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ABSTRACT

We are developing interactive simulations of the National
Ingtitute of Standards and Technology (NIST) Reference
Test Facility for Autonomous Mobile Robots (Urban
Search and Rescue). The NIST USAR Test Facility is a
standardized disaster environment consisting of three sce-
narios of progressive difficulty: Yellow, Orange, and Red
arenas. The USAR task focuses on robot behaviors, and
physical interaction with standardized but disorderly rubble
filled environments. The simulation will be used to test
and evaluate designs for teleoperation interfaces and robot
sensing and cooperation that will subsequently be incorpo-
rated into experimental robots. This paper describes our
novel simulation approach using an inexpensive game en-
gine to rapidly construct a visually and dynamically accu-
rate smulation for both individual robots and robot teams.

1 INTRODUCTION

Large-scal e coordination tasksin hazardous, uncertain, and
time stressed environments are becoming increasingly im-
portant for fire, rescue, and military operations. Substitut-
ing robots for people in the most dangerous activities could
greatly reduce the risk to human life and even allow new
and more hazardous tasks to be undertaken. Because such
emergencies are relatively rare and demand full focus on
the immediate problems there is little opportunity to insert
and experiment with robotic assistants (Murphy 2003).

1.1 NIST Arenas

The National Ingtitute of Standards’ (NIST) Reference Test
Facility for Autonomous Mobile Robots for Urban Search
and Rescue (USAR) (Jacoff, et al. 2001) is an attempt to
replicate the challenges of such environmentsin a safe and
reproducible way. The NIST USAR Test Fecility is a
standardized disaster environment consisting of three sce-
narios. Yelow, Orange, and Red physical arenas of pro-
gressing difficulty shown in Figure 1. The USAR task fo-

cuses on robot behaviors, and physical interaction with
standardized but disorderly rubble filled environments.

The Ydlow Arena resembles an office environment with a
flat floor, perpendicular walls, and few obstacles. The
challenges in the Yéellow Arena are predominately percep-
tual. There are mirrors, transparent Lucite obstacles, ve-
netian blinds, and large areas completely darkened by
tarps. Success in the Ydlow Arena depends on reliable
redundant sensing and places little demand on locomation.

The Orange Arena presents challenges of both sorts. It
is constructed in two levels separated by difficult to navi-
gate stairs and a ramp. Some of the floor is littered with
paper while another area is strewn with dowels and small
sections of pipe. Walls of some of the rooms are painted in
optical illusion inducing stripes and patternsto confuseim-
age processing and venetian blinds are again used as ap-
parent obstacles. A negative obstacle (drop off) is intro-
duced on the platform in the form of an open ventilation
shaft. (Negative obstacles present a significant problem in
robotics because they are often not apparent from an image
and are more difficult to sense than ‘positive’ obstacles
that reflect signals.) Successfully navigating the Orange
Arenarequires both reasonably robust sensing and locomo-
tion able to handle stairs and some surface irregularities.

The Red Arena eschews perceptual difficulties and
places maximal demand on locomotion. The design re-
sembles an actual rubble pile with mounds of cement
blocks and dabs, chicken wire, and other debris. The ter-
rain is soirregular that it becomes difficult even for rugge-
dized robots to traverse without becoming entangled with
rubbish, stuck in crevices, or rolling over.

Despite the improvement of documented reference tasks
over idiosyncratic rubble piles, developing and comparing
robots and robot teams remains a difficult task. Very few
researchers have access to the permanent arenas in Mary-
land, California, and Japan and portable arenas are only
available to competitors for short periods during major
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Figure 1: Orange (near) and Yellow Arenas
(NIST photograph)

meetings such as the International Joint Conference on Ar-
tificial Intdligence (IJCAIl). Because researchers much
wait so long between discovering flaws at one conference,
implementing fixes, and testing then at the next confer-
ence, progress is slowed significantly.

