, argm-mnr ) -54.89
ExpAtt( 3 ) -66.46
Att2-KEnc3( target, arg1, arg2 ) -96.68

The table reports retrieval quality for a flavor of the structured retrieval ap-
proach referred to as every structure, in which the method round-robins over a set
of structured queries for each question to construct the overall ranking. The Mean
Average Precision score for this approach is sensitive to the order in which the per-
structure queries are considered by the round-robin algorithm; optimal and worst are
the best and worst orders possible, while as published is the order that was used in
the experiments reported in [8].

The table shows that both methods statistically significantly outperform the Indri
Tbbn baseline at the 0.01 level. Additionally, the structured retrieval can statistically
significantly outperform the rank-learning approach at the 0.05 level, but only when
the round-robin merging of the per-structure results is performed optimally. It is not
inconceivable that a QA system using the structured retrieval approach would be able
to guide the round robin process in this manner, perhaps through accurate confidence
values for predicted answer-bearing structures, but for general purpose applications
in which this type of information is not necessarily available, the learning-to-rank
approach seems robust.
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Table 6.7: Comparison of Learning-to-Rank and Structured Retrieval Methods for
Linguistic and Semantic Passage Retrieval for QA

Method MAP % over p-value % over p-value
Indri Tbbn (N = 54) LTR (N = 54)

Structured Retrieval
- optimal 0.4764 160.04% < 0.0001 90.04% 0.0034
- as published 0.3837 109.44% 0.0002 53.54% 0.0670
- worst 0.3096 68.99% 0.0053 23.88% 0.3322

Learning-to-Rank 0.2499 36.40% 0.0486 - -
Indri Tbbn baseline 0.1832 - - - -

6.8 Comparison to Passage Ranking based on De-

pendency Path Similarity

As introduced in Section 2.2, Cui, et al., proposed in 2005 a method of re-ranking
passages for QA based on dependency parse similarity [14]. The method has been
referred to as the state-of-the art in linguistic passage ranking for QA applications, so
this section compares the proposed rank-learning approach against it. The primary
finding is that the Cui method is not competitive with the ranking strategy proposed
in this chapter, but instead, is much more comparable to the Indri Tbbn baseline. The
Cui method is composed of two scores, a lexical score based on term overlap identified
as “MITRE” in the text, as well as a dependency path match score.

It turns out that the dependency path match score correlates highly with the
Indri Tbbn score; the average per-question Pearson correlation coefficient is 0.7083,
with variance 0.0593, where 1.0 indicates perfect correlation, -1.0 indicates perfect
inverse correlation, and 0.0 indicates a lack of correlation. Despite this correlation, it
seems that the Indri score is able to capture finer distinctions in the data. For fixed
values of the path match score, the Indri score, which is measured in logarithmic
scale, has a variance of 7.5071. For fixed values of the Indri score, the Cui path
match score has a variance of 0.0326.

While the path match score does a reasonable job of tiering the data, Indri is able
to provide a better ranking within the tiers. The observation that Indri is capturing
so much of the information in the path match score could be explained if the path
match score is dominated by matching the named entity expected answer type, which
is captured in the Indri Tbbn queries through the use of the #any:entity operator.
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Figure 6.3: Parameter sweep for the mixture weight combining the lexical (MITRE)
score with the path match score for the passage ranking method of Cui, et al., based
on dependency path similarity [14]. For no value of the mixture weight is the method
statistically significantly better than the Indri Tbbn baseline.

From the paper, it is not clear what mixture weight was used to combine the
lexical score and the path match score in the Cui method, but from inspection of the
code available online3, it appears that 0.5 was chosen. For the TREC 2002 “MIT
109” test collection studied in this chapter, it turned out that there was no value
of the mixture parameter for which the Cui method could statistically significantly
outperform the Indri Tbbn baseline. A plot of the parameter sweep is shown in
Figure 6.3.

6.9 Guidance for QA System Developers

At this point, the reader has encountered two strategies for linguistic and semantic
passage retrieval that can be incorporated into a QA system. Both strategies improve
retrieval quality in terms of Mean Average Precision, retrieving more answer-bearing
passages and ranking them more highly, while reducing the occurrence of false posi-
tives. This section is aimed at the developer trying to understand which method is
more appropriate for his or her QA system.

3See: http://www.cuihang.com/software.html
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The comparison between the methods given in Section 6.7 can be misleading if it is
not carefully interpreted. As it stands, the structured retrieval method appears to be
able to achieve a noticeably better MAP than the rank-learning approach, regardless
of how round-robining is performed. For the worst possible round robin ordering,
however, structured retrieval can not be shown to be statistically significantly better
than the rank-learning method.

All of the results attributed to structured retrieval in this thesis need to be viewed
from the perspective that they represent an optimistic upper bound on performance
that may be difficult to replicate in real systems. For the structured retrieval ap-
proach to work well, a QA system must be able to accurately predict the linguistic
and semantic features of likely answer-bearing passages. The structured retrieval
results in this thesis assume that this is possible with 100% accuracy. The results
for the rank-learning approach make no such assumption, using features of the ques-
tion only. The recommendation, therefore, is that the learning-to-rank strategy be
preferred until high-accuracy answer structure prediction becomes available.

Finally, a note of caution about linguistic and semantic passage retrieval. Though
it may reduce the workload shouldered by the Answer Generation module, and im-
prove Answer Generation accuracy4, it can never replace Answer Generation. Con-
sider the following sentence, In 1867, Russia proposed that the U.S. purchase Alaska
For the question about the purchase of Alaska, the rank-learning passage retrieval
strategy proposed in this chapter might rank this sentence highly because it sat-
isfies many of the linguistic and semantic constraints expressed in the information
need. There is a purchase event, and Alaska is the arg1. There is also an argm-tmp

temporal adjunct containing an instance of date.

It is not clear whether this sentence is relevant or not. In terms of formal seman-
tics, it does not indicate that the purchase has yet taken place. Despite containing
the correct answer, the sentence does not appear to support the answer. For certain
applications, however, the sentence might be relevant. A QA system capable of ag-
gregating information from multiple passages may be able to combine the sentence
with information indicating that the purchase was actually made. The sentence may
be unconditionally relevant for a system tasked with summarizing historical events
or compiling timelines. It is up to the individual developer to determine what rele-
vance means in the context of his or her own QA system, and to pair linguistic and
semantic passage retrieval with the appropriate Answer Generation strategy.

4See Section 7.7 for an analysis of Answer Generation.
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6.10 Conclusions

Learning-to-rank techniques have demonstrated themselves to be highly effective
as an approach to linguistic and semantic passage retrieval for QA systems. The
approach outlined in this chapter offers several advantages:

1. Partial Matching: The rank-learning linguistic and semantic passage re-
trieval method supports fine grained partial matching between retrieved pas-
sages and the information need by checking constraints individually and in
small groups as opposed to matching linguistic and semantic structures as a
whole.

2. Automatic Constraint Weighting: Rank-learning techniques also free the
developer from needing to specify the order of constraint relaxation a priori,
as the relative importance and predictive power of the various component con-
straints is learned automatically through the training process.

3. Robustness: The approach was shown to improve over the Indri Tbbn baseline
for several different feature groups.

4. Degradation to the Baseline: Finally, this rank-learning approach incorpo-
rates information about the baseline retrieval method that allows it to degrade
gracefully to the baseline in the absence of useful linguistic and semantic in-
formation.

5. Applicability to Other Tasks: The learning-to-rank passage retrieval method
proposed here is fundamentally a method of computing linguistic and semantic
similarity between two pieces of text. The technique could easily be applied to
other appropriate tasks, such as Recognizing Textual Entailment [15].
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Chapter 7

Generalizing to New Problem
Instances

Building on the success of the learning-to-rank approach to linguistic and semantic
passage retrieval for Question Answering (QA) detailed in the previous chapter, the
next task is to demonstrate the generality of the approach, and its adaptability to
new domains and problem instances. This chapter presents a set of passage retrieval
experiments set within the context of an Italian-language QA task similar to those
presented for English in the previous chapter. These experiments represent a point
of generalization along two dimensions; in addition to the corpus language, there is
a new type system in use, based on the Natural Language Processing (NLP) tools
available for Italian.

