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Abstract

This paper summarizes a probabilistic approach for
localizing people through the signal strengths of a
wireless IEEE 802.11b network. Our approach uses
data labeled by ground truth position to learn a prob-
abilistic mapping from locations to wireless signals,
represented by piecewise linear Gaussians. It then
uses sequences of wireless signal data (without po-
sition labels) to acquire motion models of individ-
ual people, which further improves the localization
accuracy. The approach has been implemented and
evaluated in an office environment.

1 Introduction
This paper addresses the problem of localizing people using a
wireless network. Various researchers have recently developed
techniques using the signal strength of IEEE 802.11b access
points for people localization [1; 3; 6; 9; 11]. In doing so, these
techniques require measurement data labeled by the position at
which the data was acquired.

Our approach builds on this idea, but augments it by a
learned probabilistic motion model of people. The data used
for training the motion model is acquired as people walk
through the environment. We employ the EM algorithm to
train the resulting hidden Markov model.

2 Signal Strength Maps From Labeled Data
At the most basic level, our approach acquires a map of the
wireless signal strength at different locations in the environ-
ment. For that, it requires the availability of signal strength
measurements labeled by the true position. Our implementa-
tion represents this map by a piecewise linear Gaussian, that
follows the (mostly) one-dimensional manifold of the center
of each corridor in the building. Figure 1 illustrates the signal
strength measurements for one of the access points in our test
building. The measurement noise is modeled as a Gaussian,
whose covariance is estimated from the data using the maxi-
mum likelihood estimator.

3 Probabilistic Localization
The signal strength map is sufficient to coarsely localize peo-
ple. Following [6], our approach implements a continuous-
state hidden Markov model (HMM), in which the person’s po-
sition is the internal state, and the signal strengths are the mea-
surements. The signal strength map provides the measurement

probabilities of the HMM. The next state transition, or motion
model, may be as simple as a probabilistic model of Brownian
motion; a more sensible choice will be discussed below.

Our approach uses this HMM to track the location of the
person, by calculating an approximate posterior. This is
achieved using the well-known Monte Carlo localization al-
gorithm [10], a variant of particle filters [5].

4 Motion Models From Unlabeled Data
The principal limitation of the approach thus far is its reliance
on labeled data. Such data is difficult to collect, as it requires
an independent means for generating correct position labels
when carrying a wireless receiver through a building. Our ap-
proach specifically addresses the use of unlabeled data. Such
data is acquired as people walk through the building.

This unlabeled data consists of signal measurements with-
out a pose estimate. We use this data to learn a motion model
of a person. This motion model is realized by mixtures of
Gaussians that characterize the relative change of position
within a fixed time interval. Each linear sub-piece of the signal
strength map possesses its own Gaussian mixture; in this way,
the approach can learn location-specific predictions of peo-
ple’s motion. The motivation to use a Gaussian mixture model
arises from the fact that people often engage in one out of a
small number of different motions (e.g., turning left or right
at an intersection; see Figure 2). In our approach, the num-
ber of Gaussians is fixed, as is their variance. Our approach
learns the means of the Gaussians and the mixture weights as
a function of people’s location.

Learning from unlabeled data is achieved using the EM al-
gorithm (see [2; 7; 8] for related work). Beginning with an ini-
tial motion model, position probabilities are computed based
on the signal strength, using the particle filter described above.
These position probabilities are then used to calculate a dis-
tribution over the mixture components of the Gaussian, and
subsequently to calculate the mean and new mixture weights.
This methodology is a straightforward application of the EM
algorithm, assuming that both a person’s pose and the index
of the Gaussian mixture are latent variables [4]. In our imple-
mentation, we bias the initial motion model (before learning)
towards typical motions people might take, such as going for-
ward, turning left or right, and standing in place.

5 Experimental Results
Systematic experimental results were conducted in an office
environment equipped with approximately 50 802.11b wire-
less access points, distributed over an area of size 120 by 22.5



Figure 1: Access point strength as a function of measured location.

Figure 2: An example motion model. Clearly visible are some of the
modes induces by the different actions a person may take.

meters. On average, five access points are within communica-
tion range of each location in the environment.

All labeled data was acquired by using a laser range finder
for localization, similar to work in mobile robotics [10]. A set
of labeled data was collected by simply walking about the en-
vironment, traversing each corridor at least three times in each
direction (along the center, left, and right of the hallway). We
also collected a large set of unlabeled training data by travers-
ing paths characteristic of the movements of an individual (all
paths originated or terminated at a specific office). Finally, we
collected an independent test set with labels.

Figure 3 shows a key result, obtained for 200 particles. This
figure shows the cumulative probability function over the av-
erage localization error from our labeled test set for different
techniques. The top blue curve corresponds to the combined
labeled-unlabeled data approach described above, utilizing the
learned mixture models. The green dashed curve reflects the
performance of the same system with no learning; all mixture
weights are uniform. The red dot-dashed curve represents the
performance of a pure Brownian motion model, rather than a
mixture of Gaussians.

A localization error of 2.25 meters is achieved 70% of the
time when only using the labeled data. This number appears
to be well in tune with results reported in [6] while requiring a
factor of 50 less labeled training data. This error is reduced by
20% as the motion model is trained with the unlabeled data.
This illustrates the relative improvement that can be achieved
by adding unlabeled measurements to the pool of training data.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error in meters

Brownian motion
Uniform motion map (no learning)
Learned motion map (20000 iterations)

Figure 3: Cumulative probability versus error in meters.
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