
A Paradigm for Dynamic Coordination of Multiple Robots

Luiz Chaimowicz1,2, Vijay Kumar1 and Mario F. M. Campos2

1GRASP Laboratory – University of Pennsylvania, Philadelphia, PA, USA, 19104
2DCC – Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, 31270-010

{chaimo, kumar}@grasp.cis.upenn.edu, mario@dcc.ufmg.br

Abstract

In this paper, we present a paradigm for coordinating multiple robots in the execution of cooperative tasks. The

basic idea in the paper is to assign to each robot in the team, a role that determines its actions during the cooperation.

The robots dynamically assume and exchange roles in a synchronized manner in order to perform the task successfully,

adapting to unexpected events in the environment. We model this mechanism using a hybrid systems framework

and apply it in different cooperative tasks: cooperative manipulation and cooperative search and transportation.

Simulations and real experiments demonstrating the effectiveness of the proposed paradigm are presented.

1 Introduction

The coordination of multi-robot teams in dynamic environments is one of the fundamental problems in co-

operative robotics: given a group of robots and a task to be performed in a dynamic environment, how to

coordinate the robots in order to successfully complete the task? Coordination normally implies synchro-

nizing robot actions and exchanging information among the robots. The amount of synchronization and

communication depends heavily on task requirements, characteristics of the robots and the environment.

Thus, different levels of coordination are required in different situations.

Let’s consider a tightly coupled task such as cooperative manipulation, in which a team of robots must

cooperate to transport or reposition a large object, as depicted in Figure 1. Common approaches to this

task are based on force and form closure or object closure [17]. Techniques based on force and form clo-

sure normally require more stringent requirements concerning robot positioning and synchronization when

compared to object closure approaches, as demonstrated in [11] and [15] for example. But, in both cases,

robots must act in a synchronized fashion and this normally requires some knowledge about the states and

actions of the teammates, either through implicit (sensory perception) or explicit communication. On the

other hand, loosely coupled tasks such as foraging do not require much coordination and robots may act

independently from each other.

A multi-robot coordination mechanism must cope with these different types of requirements. It should

provide flexibility and adaptability, allowing multi-robot teams to execute tasks efficiently and robustly.

To accomplish this, we propose a dynamic role assignment mechanism in which robots can dynamically

change their behavior being able to successfully execute different types of cooperative tasks. We define a

role to be a function that one or more robots perform during the execution of a cooperative task. Each role

Figure 1: Example of a tightly coupled task: cooperative manipulation.

can also be viewed as a behavior or a reactive controller. However, more generally, roles may define more

elaborate functions of the robot state and on information about the environment and other robots including

the history of these variables, and may encapsulate several behaviors or controllers. It not only dictates

what controllers are used and how the state of a robot changes, but also how information flows between

robots. By dynamically assuming and exchanging roles in a synchronized manner, the robots are able to

perform cooperative tasks, adapting to unexpected events in the environment and improving their individual

performance in benefit of the team.

In this paper, we use a hybrid systems framework to model cooperative tasks and dynamic role assignment

between multiple robots. Hybrid systems are systems characterized by dynamics that are continuous at some

levels and discrete at others. Hybrid systems explicitly capture the discrete and continuous dynamics in a

unified framework, allowing us to model the interaction of these two types of dynamics. In this paper we

use hybrid automata [9] to represent roles, role assignments, continuous controllers, and discrete variables

related to each robot. The composition of these automata allows us to model the execution of cooperative

tasks.

This paper is organized as follows. In the next section we discuss related work. Section 3 presents

in detail our role assignment mechanism and our modeling using hybrid systems. Section 4 shows our

experimental platform. In Section 5, we show some results of the role assignment mechanism in a cooperative

manipulation task, in which robots coordinate themselves to transport a large object in an environment

containing obstacles. Section 6 presents more results of the role assignment, this time in a cooperative

search and transportation task, in which several simulated robots must find and transport together a large

number of objects scattered in a certain area. Finally, Section 7 presents the conclusion and some directions

for future work.

2

2 Related Work

There are many different approaches to multi-robot coordination, ranging from completely behavior based

approaches [13] to three-layer architectures [18]. Our interest in this paper is on methodologies for role

assignment (and other coordination mechanisms) for tackling the dynamic task allocation problem, i.e.,

how to divide the work among the robots during the task execution, dynamically allocating subtasks and

synchronizing their execution.