1.2 Simulation Desider ata

One solution to the lack of accessible reference environ-
ments will be to develop simulations that allow researchers
to test some aspects of their solutions without requiring
complete implementation or access to a physical arena.
The success of this approach will depend on:
» Expense and availability of smulation hardware
and software to USAR robotics community
e Ease of programming to reflect targeted aspects of
design
» Fiddity of simulation w.r.t. aspects of design to
be tested

We have identified four characteristics of USAR robots,
their tasks, and environments that need to be accommo-
dated within a general purpose simulation:

1. Smulated video feed- for teleoperation and visual search

and identification
To date al robots used in actual USAR operations
have been teleoperated. The most crucial feature of
their human-computer interface is the video feed from
therobot’s camera. Thisimagery must be used both to
navigate the robot through an unknown environment
and to locate and identify victims. Casper (2002) re-
ports that perceptual errors and confusions were by far

the greatest problems in robotic rescue attempts at the
World Trade Center site. Fidelity in ssmulation of a
video feed requires an accurate model of both surfaces
and (visual) textures of the arena and control over
camera FOV (field of view) and attitude (tilt and pan)

2. Smulated robot dynamics- for teleoperation and
autonomous control

Experiments with either manual control or automatic
control algorithms need an accurate model of robot
dynamics. Ideally we would like to be able to tell from
simulation whether or not arobot could climb stairs or
might get stuck in chicken wire. While this level of
realism may be difficult to attain an approximation
which differentiates easy from difficult to traverse ar-
eas and models an increasing error in heading when
navigating rough terrain would capture many crucial
features.

3. Sensor simulation- for autonomous control and fused

displays
Accurate simulations of sensors are needed to simulate
robot behavior. While a human tel eoperator can easily
extract 3D information from a video display, this re-
mains a difficult problem for machine vision. For ex-
pendable robots of the sorts likely to be used in USAR
ranging sensors such as sonar, flir, or ladar are likely
candidates and need to be modeled.

4. Multiple entity simulation- to allow interaction and co-
operation among teams of robots.
Because the size and complexity of USAR tasks re-
quire multiple robots it is essential that simulations do
aswell.

2 USING GAME ENGINESFOR SIMULATION

The cost of developing ever more realistic games has
grown so huge that even game developers can no longer
rely on recouping their entire investment from a single
game. This has led to the emergence of game engines—
modular simulation code—written for a specific game but
general enough to be used for a family of similar games.
This separability of function from content is what now al-
lows game code to be used for more general ssimulation
(Lewis and Jacobson 2002).

The game's engine refers to the collection of modules
of simulation code that do not directly specify the game's
behavior (game logic) or game's environment (level data).
The engine includes modules handling input, output (3D
rendering, 2D drawing, sound), networking and generic
physics and dynamics. The level defines a 3-D environ-
ment in much the same way as VRML virtual reality mark-
up language) and may use many of the same tools. The
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game code handles most of the basic mechanics of simula-
tion including simple physics, display parameters, net-
working, and the base or atomic-level actions for anima-
tions and can be modified using a game-specific scripting
language. Multiplayer games use a client-server architec-
ture in which the server maintains the reference state of the
simulation while clients perform the complex graphics
computations needed to display their individual views.

2.1 TheUnreal Engine

Our simulations of the NIST USAR arenas are based on
the updated version of the Unreal Engine released by Epic
Games with Unreal Tournament 2003. The simulation is
written as a combination of levels, describing the 3-D lay-
out of the arenas and modifications, scripts redefining the
simulation’s behavior. The engine to run the simulation
can be inexpensively obtained by buying the game. The
Unreal Engine is an excellent platform for rapid prototyp-
ing because it provides a sophisticated graphical develop-
ment environment and a variety of specialized tools includ-
ing the Karma physics engine and a skeletal animation
system which simplify the detailed tasks of modeling
physical processes. In this paper we discuss the ways in
which we have used these tools to create a USAR simula-
tion meeting our earlier desiderata.

2.1.1 Unreal Client-Server Architecture

The client-server model used in Unreal isthe “generalized
client-server model”. The server controls the interaction
among clients and the authoritative state of the simulation.
On the client side, the client sends data to the server about
its actions. It then displays to the user changes it has been
given by the server. The client locally maintains a subset of
the simulation state, which can be used to predict subse-
guent states. It executes the same code as the server but ac-
cording to its local state. Thus, the client can approxi-
mately predict the next simulation state. The prediction
technology can increase visible detail while lowering
bandwidth usage, eliminate perceived latency in client
movement and decrease the amount of data that needsto be
exchanged between the clients and server. The client gets
the simulation state from the server through “replication”.
In Unreal, replication deals with how information is sent
from the server to the client and vice versa. Only a subset
of the simulation state that affects a particular client is sent
toit.