The discussion in this chapter is guided by the hypothesis that, for the specific test
collection studied, the rank-learning-based linguistic and semantic passage retrieval
approach, using the proposed type system, provides a better quality passage ranking
compared to a standard baseline, where better quality entails more relevant passages
retrieved, more highly ranked. Furthermore, using a standard Answer Generation
baseline, this better quality passage ranking translates to better quality end-to-end
system performance, in terms of accuracy and Mean Reciprocal Rank of the correct
answer.
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[In quale anno] [è stata lanciata] [su Hiroshima] [la bomba atomica?]
[È stata lanciata] [la bomba atomica] [su Hiroshima] [in quale anno?]
[È stata lanciata] [su Hiroshima] [la bomba atomica] [in quale anno?]
[La bomba atomica] [è stata lanciata] [su Hiroshima] [in quale anno?]
[In quale anno] [la bomba atomica] [è stata lanciata] [su Hiroshima?]

Figure 7.1: Five of the equivalent, grammatical permutations of the phrases in the
question, In quale anno è stata lanciata la bomba atomica su Hiroshima?

7.1 Phrase Ordering in Italian

Chapter 3 argued that, despite the fact that surface term ordering often implies se-
mantics in English, surface patterns are not necessarily the most robust approach
for passage retrieval because of passive voice, topicalization and other types of con-
structions involving clause movement, which violate the implication. This argument
is supported by the English-language result described in the previous chapter, which
showed that, when more predictive features are available, the rank learning algo-
rithm marginalizes sentence-level term ordering constraints, though ordering of terms
within arguments is still useful.

The Italian language is an interesting case study for abstracting away from surface
term ordering, as it has relatively weak phrasal ordering constraints, much weaker
than those of the English language. Consider CLEF question 20040016, In quale
anno è stata lanciata la bomba atomica su Hiroshima? (In what year was the atomic
bomb dropped on Hiroshima?) Figure 7.1 shows just a few of the permutations
of the arguments of this question that are considered grammatical according to a
native speaker of the language. For a language with relatively free phrase ordering
constraints, one would expect surface patterns to be an even weaker predictor of
relevance than for English and, as a consequence, the deeper linguistic and semantic
relations between keyterms would become even more important.

7.2 Type Systems

As in the English-language passage retrieval experiments, those described in this
chapter rely on two different type systems. The simpler type system, Tchaos ne, which
has fewer element and relation types, is used to formulate Indri queries for the base-
line method. The other type system, Tchaos, supports richer linguistic relations, which
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can be used as features in a trained model that can re-rank the baseline results to
obtain a better quality ranking. Section A.8 defines Tchaos ne, the baseline type sys-
tem for this task, while Section A.9 gives the type system used for re-ranking, Tchaos,
which unlike the corresponding type system in the English-language experiments,
does not model semantics. This limitation is a result of the fact that the Chaos
parser, described in Section 4.3.2, does not perform semantic role labeling, and there
are no semantic role labeling tools known to be available for Italian.

G20040016 = (E, R, Tchaos)

E =



e1 = (sentence), e8 = (anno : year),
e2 = (verb), e9 = (lanciare : to drop),
e3 = (V PP), e10 = (bomba : bomb),
e4 = (V Sog), e11 = (atomico : atomic),
e5 = (V PP), e12 = (Hiroshima)
e6 = (location),



R =



(enclosure, e1, e2), (enclosure, e2, e9),
(enclosure, e1, e3), (enclosure, e3, e8),
(enclosure, e1, e4), (enclosure, e4, e10),
(enclosure, e1, e5), (enclosure, e4, e11),
(enclosure, e1, e6), (enclosure, e5, e6),
(enclosure, e1, e7), (enclosure, e5, e12),
(enclosure, e1, e8), (enclosure, e6, e12),
(enclosure, e1, e9), (attachment, e2, e3),
(enclosure, e1, e10), (attachment, e2, e4),
(enclosure, e1, e11), (attachment, e2, e5)
(enclosure, e1, e12),


Figure 7.2: Information need corresponding to the input question In quale anno è
stata lanciata la bomba atomica su Hiroshima? (What year was the atomic bomb
dropped on Hiroshima?) expressed under Tchaos.

Figure 7.2 shows a depiction of the information need annotation graph corre-
sponding to our example question, In quale anno è stata lanciata la bomba atomica
su Hiroshima?, under Tchaos. Note that the keyterms in the question have been lem-
matized. The figure reveals an important distinction between Tchaos and Tbbn+assert,
which was used in the previous chapter’s experiments. Chaos is a syntactic parser,

87



so it identifies the phrases for grammatical functions such as subject (V Sog) and
oblique or prepositional (V PP). These are syntactic distinctions and are not to be
confused with the deeper semantic roles produced by ASSERT. Because the question
is in passive voice, the thing that is dropped becomes the grammatical subject, as
opposed to the agent of the dropping action, which is unspecified.

Use of a syntactic representation rather than a semantic one can also result in
a wider variation among answer-bearing passages. Consider the following passages
judged relevant for question 20040016, shown below, and again in Figure 7.3. The
figure shows the three answer-bearing passages, each having different syntactic forms,
mapping into a unified semantic representation modeled after what an ASSERT-like
tool would produce if one were available for the Italian language.

1. ... [V Sog il bombardiere B-29 ‘Enola Gay’] che [V Obj il 6 agosto 1945] [verb
sganciò] [V PP su Hiroshima] [V Obj la prima bomba atomica della storia] ...

... the B-29 bomber ‘Enola Gay,’ which on August 6, 1945 released over Hi-
roshima the first atomic bomb in history ...

2. ... [V Sog bomba atomica] [verb lanciata] [V PP su Hiroshima] [V PP dagli amer-
icani] [V PP nel 1945.]

... atomic bomb dropped on Hiroshima by the Americans in 1945.

3. ... [V Sog la decisione di 50 anni fa del presidente Harry Truman] di [verb
lanciare] [V Obj la bomba atomica] [V PP sulle città giapponesi di Hiroshima e
Nagasaki]

... the decision 50 years ago of President Harry Truman to drop the atomic
bomb on the Japanese cities of Hiroshima and Nagasaki.

7.3 Linguistic Constraints for Tchaos

Many of the methods for decomposing an annotation graph representing an English-
language question under Tbbn+assert into atomic constraints apply equally well to the
task of Italian-language passage retrieval for QA. All of the constraints defined in
Section 6.3 for the English-language experiments and repeated below for the reader’s
convenience are re-used in the experiments in this chapter. Note that, when used be-
low, element type annotation refers to the Tchaos type system instead of the Tbbn+assert

used in the previous chapter.
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Figure 7.3: Syntactic representations for three answer-bearing sentences for the ques-
tion, In quale anno è stata lanciata la bomba atomica su Hiroshima?, shown mapping
into an idealized semantic representation similar to that of ASSERT.
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• KEnc( annotation ): Keyterm Enclosure within an Annotation

• KPrec( annotation ): Keyterm Precedence within an Annotation

• AEnc( annotation, annotation ): Annotation-Annotation Enclosure

• Att( annotation, annotation ): Attachment between Annotations

Under Tchaos, the attachment is defined to hold over domain type verb and
range type function, which has 6 subtypes: V Sog, subject; V Obj, direct ob-
ject; V NP, indirect object; V PP prepositional or oblique; V Adv, adverbial; and
V PrRel, relative clause.

• Ans: Expected Answer Type

Under Tchaos, the entity types that can serve as the expected answer type are:
date, location, organisation, and person.

• ExpAtt( annotation, N ): Coverage of Expected Attached Annotations

For Italian, N ∈ {1, . . . , 6}.