Several researchers have studied the task allocation problem, both for multi-agent software systems and

distributed robots. The Alliance architecture [16], a behavior-based software architecture for heterogeneous

multi-robot cooperation, has a fault tolerance mechanism that allows the robots to detect failures in their

teammates and adapt their behaviors to complete the task. Murdoch [7] is a task allocation mechanism based

on a publish/subscribe architecture in which robots broadcast messages with their resources and needs and

dynamically allocate tasks based on this information exchange. A related market based approach, in which

robots try to maximize their individual “profits”, is presented in [6]. Another method is proposed in [10]:

the Method of Dynamic Teams is a programming model which addresses the mapping of tasks into dynamic

teams of agents. These teams can grow, shrink, and change dynamically, being programmed according to the

task being executed. A comparative analysis of some of these and other approaches, including our dynamic

role assignment mechanism, can be found in [8].

The term dynamic role assignment has also been used in [19] and others restricted to the multi-robot

soccer domain. The roles in this domain are attacker, defender, etc., and, by switching roles and formations,

the robots are able to modify their behavior in the field. As explained in this paper, we are interested in a

more general and formal paradigm for role assignment that can be used in other types of tasks.

There are many papers on modeling cooperative tasks and coordination mechanisms that are relevant to

this paper. A formal approach that uses a high-level modeling language for concurrent, multi-agent hybrid

systems is presented in [1]. Another work that tries to formalize the execution of cooperative robotics is

described in [12], in which finite state machines are used to encapsulate behaviors and discrete transitions

are controlled by binary sensing predicates. Finite state machines do not model continuous aspects of the

system but can help in modeling the discrete part of the cooperation. Petri Nets, that are commonly used

for modeling multi-process systems, have also been used to model robotics tasks [14].

There are two main contributions in this paper. First, we propose the use of hybrid systems to provide

a more formal approach to deal with multi-robot coordination. It allows the composition of different behav-

iors and the construction of hierarchies that facilitate the coordination. Another advantage is that hybrid

systems lends itself to formal, control-theoretic descriptions of behaviors, potentially giving us the ability of

performing a more elaborate analysis of coordination mechanisms via stability, convergence and reachability

analysis. Finally, hybrid systems encompasses modern concepts of software engineering such as abstraction

and modularity which simplify the development of programs for the coordination of multi-robot teams. The

second contribution is related to the scope of the cooperative tasks. We are primarily interested in tasks

3

where physical interaction (e.g. manipulation) or maintaining continuous constraints (e.g. formation) is

critical for cooperation. These tasks require a more formal approach to implement the robot controllers and

the switching among them. Most of the approaches for task allocation do not specifically consider these

aspects and, in this paper, we show that our framework provides a good way to address these issues.

3 Dynamic Role Assignment

3.1 Overview

In general, to execute cooperative tasks a team of robots must be coordinated: they have to synchronize their

actions and exchange information. In our approach, each robot performs a role that determines its actions

during the cooperative task. According to its internal state and information about the other robots and the

task received through communication, a robot can dynamically change its role, adapting itself to changes

and unexpected events in the environment. The mechanism for coordination is completely decentralized.

Each robot has its own controllers and takes its own decisions based on local and global information. In

general, each team member has to explicitly communicate with other robots to gather information but they

normally do not need to construct a complete global state of the system for the cooperative execution.

We consider that each team member has a specification of the possible actions that should be performed

during each phase of the cooperation in order to complete the task. These actions must be specified and

synchronized considering several aspects, such as robot properties, task requirements, and characteristics of

the environment. The dynamic role assignment will be responsible for allocating the correct actions to each

robot and synchronizing the cooperative execution.

Before describing in details the role assignment mechanism, it is necessary to define what is a role

in a cooperative task. Webster’s Dictionary defines role as: (a) a function or part performed especially

in a particular operation or process and (b) a socially expected behavior pattern usually determined by an

individual’s status in a particular society. We define a role to be a function that one or more robots perform

during the execution of a cooperative task. Each robot will be performing a role while certain internal and

external conditions are satisfied, and will assume another role otherwise. The role will define the behavior

of the robot in that moment, including the set of controllers used by the robot, the information it sends and

receives, and how it will react in the presence of dynamical and unexpected events.