2.1.2 GameBots M odification

Unreal Tournament has two types of entities, human play-
ers who run individual copies of the game and connect to
the server (typically running on thefirst player’s machine)

and ‘bots' (short for robots) simulated players running
simple reactive programs. Gamebots is a modification to
the Unreal Tournament game that allows bots to be con-
trolled through a normal TCP/IP socket (Kaminka et al.
2002). Gamebots talks to the game engine directly, and
opens its own networking sockets. A protocol for interact-
ing with Unreal Tournament is defined in (Gamebots
2003). With a simple text-based TCP/IP protocol Game-
bots can be used to create and manipulate botsin an Unreal
Tournament instance. Because the full range of bot com-
mands and Unreal scripts can be accessed over this
connection GameBots provides a more powerful and
flexible entry into the ssimulation than the player interface.
The GameBot interface is ideal for smulating USAR
robots because it can both access bot commands such as
Trace to simulate sensors and exert complicated forms of
control such as adjusting motor torques to control a
simulated robot in the same fashion as an actual one.
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2.1.3 USAR Simulation Architecture

One of the client options in Unreal is the ‘ spectate’ mode.
As a spectator, the client’s viewpoint (cameralocation and
orientation from which the simulation is viewed) can be
attached to any other player including ‘bots’. By combin-
ing a ‘bot’ controlled by GameBots with a spectator client
we can simulate a robot with access to both smulated sen-
sor data through the ‘bot’ and a smulated video feed
through the spectating client. By controlling the smulated
robot indirectly through GameBots rather than as anormal
client we gain the additional advantage of being able to
simulate an autonomous robot (controlled by a program) a
teleoperated robot (controlled by user input) or any level of
automation in between. In the larger project both simu-
lated and actual robots will be controlled through
RETSINA agents (Sycara et al. 1996), modular agentswith
communication, planning, and execution monitoring capa-
bilities.  Under this architecture planning, cooperation,
communication, and control are the same for actual and
simulated robots. Figure 2 illustrates this arrangement.

3 MODELING THE ORANGE ARENA

The Orange Arena is a smulated collapsed building. The
robot in this scene needs to move around in the building,
try to avoid the obstacles and find the victims. Simulation
objects in the arena are divided into three categories. static
geometric objects, dynamic geometric objects and envi-
ronmental objects.
1. Satic geometric objects
These objects are part of the building that is unmov-
able. They affect how the robot moves around in the
building. The material of the object may affect the ro-
bot’ s perception. For example, the glass may affect the
robot’s perception of distance; the texture of a wall
may affect the robot’ s judgment of target.
2. Dynamic geometric objects
Thiskind of objects can change their own states. They
may be bricks, rubbles, pipes, victims etc. They have
more complex interaction relationship with the robot
than the static geometric objects. When they interact
with the robot, they may change their states such as
position, gesture etc.
3. Environmental objects
The environmental objects describe the ambient condi-
tions that make up the environment. They include
lighting, sound, and other intangible features.

The arena model has three layers corresponding to the
types of objects: a geometric layer, a dynamic layer and an
environment layer.

The geometry layer includes all the static geometric ob-
jects. This layer was built from Pro-Engineer solid models
provided by NIST. The model was simplified using
NuGraf and exported in 3D Studio format. The simplified
model was then imported into the Unreal Tournament Edi-
tor to provide static geometry for the simulation.

Digital photographs and other data collected by a pro-
ject team which visited the permanent installation at NIST
were used to embellish the bare geometry of the Orange
Arena to produce a simulation mode difficult to distin-
guish visually from the original. The realistic model was
created by mixing static textures such as wallpaper, wood
surface, or brick surface with dynamic textures capable of
changing according to their lighting, for example, glass,
mirrors and the guardrail.

Figure 3: Simulated Orange Arena without rubble

28 Lol

ORANGE COURSE

24
[START/FINISH]
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The dynamic layer is a layer of dynamic objects that
include Unreal classes written in Unreal Script to simulate
interaction with these objects.. The interactions are mod-
eled using the Karma physics engine which will be intro-
duced in the next section.

Two classes of dynamic objects were developed for
this ssimulation: obstacle and victim. The obstacle class ex-
tends the decoration class of Unreal Tournament. Accord-
ing to the mass of an object that collides with it, the obsta-
cle makes an appropriate response. The victim class is
extended from the Unreal Tournament xIntroPawn class.
With the skeletal modeling system, the victim can moveits
hand or arm to simulate the gesture of asking for help. Fig-
ure 2 isthe picture of the obstacles and victims.