• Att-KEnc2( annotation, annotation ): Attachment, with double Keyterm
Enclosure

• Att2-KEnc3( annotation, annotation, annotation ): Double Attach-
ment, with triple Keyterm Enclosure

• Paths( N ): Coverage of Expected Keyterm Paths

For Italian, N ∈ {0, . . . , 10}.

Additionally, there is a new feature type introduced for Italian: Att2-KEnc2(
annotation, annotation, annotation ). It is similar to the Att2-KEnc3( an-
notation, annotation, annotation ), with the exception that it does not enforce
an enclosure relation between the annotation that is the domain of the attachment
relations and a keyterm. Operationally, this constitutes checking that two keyterm
instances are related through a verb that is not specified. Table 7.1 shows the full
set of features used in the experiments in this chapter.

90



Table 7.1: Learning-to-Rank Features for Italian, with group membership. Features
are parameterized by leaf element types defined in Section A.9. N identifies the
length of the path through the annotation graph

Feature Name Feature Feature
Count Groups

Baseline Indri Score 1 1-8
KEnc( sentence ) 1 1,2,6-8
KPrec( sentence ) 1 2,4,7,8
KEnc( entity ) 4 3,4,8
AEnc( sentence, entity ) 4 3,4,8
Ans 1 3,4,8
KPrec( entity ) 4 4,8
Att( function ) 6 5-8
AEnc( sentence, verb ) 1 5-8
AEnc( sentence, function ) 6 5-8
ExpAtt( verb, N ) 6 5-8
KEnc( verb ) 1 6-8
KEnc( function ) 6 6-8
Att-KEnc2( verb, function ) 6 6-8
Att2-KEnc3( verb, function, function ) 15 6-8
Att2-KEnc2( verb, function, function ) 15 6-8
KPrec( verb ) 1 7,8
KPrec( function ) 6 7,8
AEnc( function, entity ) 24 8
Paths( N ) 11 8
Total 119 8
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7.4 Experimental Methodology

This chapter’s experiments will evaluate the learning-to-rank approach using the
Italian-language CLEF 2004/2006 test collection, defined in Section 4.1.2. As in
the English-language experiments, the rank-learning approach is compared against
baseline Indri queries, in terms of Mean Average Precision, using a 5-fold cross
validation approach. The baseline queries, formulated under Tchaos ne according to
the procedure described in Section 5.4.1, are used to retrieve 1000 results, which are
then re-ranked using the trained model.

In contrast to the experiments in the previous chapter, in which fewer than half
of the questions in the test collection had an interesting interpretation under the
linguistic and semantic type system in use (Tbbn+assert), nearly all of the questions
in the CLEF 2004/2006 test collection have information needs with constraints rep-
resentable by Tchaos. These constraints become 119 count-based features1, shown in
Table 7.1, that, along with the baseline Indri score, are used by the trained Com-
mittee Perceptron model [16] to re-rank the baseline query results. See Section 4.4.2
for more information about the Committee Perceptron algorithm.

As in the previous chapter, improvement in passage retrieval quality is measured
separately for eight different feature groups, which are described below. They cor-
respond to the groups used in the English-language experiments, except for the fact
that semantic roles have been replaced by syntactic chunking and grammatical func-
tions. The right-hand column of Table 7.1 lists which of the following groups contain
which features.

1. Keyterms Only uses bag-of-words constraints only.

2. Surface Patterns adds pairwise precedence between keyterms in the sentence
to the above.

3. Named Entities + Keyterms consists of enclosure relations between the
sentence and both keyterms and entities.

4. Named Entities + Surface Patterns all of the above, plus precedence re-
lations between keyterm pairs within entities.

1All questions share these 119 features, but the range of values they may take is defined on a
per-question basis. See Section 6.5 for more information.
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5. Grammatical Functions Only consists of enclosure relations between the
sentence and verbs and functions, as well as attachment relations between
verbs and functions. No information about keyterms is used.

6. Grammatical Functions + Keyterms contains enclosure relations between
sentence, verb and function annotations and keyterms in addition to the
features in the Grammatical Functions Only group.

7. Grammatical Functions + Surface Patterns uses all features in the pre-
vious group, with the addition of precedence relations between keyterm pairs
enclosed in the sentence, verbs and functions.

8. Grammatical Functions + Named Entities + Surface Patterns consists
of the union of all above-described feature groups, plus enclosure of entities in
functions and the Paths( N ) feature.

7.5 Experimental Results and Discussion

Five-fold cross validation was performed on the 400 questions in the CLEF 2004/2006
test collection, resulting in 320/80 training/test questions in each fold. Table 7.2
summarizes the results in terms of Mean Average Precision (MAP) for each feature
group, with p-values given for Fisher’s randomization test [55].

Table 7.2: Passage Retrieval Quality using Rank-Learning Techniques on the CLEF
2004/2006 test collection

MAP % over Indri Tchaos ne p-value (N = 400)
Indri Tchaos ne 0.2140 − −

Feature Group 1 0.2314 8.13 0.0005
2 0.2389 11.63 < 0.0001
3 0.2519 17.71 < 0.0001
4 0.2568 20.00 < 0.0001
5 0.2169 0.93 0.0989
6 0.2014 -5.88 0.7922
7 0.2177 1.72 0.3662
8 0.2405 12.38 0.0231
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Table 7.2 shows that the rank-learning approach can provide an improvement
in passage retrieval quality over the baseline, with feature groups 1 through 4 and
8 showing statistical significance at the 0.05 level2. Feature groups 1 and 2 show
a percentage improvement over the baseline similar to what was observed in the
English-language experiments, and groups 3 and 4 show better improvements than
the corresponding English feature groups. These feature groups are directly com-
parable to the English-language experiment, because they contain almost identical
features, regardless of the language.

Groups 5 through 8, however, are not comparable to the English experiment
because they contain no semantic information, relying instead on syntactic chunking
with grammatical functions produced by the Chaos parser. It is not surprising that
the syntactic analysis is less useful for ranking than the semantic analysis provided
by ASSERT was for English data. One reason, illustrated in Figure 7.3, is that
there is simply more variation between questions and answer-bearing passages under
Tchaos. If an ASSERT-like representation were to be available for Italian, it could
abstract over much more of the question-answer variation and would likely perform
more like ASSERT does for English.

Another reason that the Chaos output is of reduced effectiveness as a passage
ranking feature is that there are often many, many more analyses on a piece of text
than ASSERT produces for the English-language data. There are three contribut-
ing factors for this. First, Chaos provides analyses for verbs such as be and have,
which ASSERT explicitly does not cover. Second, at indexing time, as described
above, when Chaos produces analyses with packed ambiguities, an index represen-
tation is produced for each hypothesis. The third cause is the characteristics of the
language. In Italian, some adjectives are difficult to distinguish from the past par-
ticiples of verbs. Often, the only difference is the presence of an auxiliary. Consider
the difference between la donna spaventata (the scared woman) and the la donna si è
spaventata (the woman got scared). Often, Chaos will produce a spurious verb-V Sog

relation for the former.

One interesting result revealed by Table 7.2 is that feature group 5, which consid-
ers verb-function structure in the absence of lexical information, outperforms feature
group 6, which adds in that information about keyterms. This is the opposite conclu-
sion drawn from the English-language result, which indicates that enforcing specific
linguistic and semantic relationships between keywords is quite effective for passage
ranking. It seems that the Chaos analysis, which as described above overgenerates in

2Significance for group 8 is reduced when fewer stopwords are filtered. See Section 4.1.2 for more
information about the stopwords filtering used in these experiments.
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some respects, serves two purposes. Without keyterms, it actually supports a greater
degree of matching and manages to outperform the baseline slightly. It is, however,
interesting to note that the p-value is rather low for a less than 1% increase in MAP.
When keyterm information is introduced in feature group 6, performance suffers by
5%, likely a result of the increased number of false positive linguistic relationships
keyterms are participating in. Despite this, the model is able to statistically signif-
icantly (at the 0.05 level) outperform the baseline for feature group 8, which shows
that the model is robust enough to emphasize the features most useful for ranking
even in the face of noisy data.