The role assignment mechanism allows the robots to change their roles dynamically during the execution

of the task, adapting their actions according to the information they have about the system and the task.

Basically, there are three ways of changing roles during the execution of a cooperative task: the simplest

way is the Allocation, in which a robot assumes a new role after finishing the execution of another role.

In the Reallocation process, a robot interrupts the performance of one role and starts or continues the

performance of another role. Finally, robots can Exchange their roles. In this case, two or more robots

synchronize themselves and exchange their roles, each one assuming the role of one of the others. Sections

4

5 and 6 will show the use of all these types of role assignment in different cooperative tasks.

The role assignment mechanism depends directly on the information the robots have about the task, the

environment and about their teammates. Part of this information, mainly the information concerning the

task, is obtained a priori, before the start of the execution. The control software for each robot includes

programs for each role it can assume. However, the definition of the task includes an a priori specification of

the roles it can assume during the execution of the task and the conditions under which the role is reassigned

or exchanged. The rest of the information used by the robots is obtained dynamically during the task

execution and is composed by local and global parts. The local information consists of the robot’s internal

state and its perception about the environment. Global information contains data about the other robots

and their view of the system and is normally received through explicit communication (message passing). A

key issue is to determine the amount of global and local information necessary for the role assignment. This

depends on the type of the task being performed. Tightly coupled tasks require a higher level of coordination

and consequently a greater amount of information exchange. On the other hand, robots executing loosely

coupled tasks normally do not need much global information because they can act more independently from

each other.

Our approach allows for two types of explicit communication: synchronous and asynchronous. In syn-

chronous communication, the messages are sent and received continuously in a constant rate, while in asyn-

chronous communication an interruption is generated when a message is received. Synchronous messages are

important in situations where the robots must receive constant updates about the state of the others. On

the other hand, asynchronous communication is used for coordination when, for example, one robot needs

to inform the others about unexpected events or discrete state changes such as the presence of obstacles,

robot failures, etc.

An important point is to define when a robot should change its role. In the role allocation process, the

robot detects that it has finished its role and assumes another available role. The possible role transitions

are defined a priori and are modeled using a hybrid automaton as will be explained in the next section. In

the reallocation process, the robots should know when to relinquish the current role and assume other. A

possible way to do that is to use a function that measures the utility of performing a given role. A robot

performing a role r has a utility given by µr. When a new role r′ is available, the robot computes the utility of

executing the new role µr′ . If the difference between the utilities is greater than a threshold τ (µr′ −µr > τ)

the robot changes its role. The function µ can be computed based on local and global information and may

be different for distinct robots, tasks and roles. Also, the value τ must be chosen such that the possible

overhead of changing roles will be compensated by a substantial gain on the utility and consequently a better

overall performance. An example of a utility function for a multi-robot task is presented in Section 6.1. It

is also possible for two robots to exchange their roles. In this case, one robot assumes the role of the other.

For this, the robots must agree to exchange roles and should synchronize the process, which is done using

communication.

5

3.2 Modelling

The dynamic role assignment can be described and modelled in a more formal framework. In general, a

cooperative multi-robot system can be described by its state (X), which is a concatenation of the states of

the individual robots:

X = [x1, x2, . . . , xn]T . (1)

Considering a simple control system, the state of each robot varies as a function of its continuous state (xi)

and the input vector (ui). Also, each robot may receive information about the rest of the system (ẑi) that

can be used in the controller. This information consists of estimates of the state of the other robots that are

received mainly through communication. We use the hat (ˆ) notation to emphasize that this information is

an estimate because the communication can suffer delays, failures, etc. Using the role assignment mechanism,

in each moment each robot will be controlled by a different continuous equation according to its current

role in the task. Therefore, we use the subscript q, q = 1, . . . , S, to indicate the current role of the robot.