The environmental layer is presently limited to light-
ing effects and specifies light sources to reproduce ambient
lighting levels and contrasts (15:1) resembling those found
in the arena (figure 4). The resulting model faithfully re-
produces both the geometry of the Orange Arena and its
appearance through a simulated robot mounted camera.

Figure5: Victim and fencing from real arena above
with similar scene from simulation below

4 MODELING DYNAMICS

Inthereal world, objectsinteract with each other according
to the laws of physics. Because difficultiesin teleoperation
and locomotion are significant problems in the USAR
domain it is important to model these aspects of the do-
main as accurately as possible. The current release of the
Unreal engine as well as Sony Playstation and the Micro-
soft Xbox all use the Karma physics engineto smulatein-
teractions among solid objects such as crates, tires or
bones, as well as different joints, motors or springs that
make up mechanical objects.

4.1 Karmaengine

The Karma engine is a rigid-body physics engine devel-
oped by MathEngine. It provides physics modeling, rigid-
body dynamics with congtraints and collision detection.
Using a variety of computational strategies to simplify,
speed up, and exclude non interacting objects it achieves
animation level speed without sacrificing physical fidelity.
Each simulated object has its own mass and inertia, obeys
Newton’'s laws of mation, and interacts with other objects
according to mass, inertia, friction, restitution, and gravity.

Every object has kinematic attributes that describe its
position and movement, such as. position of the center of
mass, orientation of the body, acceleration/velocity of the
center of mass and angular accel eration/vel ocity, which de-
scribes the change of orientation. Forces and torques are
the dynamic attributes used in Karma. Congtraints are used
to describe the restriction on the motion of an object. There
are two types of constraints. joints and contacts. Joint at-
taches two objects and restricts one or more of the degrees
of freedom between them. 14 joint types such as Ball And
Socket, Cone Limit, Hinge, and Car Wheel Joint are pro-
vided in Karma. With joints, two or more rigid bodies can
construct a multi-rigid object such as four wheeled vehicles
or human bodies. Contacts limit how an object can move.
For example, when a stone falls onto the floor, it will strike
the floor and rebound back. Karma uses collision detection
to detect whether two bodies are in contact and supports
collisions between geometries of a variety of types.

4.2 Robot Dynamics

Simulating robot dynamicsis greatly simplified by the Un-
real engine s vehicle class which uses the Karma engine's
Car Wheel Constraint joint A vehicle is made of a chas-
sis, one or more whedls and the joints that connect the
whedlsto the chassis. The whed rotates about itsrolling or
hinge axis; the chassis travels along the suspension direc-
tion and the wheels steer about the steering axis. The vehi-
cle is driven by a motor whose output torque is provided
by interpolating along its Torque-SpinSpeed curve.
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Our initial arena robot is a vehicle class object mirroring
the design of actual robots being built by other researchers
on our project. The robot is driven by two wheels each
with its own motor. The steering axis of the vehicle class
has been locked to cause the simulated robot to turn by
driving the two whedls with different spin speeds asin the
actual robots' design.

Within Unreal there are two ways to simulate physical
events. scripted behavior (animation), and bespoke solu-
tions. Scripted behaviors control the movement of an ob-
ject according to a predefined sequence of events. Bespoke
solutions generate movements by applying the appropriate
mathematical equations. These two approaches can be used
together or switched according to context. Most of our ro-
bot simulation depends on bespoke solutions controlled by
the Karma engine. However, in certain situations such as
crossing a floor strewn several inches deep with paper it
would be prohibitively expensive to modd the geometry of
individual sheets so scripted behavior is used instead.

To solve this problem Unreal Scripts were used to ran-
domly change the floor friction to simulate dippage as the
robot crosses the paper.

5 MODELING SENSORS

While smulating a video feed and robot dynamics allows
us to investigate teleoperation and robot design it cannot
model autonomous behavior that requires input from the
environment. There has been much work on modeing
sensorsfor virtual environments and the Unreal engine has
many of the features needed to generate sensor data.
Simulating sensors has little to do with their actual opera-
tion but instead involves degrading the perfect knowledge
available from the simulation to resemble that available
through noisy and imperfect sensors. The challenge is to
the mimic the forms of distortion found for different
classes of sensors, for example, blind spots due to specular
reflections for sonar.