Table 7.3 shows the top 15 greatest magnitude feature weights, drawn from fea-
ture group 8, averaged across the 5 folds. As in the English language experiments,
the Paths( N ) feature turns out to be effective for passage ranking. It can also be
seen that the model is balancing bag-of-words, named entity, and verb-function con-
straints along with keyterm precedence constraints, which would not be expected to
perform well on Italian owing to its relatively freer phrasal ordering rules. This can
be explained by the fact that many of the questions have keyterm precedence relations
within phrases that are likely to be preserved, as in, for example, question 20040094,
Qual è un fattore di rischio per le malattie cardiovascolari? (What is a risk factor
for cardiovascular disease?). The model puts weight on KPrec( sentence ) not
because ordering is preserved between phrases, but within phrases, such as fattore
di rischio and malattie cardiovascolari. This can be seen by the fact that KPrec(
annotation ) is weighted highly for the V Sog, person and V Adv annotation types.

As described in Section 4.1.2, the questions in the CLEF 2004/2006 test collection
are different from those in the TREC 2002 “MIT 109” test collection, in that they
contain some definition questions and list questions in addition to factoid questions.
Table 7.4 shows results reported separately for each question type. Results for the
factoid questions closely mirror the results for the population as a whole, with the
exception that feature group 8 no longer shows statistically significant improvements,
possibly owing to the loss of the definition questions, for which the features in group
8 appear to be quite effective, showing an almost 15% improvement with statistical
significance at the 0.01 level.

The definition questions for which the group 8 feature set is particularly well-
suited fall into a category of who is questions that ask about specific people by first
and last name. The information needs corresponding to these questions label the
person of interest as the V Sog of some verb, as well as an instance of the person

named entity type. This leads to a number of interesting paths between the keyterms
that make up the person’s name, which are reflected in the Paths( N ) family of
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Table 7.3: Top 15 (in absolute value) mean feature weights across folds for the CLEF
2004/2006 test collection and feature group 8.

Feature Name Mean Weight
KPrec( V Sog ) 536.06
KEnc( V Sog ) 465.09
Att2-KEnc2( verb, V NP, V Sog ) 407.83
KEnc( V Obj ) 380.60
Att-KEnc2( verb, V PP ) 374.91
Paths( 6 ) 305.33
Att-KEnc2( verb, V Obj ) 305.26
KEnc( person ) 292.26
KEnc( V PP ) 289.83
KPrec( sentence ) 280.41
KPrec( person ) 249.04
Paths( 0 ) 234.17
Paths( 4 ) 215.56
KPrec( V Adv ) 205.37
KEnc( verb ) -219.51

features in group 8. Additionally, the surface pattern features, present in groups 7
and 8, are able to make some use of the fact that the person of interest is given by
both first and last name. The precedence relations between these keyterms tend to
be preserved in the answer-bearing passages.

It bears mention that CLEF definition questions are different from the TREC no-
tion of a definition question, with which the reader might be more familiar. Because
CLEF takes a single-answer approach to definition question evaluation instead of
adopting a nugget-based approach, the answers to who or what is types of questions
tend to be phrased as parentheticals or appositives, which are not as well-represented
by the type system as copulae are. This fact likely accounts for the reason why the
baseline bag-of-words plus named entity queries perform better on the definition
questions than the factoid questions. In contrast, CLEF list questions are not eval-
uated using a single-answer methodology, but there were not enough of them in the
test collection to be able to learn much from them.
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Table 7.4: Passage Retrieval Quality using Rank-Learning Techniques on the CLEF
2004/2006 test collection, by question type. Count of questions with at least one
relevant item given in parentheses.

Type (N) Feature Group MAP % over Indri Tchaos ne p-value
Factoid Indri Tchaos ne 0.1897 − −
(N = 263) 1 0.2100 10.70 0.0009

2 0.2187 15.28 < 0.0001
3 0.2342 23.45 < 0.0001
4 0.2397 26.35 < 0.0001
5 0.1919 1.15 0.2164
6 0.1754 -7.53 0.8109
7 0.1902 0.26 0.4696
8 0.2121 11.80 0.0776

Definition Indri Tchaos ne 0.3306 − −
(N = 53) 1 0.3325 0.57 0.0355

2 0.3325 0.57 0.0629
3 0.3343 1.11 0.0168
4 0.3347 1.24 0.0145
5 0.3372 1.99 0.0107
6 0.3397 2.75 0.3319
7 0.3658 10.64 0.0537
8 0.3800 14.94 0.0039

List Indri Tchaos ne 0.4725 − −
(N = 4) 1 0.4707 -0.38 0.7483

2 0.4861 2.87 0.4885
3 0.4717 -0.16 0.7442
4 0.4858 2.81 0.5040
5 0.4799 1.56 0.1248
6 0.3217 -31.91 0.6854
7 0.3228 -31.68 0.6843
8 0.5039 6.64 0.2494
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7.6 Varying the Size of the Retrieval Unit

The judgment set for the Italian-language CLEF 2004/2006 QA test collection, de-
scribed in Section 4.1.2, contains not only sentence-level judgments, but also block-
level judgments, where block is construed to mean a contiguous three-sentence win-
dow. Any block that contains a relevant sentence is relevant, but there are also
some blocks that are relevant even though no single one of the individual sentences
comprising it is answer-bearing. For these blocks, the answer is spread across two
or three sentences, usually as a result of anaphora. Many of these blocks contain
sentences that are “near misses,” in that they satisfy most of the linguistic and
semantic constraints laid out in the information need, yet are not answer-bearing
owing in many cases to unresolved anaphora. With the three-sentence block as the
unit of retrieval, many of these cases become relevant because, within a two-sentence
horizon, the anaphora are resolved.

Table 7.5: Block-level Passage Retrieval Quality using Rank-Learning Techniques on
the CLEF 2004/2006 test collection

MAP % over Indri Tchaos ne p-value (N = 400)
Indri Tchaos ne 0.1913 − −

Feature Group 1 0.2068 8.10 < 0.0001
2 0.2102 9.87 0.0001
3 0.2313 20.90 < 0.0001
4 0.2392 25.03 < 0.0001
5 0.1298 -32.14 1.0000
6 0.1415 -26.03 1.0000
7 0.1633 -13.06 0.9871
8 0.1903 -0.52 0.5095

Table 7.5 shows the results when the experiment is repeated using the block as
a unit of retrieval. It can immediately be seen that the Mean Average Precision
scores are depressed, in part due to the fact that there are more relevant items to
retrieve. Moving to the block unit of retrieval also renders the verb-function features
much less useful for ranking; the training process is confused by linguistic relations
matching within blocks, yet not contributing to relevance. This issue is particularly
pronounced when training on blocks that contain a single relevant sentence, and
two non-relevant sentences, which comprise the majority of blocks. Inspecting the
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learned feature weights in this experiment confirm that a majority of the top fifteen
feature weights are either KEnc( annotation ) or KPrec( annotation ).

7.7 Downstream Answer Generation Performance

This analysis attempts to answer the question as to whether or not an unchanged
downstream Answer Generation module, and the end-to-end QA system as a whole,
can benefit from a better quality passage ranking coming from the embedded IR
component of a QA system. To show that such a benefit is possible, it suffices to
demonstrate a single example, though the same methodology could easily be applied
to the English-language data. This section studies an accepted Answer Generation
baseline, which extracts entities of the expected answer type from the retrieved
passages, and ranks them according to the passage ranking. This approach debuted
in early TREC QA systems [51, 1], and is still in use today [53].

End-to-end QA system performance is measured in terms of accuracy, or the
proportion of questions for which the top-ranked answer is correct, as well as Mean
Reciprocal Rank (MRR) in which the first correct answer encountered at ranks 1
through 5 contributes to the overall score by a factor of one over the rank. Very
good or very poor Answer Generation quality can hide retrieval effectiveness. Perfect
Answer Generation will find the correct answer regardless of the rank at which the
answer-bearing passage is retrieved. The worst possible Answer Generation module
will never find the correct answer regardless of the passage retrieval output. Realistic
Answer Generation modules fall somewhere between these two extremes.