Following this description, the state equation of each robot i, i = 1, . . . , n, during the execution of the task

can be defined as:

ẋi = fi,q(xi, ui, ẑi). (2)

Since each robot is associated with a control policy,

ui = gi,q(xi, ẑi), (3)

and since ẑi is a function1 of the state X, we can rewrite the state equation:

ẋi = fi,q(X), (4)

or, for the whole team,

Ẋ = FΣ(X), where FΣ = [f1,q1
, . . . , fn,qn

]T , qi ∈ {1, . . . , S}. (5)

The equations shown above model the continuous behavior of each robot and consequently the continuous

behavior of the team during the execution of a cooperative task. These equations, together with the roles, role

assignments, variables, communication and synchronization can be better understood and formally modeled

using a hybrid automaton.

A hybrid automaton is a finite automaton augmented with a finite number of real-valued variables that

change continuously, as specified by differential equations and inequalities, or discretely, according to specific

assignments. It is used to describe hybrid systems, i.e., systems that are composed by discrete and continuous

1Technically, we may allow estimators that depend on the history of evolution of the system state and model them as Markov
processes. In this paper, we limit the scope of the treatment to reactive behaviors and estimators that are memoryless.

6

states. A hybrid automaton H can be defined as: H = {Q, V, E, f, Inv, G, Init, R}. Q = {1, 2, . . . , S} is the

set of discrete states, also called control modes. The set V represents the variables of the system and can be

composed by discrete (Vd) and continuous (Vc) variables: V = Vd ∪Vc. Each variable v ∈ V has a value that

is given by a function ν(v). This is called valuation of the variables. Thus, the state of the system is given

by a pair (q, ν), composed by the discrete state q ∈ Q and the valuation of the variables. The dynamics of

the continuous variables are determined by the flows f , generally described as differential equations inside

each control mode (fq). Discrete transitions between pairs of control modes (p, q) are specified by the control

switches E (also called edges). Invariants (Inv) and guards (G) are predicates related to the control modes

and control switches respectively. The system can stay in a certain control mode while its invariant is

satisfied, and can take a control switch when its guard (jump condition) is satisfied. The initial states of the

system are given by Init, and each control switch can also have a reset statement R associated, to change

the value of some variable during a discrete transition.

In our model, each role is a control mode of the hybrid automaton.2 In fact, we can have hierarchi-

cal/sequential compositions in which a role is composed by other roles (control modes) as shown in Figure

2. Internal states and sensory information within each mode can be specified by continuous and discrete

variables of the automaton. The variables are updated according to the equations inside each control mode

(flows) and reset statements of each discrete transition. The role assignment is represented by discrete tran-

sitions and the invariants and guards define when each robot will assume a new role. Finally, we can model

the cooperative task execution using a parallel composition of several automata as described in [3]. Table 1

summarizes the mapping from cooperative robotics to hybrid systems.

mode 1
mode 2

mode 3

x = f1(x)
.

Inv1 g1(x) < 0

h1(x) = 0

x = f2(x)
.

Inv2 g2(x) < 0

h2(x) = 0

x = f3(x)
.

Inv3 g3(x) < 0

h3(x) = 0

e12(x) < 0

e23(x) < 0

e32(x) < 0

e31(x) < 0

Role for Robot i

Figure 2: Schematic of a role composed by three roles (modes). Each mode is characterized by differential
equations and algebraic constraints. The conditions under which transitions between modes occur and the
conditions under which the robot stays in a particular mode are specified by the guards and invariants
respectively.

2Since we are using control modes to represent roles, in the remainder of this paper we use the terms roles, modes and
control modes with the same meaning.

7

Cooperative robotics Hybrid systems

Roles Control modes
Discrete and continuous information Variables
Controllers Flows
Role assignment Discrete transitions, guards, and invariants
Communication Send and receive actions, self transitions
Cooperative execution Parallel composition of hybrid automata

Table 1: Modeling cooperative robotics using hybrid systems

Communication among robots can also be modeled in this framework. We use a message passing mecha-

nism to exchange information among the agents. To model this message passing in a hybrid automaton, we

consider that there are communication channels between agents and use the basic operations send and receive

to manipulate messages. In the hybrid automaton, messages are sent and received in discrete transitions.

These actions are modeled in the same way as assignments of values to variables (reset statements). It is

very common to use a self transition, i.e., a transition that does not change the discrete state, to receive and

send messages.