5.1 Proximity Sensors

The term proximity sensor refers to sensors that provide
location data on objects relative to the sensing body. One
of the oldest and most well known proximity sensorsis so-
nar. Sonar operates by transmitting a pulse wave out into
the environment. As the wave collides with objects it is
reflected back to the transmitter. Based on the received
signal the transmitter can estimate the distance to the for-
eign object. Every entity in Unreal has a vector represent-
ing its location asatriple: X-coordinate, Y -coordinate, and
Z-coordinate. The Trace function will trace a line through
the environment and return a reference to the first object

the line collides with be it a wall, another entity, or some
other obstruction. The location data returned can be ma-
nipulated in much the same way sonar data is. Sonar can
be simulated by restricting the distance and accuracy of
Trace data provided to the robot controller.

5.2 Laser based sensors

Laser based sensors use lasersto scan an object and assimi-
late the data gathered into a three dimensional image. An
example of alaser based sensor that is becoming popular is
laser radar (LADAR). LADAR provides detailed ranging
data which is sometimes enhanced to produce near photo-
graphic quality imagery. LADAR is much better adapted
to automatic target recognition (ATR) than intensity based
imaging because the location and shapes of objects are rep-
resented unambiguously. LADAR based ATR can be
simulated using the Trace function in much the same way
as sonar. In this case, however, entity types for classes
having ATR templates can be returned from a confusion
matrix to simulate inaccuraciesin sensing and recognition.
LADAR imagery can be simulated for human viewing by
applying a grayscale filter to visible imagery. While the
resulting images resemble LADAR imagery they do not
preserve its other characteristics.

5.3 Thermal sensors

Thermal sensors measure temperature differences in the
environment and convert that information into a present-
able format. Forward looking infrared (FLIR) is a widdy
used form of thermal sensing that generates images show-
ing thermal differences. However, FLIR is problematic to
simulate asit requiresinput from many variables, not all of
which are present in our simulation. These variables in-
clude solar radiation, weather, internal heat, and the ther-
modynamics of physical materials all of which must be
considered in order to accurately predict temperature. For
robot use, FLIR is less capable than LADAR because it
provides even less unambiguous detail than visual imagery.
For robots using FLIR to locate and move toward sources
of heat which may signal potential victims, this functional-
ity can easily be ssimulated using the Trace function with
suitable degradations for distance and noise. Displaying
FLIR or fused imagery incorporating FLIR is more diffi-
cult and might requireretexturing the entire arenato reflect
the scene as viewed through FLIR.

Sensors have not yet been added to our USAR simu-
lation because of the wide variation in their characteristics.
We expect several sonar units to be installed on the robots
being built for use in a safeguarded (robot self protection)
operation mode and will add them to the simulation when
they are selected.
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6 PRELIMINARY USES

Portions of the USAR simulation have already been used
in a series of teleoperation experiments involving camera
control (Hughes et al. 2003) and gravity referenced attitude
displays (Lewis et a. 2003). The full USAR simulation
was publicly demonstrated at the First Robocup American
Open held at Carnegie Melon University April 30- May 4,
2003. In conjunction with regularly scheduled exhibitions
by USAR teams in the Orange Arena, attendees were al-
lowed to search for victims in the simulation using the
same interface that controlled the “corky” team’s robots.
The simulation is currently being used to evaluate pro-
posed changes to this interface.

7 DISCUSSION

Until recently accurate interactive virtual environment
simulations were expensive, time consuming, and difficult
to construct. The USAR simulation described in the paper,
by contrast was built in less than three months and already
meets the requirements we had laid out for it. While sev-
eral specialized graphics packages, 3D Studio Max and
NuGraf were used to speed development, the lion's share
of work was done using tools provided with a fifty dollar
video game on a conventional personal computer.

The simulation architecture described in section 2.1.3
iswell suited for the USAR robotics community because it
allows researchers to test the aspects of physical or algo-
rithmic design in which they are interested without requir-
ing other supporting implementation. The simulation is
already being used for human factors research in teleopera-
tion and perceptual search whereit is particularly power-
ful due to the excellence and control over graphics pro-
vided by a game engine. As development proceeds we
hope to provide user friendly tools to allow researchers to
assemble new designs and program the needed behaviors
with less effort. For other uses (teleoperation, perceptual
search, autonomous and team behaviors) the simulation is
already extremely easy to set up and use.
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