Table 7.6 summarizes accuracy and MRR for 223 of the questions in the CLEF
2004/2006 test collection, those questions for which the expected answer type is
either date, location, organisation or person, as the passage ranking is improved
from the baseline Tchaos ne ranking to the rankings according to feature groups 4
(best quality) and 8 (all features). For each test, the p-value according to Fisher’s
randomization test [55] is given, along with N , the count of questions with having a
given answer type.

Over all answer types, the passage ranking according to feature group 4 provides
a statistically significant improvement in end-to-end QA system effectiveness, in
terms of both accuracy (0.05 level) and MRR (0.01 level), when compared with the
baseline passage ranking. For feature group 8, the improvements are not statistically
significant, despite the fact that, in terms of accuracy, both feature groups provide
an identical improvement in terms of the raw statistic. For feature group 4, there
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Table 7.6: End-to-end QA system performance in terms of accuracy and MRR by
expected answer type, for feature groups 4 (above) and 8 (below).

Group 4 Accuracy MRR
Indri Feature Indri Feature

Answer Type N Tchaos ne Group 4 p-value Tchaos ne Group 4 p-value
date 46 0.1739 0.1522 1.0000 0.2391 0.2609 1.0000

location 61 0.1803 0.3279 0.0122 0.4098 0.5738 0.0008
organisation 56 0.0179 0.0179 1.0000 0.0179 0.0179 1.0000

person 60 0.1667 0.2167 0.4581 0.3000 0.3333 0.2566
all 223 0.1345 0.1839 0.0189 0.1794 0.2330 0.0012

Group 8 Accuracy MRR
Indri Feature Indri Feature

Answer Type N Tchaos ne Group 8 p-value Tchaos ne Group 8 p-value
date 46 0.1739 0.1522 1.0000 0.2391 0.1957 1.0000

location 61 0.1803 0.3279 0.0344 0.4098 0.5082 0.0276
organisation 56 0.0179 0.0357 1.0000 0.0179 0.0357 1.0000

person 60 0.1667 0.2000 0.7735 0.3000 0.3500 0.3921
all 223 0.1345 0.1839 0.0783 0.1794 0.2225 0.0591

are more questions for which the accuracy is equal to the baseline, but the number
of occurrences in which the baseline is better is reduced, compared to feature group
8.

For specific answer types, statistically significant improvement at the 0.05 level
can be seen for location only, for both feature groups. For date, however, end-to-
end accuracy for both feature groups, as well as MRR for feature group 8, decline.
Though date is the worst-performing answer type in terms of Mean Average Precision
of the original Tchaos ne ranking, the trained model improves the ranking of answer-
bearing passages. Despite this, there is a drop in Answer Generation performance,
which can be explained by the fact that Chaos is not tagging keyterms representing
years, such as 1945, as date. It only writes a date tag when a date expression
consisting of a month and a year, or a day, a month and a year, was recognized and
canonicalized in free text, such as 6 agosto 1945 becoming 6/08/1945. For all date
questions in which performance declined, the explanation was that relevant passages
containing the correct answer expressed as an untagged year were brought to the top
of the ranking by the trained model, pushing other results down.
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For organisation, accuracy and MRR are equivalent because the correct answer
was either extracted at rank 1 or not at all. In fact, only one of the 56 questions
was correctly answered by the baseline, and one additional question was correctly
answered by the feature group 8 ranking. The feature group 4 ranking results in
identical accuracy and MRR compared with the baseline. Performance is particu-
larly poor for organisation because Chaos appears to be using a dictionary-based
approach for this entity type. NATO is the answer most frequently proposed for an
organisation question, followed by the single keyterms club, corporation, bank and
hotel. These English words would be found in Italian-language newswire text as part
of proper nouns.

7.8 Conclusions

This chapter demonstrated that the rank-learning approach to linguistic and seman-
tic passage retrieval for QA is successful on an additional problem instance, with
a different corpus language and a different type system. It can be concluded that
the approach adapts to new domains having different language-specific and type
system-specific characteristics.

This problem instance was considerably more challenging because of the level of
abstraction of the type system; using a syntactic, as opposed to a semantic, type
system reduces the chance that the information need will match answer-bearing text
to a high degree. It was observed that the approach is sensitive to the accuracy of
the text annotation under the type system in use. Accuracy of the Chaos parser, as
well as the choice of the unit of retrieval, affected the quality of the overall ranking.
There is clearly a minimum threshold for data quality, and more work will be needed
to more accurately bound it.

Despite this, the approach demonstrated robustness in that it was able to em-
phasize the most useful features and provide a better quality ranking with respect to
the baseline in many cases. This behavior of the rank-learning approach to passage
retrieval will be useful in any application in which it is not known a priori which of
the features will be most reliable or useful for ranking.

An additional result shown in this chapter is that it is possible for a QA system to
be more effective in terms of end-to-end accuracy and answer MRR when the quality
of the passage ranking coming out of the embedded IR component is improved,
and the Answer Generation component is left unchanged. Intuition suggests that if
the Answer Generation module is re-tuned after the introduction of linguistic and
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semantic passage retrieval in order to better take advantage of the new kinds of
retried results, the end-to-end system improvement could be even greater.

102



Chapter 8

Contributions

This thesis has studied the problem of passage retrieval within the context of Ques-
tion Answering (QA) systems. Guided by the observation that standard approaches
to ad hoc retrieval are not necessarily well-suited to the task of passage retrieval for
QA, this document set out to develop passage retrieval methods capable of query-
time checking of the linguistic and semantic constraints of interest to a QA system.
This chapter summarizes the contributions of this thesis.

8.1 Modeling Annotated Text as Annotation Graphs

Chapter 3 offered a methodology for converting any text annotation scheme based
on the concept of typed text spans and typed pairwise relations between them into
a type system, which can then be used to represent QA system information needs,
as well as annotated text, as annotation graphs. This conversion into a common,
unifying representation enables direct comparison retrieved text and the information
need in terms of linguistic and semantic content.

Subsequent chapters of the thesis proposed specific linguistic and semantic pas-
sage retrieval approaches in terms of the annotation graph formalism. For a QA
system to be able to make use of them, the only assumption is that its internal rep-
resentation for its information need can be reduced to an annotation graph. This is
a relatively weak assumption, so the applicability of the proposed passage retrieval
methods is broad.
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8.2 Structured Retrieval

In Chapter 5, annotation graph retrieval was implemented using structured retrieval
techniques. The method was shown to be effective, particularly for complex in-
formation needs encoding large numbers of linguistic and semantic constraints, yet
sensitive to the accuracy of the tools involved in corpus preparation. It was demon-
strated that the structured queries do a good job of selecting passages that satisfy a
large number of the linguistic and semantic constraints in the information need, but
when only a few of them are not satisfied, ranking quality degrades sharply, worse
than the baseline.

It is therefore important for any QA system employing the structured retrieval
strategy as proposed to be able to confidently predict the form of answer-bearing
passages likely to be found in the corpus. When accurate prediction is available,
a comparison between the structured retrieval and learning-to-rank methods shows
that the structured retrieval method is more effective in terms of Mean Average
Precision. The same comparison shows that, if the system’s predictions turn out
to be poor, the structured retrieval method is not statistically significantly more
effective than the rank-learning approach.

8.3 Learning-to-Rank

The rank-learning approach to linguistic and semantic passage retrieval for QA,
explored in Chapters 6 and 7, was shown to be effective for two different languages
and two different type systems, demonstrating that it is adaptable to a variety of
domains. Unlike individual structured queries, the trained ranking model is able
to gracefully decay to baseline ranking performance when linguistic and semantic
constraints are not satisfied.