We have chosen hybrid systems in order to represent cooperative robotics for two main reasons. The first

one is that hybrid systems provides a formal framework for modeling the cooperative execution of tasks by

multiple robots. To model cooperative robotics, it is necessary to represent both continuous and discrete

dynamics together with synchronization and communication which are some of the main features of hybrid

systems. Hybrid systems also encompasses modern concepts of software engineering such as abstraction

and modularity which simplify the development of programs for the coordination of multi-robot teams. The

second main reason is that the emerging theory for hybrid systems may allow the development of formal proofs

about some aspects of the cooperative execution. For example, through an analysis of the hybrid systems

model of a cooperative task it may be possible to detect deadlock states, test reachability of undesirable

or goal states, and study stability of the cooperative system. Alternatively, as shown in [2], it may be

possible to formally quantify and compare the performance with different algorithms. We do not explore

these capabilities in this paper, but methodologies for obtaining some of these formal results are already

available for some restricted classes of automata. With advances in hybrid systems theory and increase in

availability of computational resources, we can expect that in the future we will have more advanced and

efficient mechanisms for obtaining formal results from models based on general classes of hybrid automata.

4 Experimental Platform

As will be described in the next sections, we applied our role assignment mechanism in different cooperative

tasks, both in simulated and real environments. Figure 1, showed in the introduction, depicts the robots used

in our experiments. The robot on the left is a TRC Labmate platform, equipped with an actively controlled

8

compliant arm [20]. The platform is non-holonomic, and the only on-board sensors are encoders located

at the arm and at the two actuated wheels. All the programming is done using Simulink and Real Time

Workshop. The other robot is a XR4000, developed by Nomadic Technologies. It has a holonomic driving

system offering three degrees of freedom (x, y, θ) and is equipped with several types of sensors, including two

rings of 24 ultrasound and infrared sensors, a stereo vision system and several encoders. It is also equipped

with a fork-lift arm that has one prismatic joint along a vertical axis. Both robots are equipped with

wireless Ethernet boards and exchange messages using a connectionless protocol. This hardware motivates

the paradigms and tasks used in this paper.

We have also developed MuRoS3, a Multi-Robot Simulator that can be used for simulating various types

of tasks, ranging from loosely coupled to tightly coupled cooperative tasks. Implemented using object orien-

tation in the MS Windows environment, MuRoS has a graphical user interface that allows the instantiation

of different types of robots, the creation of obstacles and the observation of the simulation in real time. Also,

result data can be exported to other tools such as Matlab for future analysis. The simulator can be extended

with the development of new inherited classes defining new robots, controllers and sensors. Both implicit and

explicit multi-robot communication can be simulated, allowing the robots to exchange information during

the task execution. Robots also have sensing capabilities and the ability of building maps and plans in real

time. Used alone or in conjunction with implementations in real platforms, the simulator has allowed the

study of different aspects of cooperative robotics in several application domains.

In the next two sections, we will address two different cooperative tasks and illustrate our paradigm and

methods using the experimental testbed and the simulation tool.

5 Cooperative Manipulation

In the cooperative manipulation task, a team of robots cooperate to carry a large object in an environment

containing static and dynamic obstacles. Cooperative manipulation is a classical example of a tightly coupled

task because it cannot be performed by a single robot working alone and requires a tight coordination to

grasp and transport objects without dropping them. It is also a task where physical interaction among

robots is critical, thus the the coordination mechanism should support that. In this section we present

several results of the dynamic role assignment mechanism in a cooperative manipulation task. We start the

section giving a brief description of the cooperative task and the leader-follower approach used. Then, we

present the experiments and results obtained with simulations and real platforms.

5.1 Description

For executing the cooperative manipulation, we used a leader-follower architecture [5]. One robot is identified

as a leader, while the others are designated as followers. The assigned leader has a planner and broadcasts

3http://www.verlab.dcc.ufmg.br/muros

9

its estimated position and velocity to all the followers using asynchronous messages. Each follower has its

own trajectory controller that acts in order to cooperate with the leader. The planner and the trajectory

controllers send set points to the low level controllers that are responsible for the actuators. All robots have

a coordination module that controls the cooperative execution of the task. This module receives information

from the sensors and exchanges synchronous messages with the other robots. It is responsible for the role

assignment and for other decisions that directly affect the planners and trajectory controllers.

In this cooperative manipulation task, the robots can be executing one of the following roles: Dock,

where they must coordinate themselves to approach and pick up the box; and Transport, where they march

in a coordinated fashion. The Transport role is obtained by composing the roles Lead and Follow using

sequential composition (discussed in Figure 2). Thus, a robot transporting a box will be performing either

a leader role or a follower role. The control modes of the robots’ automata are shown in Figure 3. The role

assignment is used here mainly to exchange the leadership responsibilities among the robots: at any moment

during transportation, the robot performing the leading role can become a follower, and any follower can

take over the leadership of the team. There are two principle reasons for possible reassignment or exchange.

First, leader-follower configurations are prone to instabilities when reversal of velocities are involved in

non-holonomic systems. Thus, when reversing, it is better to have the previous trailing robot assume the

leadership. Second, when robots’ sensors are occluded or when one robot is better positioned than the

other, it is conceivable that one robot is better suited to be the leader. The role assignment is also used for

synchronizing actions, in such a way the robots are able to go from the dock role to the transport role in a

coordinated manner.

Dock Transport
Dock
OK

Lead Follow

Pass / Resign

Request / Get

Main Transport

Start

end

Figure 3: Possible roles in the execution of a cooperative manipulation task. Note that the Transport role
is in fact composed by the Lead and Follow roles.

Different controllers and planners are used by each robot depending on its role in the task. They are the

flows in each control mode of the hybrid automaton. To determine these flows and inputs it is necessary to

consider the characteristics of each robot in each mode. In our experiment, when the robots are in the Dock

mode, they use a proportional feedback controller based on the distance to the object to move in order to

grasp the object. In the Transport mode, the robots have different behaviors when leading or following. In

the Lead mode, they are controlled by planners that send set points to the actuators. In the following mode,

the controllers are designed to enable the robots to follow a trajectory that is compatible with the leader’s

10

in order to follow and cooperate with the leader.

Since the Labmate is non-holonomic, the inputs for its controllers are the linear and angular velocities

(u1 = v, u2 = ω). Thus, the state equations become (the subscript i is deleted for convenience):

ẋ = f(x, u) →











ẋ

ẏ

θ̇











=











cos θ 0

sin θ 0

0 1















u1

u2



 . (6)

In the Follow mode, the robot uses information sent by the leader together with feedback information

from the compliant arm to compute its own motion. As pointed out in [5], the compliant arm is used to

compensate for errors in positioning caused by odometry errors and modeling errors. The controller in the

Follow mode allows the follower to emulate the rear wheel of a bicycle in which the leader is the front wheel.

More precisely, if the subscript l refers to information sent by the leader, D is the distance between the

robots and xa is the state of the compliant arm, the control laws are of the form:





u1

u2



 =





v̂l cos(θ̂l − θ) + f(xa)

(v̂l/D) sin(θ̂l − θ) + g(xa)



 . (7)

The XR4000 is holonomic having three degrees of freedom and consequently three inputs (ẋ = u1, ẏ = u2,

θ̇ = u3). When it is performing the Follow role, it tries to maintain a certain distance and orientation relative

to the leader. The leader’s pose (x̂l, ŷl, θ̂l) and information about the leader’s compliant arm (x̂a) are received

through explicit communication. For each degree of freedom, we use a proportional controller that tries to

keep the robot at the desired position and orientation together with a function that is used to compensate

odometry errors based on the position of the leader’s compliant arm.











u1

u2

u3











=











k1((x̂l + D cos θ) − x) + f(x̂a)

k2((ŷl + D sin θ) − y) + g(x̂a)

k3(θ̂l − θ) + h(x̂a)











. (8)

It is important to mention that the equations described above are specific for the case where we have

one Labmate and one XR4000 performing the manipulation. In other cases the equations are different, but

the basic idea is similar. We refer the reader to our previous work [5, 20] which discusses these controllers

in greater detail.

As mentioned, the main purpose of the leadership exchange mechanism used here is to allow the robots to

react and adapt easily to unexpected events such as obstacle detection and sensor failures. It is also important

to assign the leadership to the appropriate robot in such a way that, in each phase of the cooperation, the

robot that is best suited in terms of sensory power and manipulation capabilities will be leading the group.