This method was also shown to be somewhat sensitive to the quality of the tools
used to prepare the corpus, but the primary advantage of the rank-learning ap-
proach is its robustness. Through the training process, the learning-to-rank method
can marginalize unreliable or noisy features, and emphasize those that are the best
predictors of relevance. When the QA system does not have complete confidence in
its ability to predict the form answer-bearing passages in the corpus will take, the
rank-learning approach, which relies on features of the question alone, offers the best
balance of effectiveness and robustness.

The better quality passage ranking provided by the learning-to-rank method was
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shown to be able to translate into improved end-to-end QA system performance in
terms of answer accuracy for certain types of questions. This result can change owing
to variations in the effectiveness of Answer Generation algorithms, and in the degree
to which they incorporate features of the passage ranking.

With its novel decomposition of annotation graphs into atomic linguistic and se-
mantic constraints, the learning-to-rank approach to linguistic and semantic passage
retrieval for QA systems proposed in this thesis represents a step towards the rank-
learning community’s broad vision of applicability to “different types of information
needs, more linguistic features, ... [and] different applications” [13].

8.4 Future Research Directions

The structured retrieval results in this thesis assume the existence of an accurate
method of predicting the form of likely answer-bearing text given the question to
estimate an upper bound for effectiveness of the retrieval method. Results indicate
that the method can achieve high Average Precision when an accurate prediction ca-
pability exists, therefore, building such a predictor constitutes a natural avenue for
future research. A possible approach might be to learn a set of structural transforms
between question and predicted answer structure, but to accurately apply the trans-
forms, the model would need to be lexicalized, which would require vast amounts of
training data.

There is good reason to be optimistic about the learning-to-rank approach to
linguistic and semantic passage retrieval for QA proposed in this thesis. Unlike
the structured retrieval, this method is not burdened by the need to predict the
structure of answer-bearing passages. Features of the question alone were shown to
be sufficient to provide an improved passage retrieval baseline. The results in this
thesis were obtained using the Committee Perceptron learning algorithm [16] with
little tuning. The next step for the rank-learning method is to apply techniques from
the machine learning toolbox to optimize performance, including feature selection,
tuning the model’s parameters, trying different learners, or even ensemble learning
techniques such as bagging and boosting.

Another interesting direction for future work would be to combine the two ap-
proaches. One of the issues with the structured retrieval approach is that it is not
clear which of the constraints is most important, so the queries contain all of them.
These queries can result in high-precision, low-recall passage retrieval. As a result
of the training process of the rank-learning approach, the various constraints are
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individually weighted according to the degree to which they contribute to a quality
ranking. Without any guidance as to which constraint components to use, earlier at-
tempts to construct partial structured queries had failed. With these weights, it may
be possible to construct a structured query with the minimum constraints required
to achieve a ranking with a good balance of precision and recall.

8.5 Conclusions

This thesis proposed two linguistic and semantic passage retrieval methods that
address the problem of poor quality passage retrieval in Question Answering systems,
which is recognized among the QA research community as one of the sources for
poor answer quality. Both strategies rely on the principle of integrating lingusitic
and semantic features obtained through Question Analysis into the retrieval process.
The proposed methods were shown to noticeably reduce false positives, which can,
in turn, improve end-to-end system accuracy and system latency by reducing the
burden on post-retrieval Answer Generation processes.

In the future, the increasing quality of NLP tools will allow QA systems to more
reliably extract deeper linguistic and semantic features from questions and answer-
bearing passages. As the system’s understanding more closely approximates that
of a human, the proposed linguistic and semantic methods will only become more
effective. Substantial opportunities for future research exist in the adaptation of
new features and linguistic and semantic representations for use with the proposed
retrieval strategies. In time, the goal of fast and accurate passage retrieval will
be achieved, bringing the field one step closer to realizing the vision of real-time
Question Answering.
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Appendix A

Type System Reference

This appendix collects all of the specific type system definitions referred to through-
out this thesis in one place for convenient reference. Recall from Chapter 3 that a
type system consists of a tuple that defines a set of element type definitions Te and
a set of relation type definition Tr. Each element type definition consists of a name,
and an optional pointer to a parent type within the same type system. Each relation
type definition consists of a name, and domain and range element types drawn from
the same type system. Every instantiated annotation graph is associated with a
specific type system.

Type systems are covered in the order in which they are introduced in the text,
and relationships between type systems are highlighted where appropriate. The type
system definitions in this appendix adhere to the following conventions:

• In every type system, there is an element type corresponding to each keyterm
k in the vocabulary V . This is written as a set of element types k ∈ V , all of
which inherit from the element type keyterm.

• Element types in italics, including keyterm itself, can be considered to be ab-
stract in that they exist solely to make the definition of element types more
concise.

• Concrete, leaf element type other than keyterms are given in monospace type.

• Common set operator notation is used to explain the relationships between type
systems. For example, the proper superset operator can be used to indicate
that one type system extends another: T1 ⊃ T2 means that Te1 ⊃ Te2 and

107



Tr1 ⊃ Tr2. The union operator can be used to indicate a form of multiple
inheritance in which one type system is the combination of two others: T1 =
T2 ∪ T3 means that Te1 = Te2 ∪ Te3 and Tr1 = Tr2 ∪ Tr3.

Figure A.1 gives a graphical overview of the relationships between the type sys-
tems defined in this appendix. Arrows between type systems can be understood as a
superset relation; the type system at the head of the arrow is a superset of the type
system at the tail.

Figure A.1: Depiction of superset relationships between the type systems used in
this thesis.

Table A.1 lists the type systems defined in this appendix and gives the section of
the text where they are first referenced.

Table A.1: Type systems used in this thesis, and the section of the text where they
are first referenced.

Type System Section
Tbow 3.2
Tsurf 3.2
Tsrl 3.3
Tbbn 5.4.1
Tbbn+assert 5.2
Tsurf+bbn 5.6
Tassert 5.7
Tchaos ne 7.2
Tchaos 7.2
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A.1 Bag-of-Words Type System Tbow

The simplest type system used in this thesis, Tbow supports the notion of keyterm
enclosure within a sentence. It is introduced in Section 3.2 to serve as an example
of how the annotation graph can serve as a representation for text.

Tbow = (Te, Tr)

Te =


(annotation, ∅),
(sentence, annotation),
(keyterm, ∅),
(k ∈ V, keyterm)

 ; Tr =
{

(enclosure, annotation, keyterm)
}

Figure A.2: Definition of a simple bag-of-words type system, supporting keyterm
enclosure within a sentence.
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A.2 Surface Pattern Type System Tsurf

Surface patterns is a richer level of representation than is bag-of-words, because it
is able to distinguish between passages containing the same keyterms in a different
order. In English, keyterm ordering is quite predictive of meaning; as an example,
consider the difference between the sentences Alice hit Bob and Bob hit Alice. This
type system is the same as Tbow, except for the addition of the precedence relation,
which is defined to hold over pairs of keyterms. Tsurf , which is also first used in
Section 3.2, is strictly more expressive than Tbow, which can be written as Tsurf ⊃
Tbow.

Tsurf = (Te, Tr)

Te =


(annotation, ∅),
(sentence, annotation),
(keyterm, ∅),
(k ∈ V, keyword)

 ; Tr =

{
(enclosure, annotation, keyterm),
(precedence, keyterm, keyterm)

}

Figure A.3: Definition of a type system that supports bag-of-words constraints as well
as surface patterns, implemented as precedence relations between pairs of keyterms.
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A.3 Semantic Role Labeling Type System Tsrl

In addition to bag-of-words constraints and surface patterns, this type system de-
fines specific element types to model verbs and their semantic arguments. Verbs are
referred to as targets. The element type agent is used to identify the actor or ini-
tiator of the event described by a target verb. The thing that is acted on is referred
to as the patient. Arguments are associated with their respective targets using the
attachment relation. Other element and relation types are the same as those defined
in Tsurf ⊂ Tsrl.

Tsrl = (Te, Tr)

Te =



(annotation, ∅),
(sentence, annotation),
(target, annotation),
(argument, annotation),
(agent, argument),
(patient, argument),
(keyterm, ∅),
(k ∈ V, keyterm)


; Tr =


(enclosure, sentence, target),
(enclosure, sentence, argument),
(enclosure, annotation, keyterm),
(precedence, keyterm, keyterm),
(attachment, target, argument)



Figure A.4: Definition of a type system that supports bag-of-words constraints,
sentence segmentation, surface patterns for keyterms, and a simplified version of
semantic role labeling.
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A.4 BBN Identifinder Type System Tbbn

The BBN Identifinder [4] is a Named Entity Recognition tool described in Sec-
tion 4.2.2. It is used in the English-language experiments in this thesis. First intro-
duced in Section 5.4.1 The type system defined here, Tbbn ⊃ Tbow, adds an element
type called entity and four element types that inherit from it: date, location, org
and person. Entities are annotations, so they can participate in enclosure relations
with keyterms. An additional enclosure relation is introduced to support contain-
ment of entities within the sentence. Note that, for brevity, this type system does
not define all possible element subtypes of entity that can be recognized by the BBN
Identifinder; the figure shows only those entities that occur in the English-language
test collection used in this thesis. See Section 4.1.1 for more information about the
test collection.

Tbbn = (Te, Tr)

Te =



(annotation, ∅),
(sentence, annotation),
(entity, annotation),
(date, entity),
(location, entity),
(org, entity),
(person, entity),
(keyterm, ∅),
(k ∈ V, keyterm)


; Tr =

{
(enclosure, sentence, entity),
(enclosure, annotation, keyterm)

}

Figure A.5: Definition of a type system based Tbow that adds support for the output
of the BBN Identifinder Named Entity Recognition tool.
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A.5 ASSERT Type System Tassert

The ASSERT Shallow Semantic Parser [50], described in Section 4.2.3, identifies
verb predicate-argument structures in text, and labels arguments with semantic roles.
This section defines a type system, first referenced in Section 5.7, called Tassert ⊃ Tbow

that is similar in spirit to Tsrl, but that supports many more types of arguments.
Tassert 6⊃ Tsrl because the element types agent and patient become their ASSERT
equivalents, arg0 and arg1, but the target verb element type and attachment rela-
tion type defined here are same as those defined in Tsrl.

Tassert = (Te, Tr)

Te =



(annotation, ∅),
(sentence, annotation),
(target, annotation),
(argument, annotation),
(arg0, argument),
(arg1, argument),
(arg2, argument),
(arg3, argument),
(arg4, argument),
(argm-adv, argument),
(argm-dir, argument),
(argm-loc, argument),
(argm-mnr, argument),
(argm-tmp, argument)
(keyterm, ∅),
(k ∈ V, keyterm)



; Tr =



(enclosure, sentence, target),
(enclosure, sentence, argument),
(enclosure, argument, target),
(enclosure, argument, argument),
(enclosure, annotation, keyterm),
(attachment, target, argument)



Figure A.6: Definition of a type system based Tbow that adds support for the form
of semantic role labeling produced by the ASSERT Shallow Semantic Parser.
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A.6 BBN and ASSERT Type System Tbbn+assert

The type system defined in this section, Tbbn+assert = Tbbn ∪ Tassert, is used in the
English-language structured retrieval experiments in this thesis and is first referenced
in Section 5.2. Note that, as used in Chapter 5, Tbbn+assert does not define the keyterm
precedence relation type; in Chapter 6, the precedence relation is used.

Tbbn+assert = (Te, Tr)

Te =



(annotation, ∅),
(sentence, annotation),
(target, annotation),
(argument, annotation),
(entity, annotation),
(date, entity),
(location, entity),
(org, entity),
(person, entity),
(arg0, argument),
(arg1, argument),
(arg2, argument),
(arg3, argument),
(arg4, argument),
(argm-adv, argument),
(argm-dir, argument),
(argm-loc, argument),
(argm-mnr, argument),
(argm-tmp, argument)
(keyterm, ∅),
(k ∈ V, keyterm)



; Tr =



(enclosure, sentence, target),
(enclosure, sentence, argument),
(enclosure, sentence, entity),
(enclosure, argument, target),
(enclosure, argument, argument),
(enclosure, argument, entity),
(enclosure, annotation, keyterm),
(attachment, target, argument),
(precedence, keyterm, keyterm)



Figure A.7: Definition of a type system supporting both BBN Identifinder Named
Entity Recognition and ASSERT Semantic Role Labeling: Tbbn+assert = Tbbn∪Tassert.
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A.7 Surface Patterns and BBN Type System Tsurf+bbn

The type system defined in this section, Tsurf+bbn = Tsurf ∪ Tbbn, can be considered
a stronger baseline than Tbbn. It is used in place of Tbbn in a follow-up experiment
described in Section 5.6, which compares the performance of structured queries for-
mulated under Tbbn+assert against this stronger baseline.

Tsurf+bbn = (Te, Tr)

Te =



(annotation, ∅),
(sentence, annotation),
(entity, annotation),
(date, entity),
(location, entity),
(org, entity),
(person, entity),
(keyterm, ∅),
(k ∈ V, keyterm)


; Tr =


(enclosure, sentence, entity),
(enclosure, annotation, keyterm),
(precedence, keyterm, keyterm)



Figure A.8: Definition of a type system based Tsurf with support for the output of
the BBN Identifinder Named Entity Recognition tool.
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A.8 Chaos Named Entities Type System Tchaos ne

First mentioned in Section 7.2, the type system Tchaos ne ⊃ Tbow supports Italian-
language Named Entity Recognition provided by the Chaos parser, described in
Section 4.3.2. In the same way as Tbbn, defined in Section A.4, Tchaos ne does not
encode all of the named entity types recognizable by Chaos, but instead, only those
referenced in the Italian-language test collection discussed in Section 4.1.2. In fact,
the only difference between Tchaos ne and Tbbn is that the entity type that BBN Iden-
tifinder calls org, is called organisation by Chaos.

Tchaos ne = (Te, Tr)

Te =



(annotation, ∅),
(sentence, annotation),
(entity, annotation),
(date, entity),
(location, entity),
(organisation, entity),
(person, entity),
(keyterm, ∅),
(k ∈ V, keyterm)


Tr =

{
(enclosure, sentence, entity),
(enclosure, annotation, keyterm)

}

Figure A.9: Definition of a type system supporting Italian-language Named Entity
Recognition by Chaos.
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A.9 Chaos Type System Tchaos

The type system defined here Tchaos ⊃ Tchaos ne can represent verbs and phrase
labeled with grammatical functions such as subject (V Sog), direct object (V Obj),
indirect object (V NP), oblique/prepositional (V PP), adverbial (V Adv), as well as via
a relative pronoun (V PrRel). These are syntactic designations not to be confused
with semantic role labels. To clarify this distinction, verbs under Tchaos are labeled
verb, as opposed to the target nomenclature that Tsrl and Tassert uses. The label
verb is an abstraction over the actual labels Chaos produces, such as VerFin for finite
verbs and VerGer for gerunds. The type system is first referenced in Section 7.2.

Tchaos = (Te, Tr)

Te =



(annotation, ∅),
(sentence, annotation),
(verb, annotation),
(function, annotation),
(entity, annotation),
(V Sog, function),
(V Obj, function),
(V NP, function),
(V PP, function),
(V Adv, function),
(V PrRel, function),
(date, entity),
(location, entity),
(organisation, entity),
(person, entity),
(keyterm, ∅),
(k ∈ V, keyterm)



Tr =



(enclosure, sentence, entity),
(enclosure, sentence, verb),
(enclosure, sentence, function),
(enclosure, function, entity),
(enclosure, function, verb),
(enclosure, function, function),
(enclosure, annotation, keyterm)
(attachment, verb, function)



Figure A.10: Definition of a type system supporting Named Entity Recognition, as
well as syntactic chunking with labeling of grammatical functions provided by the
Chaos Parser.
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[47] Luiz Augusto Pizzato and Diego Mollá. Indexing on semantic roles for question
answering. In Proceedings of the Second Information Retrieval for Question
Answering (IR4QA) Workshop at COLING 2008, 2008. 2.3

[48] J. Ponte and W. B. Croft. A language modeling approach to information re-
trieval. In Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, 1998. 4.4.1

[49] S. Pradhan, W. Ward, K. Hacioglu, J. Martin, and D. Jurafsky. Shallow se-
mantic parsing using support vector machines. In Proc. of HLT/NAACL 2004,
2004. 2.2

[50] S. Pradhan, W. Ward, K. Hacioglu, J. Martin, and D. Jurafsky. Shallow se-
mantic parsing using support vector machines. In Proceedings of the Human
Language Technology Conference of the North American Chapter of the Associ-
ation for Computational Linguistics (HLT-NAACL 2004), 2004. 4.2.3, A.5

123



[51] J. Prager, E. Brown, A. Coden, and D. Radev. Question-answering by predictive
annotation. In Proceedings of SIGIR’00, 2000. 2.2, 7.7

[52] J. Reynar and A. Ratnaparkhi. A maximum entropy approach to identifying
sentence boundaries. In Proceedings of the Fifth Conference on Applied Natural
Language Processing, 1997. 4.2.1

[53] Nico Schlaefer, Petra Gieselmann, and Guido Sautter. The ephyra qa system at
trec 2006. In Proceedings of the Fifteenth Text REtrieval Conference (TREC),
2006. 7.7

[54] R. Simmons, S. Klein, and K. McConlogue. Indexing and dependency logic for
answering english questions. American Documentation, 15(3):196–204, 1963. 2.1

[55] Mark D. Smucker, James Allan, and Ben Carterette. A comparison of statistical
significance tests for information retrieval evaluation. In Proceedings of the Six-
teenth ACM Conference on Information and Knowledge Management (CIKM),
pages 623–632, 2007. 5.5, 5.5, 5.6, 5.7, 6.6, 7.5, 7.7

[56] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A language model-
based search engine for complex queries. In Proceedings of the International
Conference on Intelligence Analysis, 2005. 4.4.1

[57] Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes, and Gregory Marton.
Quantitative evaluation of passage retrieval algorithms for question answering.
In SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pages 41–47, New
York, NY, USA, 2003. ACM Press. 1.3, 2.2

[58] J. Tiedemann. Integrating linguistic knowledge in passage retrieval for ques-
tion answering. In Proceedings of the 2005 Human Language Technology Con-
ference and Conference on Empirical Methods in Natural Language Processing
(HLT/EMNLP 2005), 2005. 2.2

[59] J. Tiedemann. Comparing document segmentation strategies for passage re-
trieval in question answering. In Proceedings of the Conference on Recent Ad-
vances in Natural Language Processing (RANLP’07), 2007. 1.3

[60] H. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval
model. ACM Transactions on Information Systems, 9(3):187–222, 1991. 4.4.1

124



[61] Suzan Verberne, Hans van Halteren, Stephan Raaijmakers, Daphne Theijssen,
and Lou Boves. Learning to rank qa data. In Proceedings of the Learning to
Rank Workshop at SIGIR 2009, pages 41–48, 2009. 2.3

[62] E. Voorhees, N. Gupta, and B. Johnson-Laird. The collection fusion problem.
In Proceedings of the Third Text REtrieval Conference (TREC-3), 1994. 5.4.2

[63] Ellen M. Voorhees. The trec-8 question answering track report. In Proceedings
of the Eighth Text REtrieval Conference (TREC-8), 1999. 1

[64] E. Wendlandt and J. Driscoll. Incorporating a semantic analysis into a document
retrieval strategy. In Proceedings of the 14th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 270–
279, 1991. 2.1, 2.2

[65] William A. Woods, R. M. Kaplan, and B. L. Nash-Webber. The lunar sciences
natural language information system. Final Report 2378, BBN, Cambridge,
MA, 1972. 2.1

[66] Le Zhao and Jamie Callan. Dirichlet smoothing for correcting bias towards
short fields. In Proceedings of the 17th ACM Conference on Information and
Knowledge Management (CIKM 2008), 2008. 2, 5.8

[67] Le Zhao and Jamie Callan. Effective and efficient structured retrieval. In Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Manage-
ment (CIKM 2009), 2009. (To appear.). 1, 5.8

125


	1 Introduction
	1.1 What is Question Answering?
	1.2 The Role of Retrieval in QA
	1.3 Tailoring IR to the Needs of QA Systems
	1.4 Hypothesis
	1.5 Contributions of this Thesis
	1.6 Outline of this Thesis

	2 Background and Related Work
	2.1 Answering Questions over Structured and Unstructured Data
	2.2 Open-Domain QA Evaluations at TREC and CLEF
	2.3 Recent Work in Linguistic and Semantic IR for QA
	2.4 Evaluation of IR for QA
	2.5 Related Tasks

	3 Representing the Information Need as an Annotation Graph
	3.1 What is an Annotation Graph?
	3.1.1 Elements
	3.1.2 Relations

	3.2 The Annotation Graph as a Model for Text
	3.3 Question Analysis and the Information Need
	3.4 The Passage Retrieval Process

	4 Experimental Methodology
	4.1 Test Collections
	4.1.1 TREC QA 2002 ``MIT 109''
	4.1.2 CLEF-QA 2004/2006

	4.2 English-Language NLP Tools
	4.2.1 MXTerminator
	4.2.2 BBN Identifinder
	4.2.3 ASSERT

	4.3 Italian-Language NLP Tools
	4.3.1 TextPro
	4.3.2 Chaos

	4.4 Information Retrieval Tools
	4.4.1 Indri Search Engine
	4.4.2 Committee Perceptron


	5 Structured Retrieval
	5.1 Structured Retrieval for Question Answering
	5.2 A Type System for English QA
	5.3 Structured Query Operators
	5.4 Experimental Methodology
	5.4.1 Query Formulation
	5.4.2 Experimental Conditions

	5.5 Experimental Results and Discussion
	5.6 Surface Patterns
	5.7 Degraded Annotation Quality
	5.8 Conclusions

	6 Learning-to-Rank
	6.1 Learning-to-Rank for Question Answering
	6.2 Selecting Constraints for a Type System
	6.2.1 Automatic Enumeration of Constraints
	6.2.2 Generalized Constraints
	6.2.3 Constraint Selection

	6.3 Linguistic and Semantic Constraints for Tbbn+assert
	6.4 Constraint Satisfaction and Feature Extraction
	6.5 Experimental Methodology
	6.6 Experimental Results and Discussion
	6.6.1 Full Question Set
	6.6.2 Deep vs. Shallow Question Structure

	6.7 Comparison to the Structured Retrieval Method
	6.8 Comparison to Passage Ranking based on Dependency Path Similarity
	6.9 Guidance for QA System Developers
	6.10 Conclusions

	7 Generalizing to New Problem Instances
	7.1 Phrase Ordering in Italian
	7.2 Type Systems
	7.3 Linguistic Constraints for Tchaos
	7.4 Experimental Methodology
	7.5 Experimental Results and Discussion
	7.6 Varying the Size of the Retrieval Unit
	7.7 Downstream Answer Generation Performance
	7.8 Conclusions

	8 Contributions
	8.1 Modeling Annotated Text as Annotation Graphs
	8.2 Structured Retrieval
	8.3 Learning-to-Rank
	8.4 Future Research Directions
	8.5 Conclusions

	A Type System Reference
	A.1 Bag-of-Words Type System Tbow
	A.2 Surface Pattern Type System Tsurf
	A.3 Semantic Role Labeling Type System Tsrl
	A.4 BBN Identifinder Type System Tbbn
	A.5 ASSERT Type System Tassert
	A.6 BBN and ASSERT Type System Tbbn+assert
	A.7 Surface Patterns and BBN Type System Tsurf+bbn
	A.8 Chaos Named Entities Type System Tchaos_ne
	A.9 Chaos Type System Tchaos

	Bibliography