We implemented two methods for executing the leadership exchange under the role assignment paradigm:

request and resignation. The main difference between them is the robot that starts the role exchange

11

process. In the leadership request, one of the followers sends a message requesting the leadership. This

normally happens when one of the robots is not able to follow the leader’s plan and/or knows a better way

to lead the group in that moment. For example, if one of the followers detects an obstacle, it can request

the leadership, avoid the obstacle, and then return the leadership to the previous leader. In the resignation

process, the leader relinquishes the leadership to another robot. This can happen when the robot senses that

it is unable to continue leading or when it finishes its leading turn in a task that has multiple leaders. The

leadership can be offered to a specific robot or to all robots simultaneously.

Sometimes, the leadership exchange protocol may lead to conflicts that need to be resolved. Two examples

in the small team with one leader are: (a) two or more followers request the leadership at the same time;

and (b) a robot resigns its leadership, but there are no takers. A related problem is the possibility of a

chattering phenomenon where changes in leadership occur too frequently. To avoid these types of conflicts it

is necessary to use a priority based approach. The utility function µ can incorporate these priorities allowing

the robots to decide by themselves how to resolve such conflicts. Another solution is to detect deadlocks

(using timeout mechanisms for example) and, in such situations, relinquish the command to a human operator

whose authority supersedes other robots. We use such approach in the experiments presented in this section.

5.2 Simulations

In the first simulation, four holonomic (XR4000) robots cooperate in order to carry an object from an initial

position to the goal. In this experiment, we show the leadership request mechanism: one of the robots

requests the leadership when it senses that it will not be able to follow the path determined by the leader.

Figure 4 shows snapshots of the simulator during the task execution.

Snapshot (a) in Figure 4 shows the robots performing the Dock role. The robots are represented by circles

and the object to be carried is the square in the middle of them. Each robot has a sensing area represented

by a dashed circle around it. The other rectangles on the environment are obstacles and the goal is marked

with a small x on the right of the figure. When they finish docking, they are allocated to the Transport role

(snapshot (b)). To choose the initial leader, the robots exchange information and the robot that is closer to

the goal (robot on the right, shown in black) is selected. As explained in the previous section, the leader has

a trajectory to the goal and continuously sends its state information to the followers, that move in order to

cooperate with it. But the current leader is unaware of the first obstacle, that is outside its sensing region.

This obstacle is on the path of one of the followers (the robot on the bottom). When this robot senses the

obstacle, it broadcasts a message requesting a role exchange. The leader receives this message and sends

another message passing the leadership to the requester. The new leader is then able to avoid the obstacle

and continue moving towards the goal, as shown in snapshot (c) in Figure 4. The same thing happens with

the next two obstacles: the robot on the top assumes the leadership to avoid the second obstacle (snapshot

(d)) and the robot on the bottom requests it again to avoid the last obstacle (snapshot (e)) before reaching

the goal (snapshot (f)).

12

(a) (b) (c)

(d) (e) (f)

Figure 4: Leadership request with four holonomic robots transporting an object.

The second simulation shows the leadership resignation mechanism: the leader senses that it is not able

to continue leading and resigns the leadership, that is accepted by one of the other robots. Figure 5 shows

four nonholonomic (Labmate) robots manipulating an object using compliant arms. Snapshot (a) shows the

robots already executing the Transport role. The robot on the bottom right is the initial leader and the line

between the leader and the goal is the planned path. Note that the robot has not detected the obstacle yet,

so it plans a straight line to the goal. When the leader detects the obstacle, it replans its path, and senses

that it will not be able to continue leading due to its controller constraints (limitations on turning radius).

So, it sends a message resigning the leadership. In this message, it includes other information, such as its

planned path, the position of the obstacle, etc. This information is used by the other robots to choose the

new leader. The robot on the bottom left is chosen and perform a backup maneuver in order to help the

previous leader (snapshot (b)). After this maneuver, the robot returns the leadership to the previous leader

(snapshot (c)) that replans its path and resumes the transportation avoiding the obstacle (snapshot (d)).

5.3 Experiments with Real Platforms

The robots shown in Figure 1 were used to implement the cooperative manipulation. Basically, they start

the task performing the Dock role. The XR4000 uses its infrared sensor to approach the box and deploy its

arm at the correct position. The Labmate uses feedback information from the compliant arm to move and

grasp the box. In this experiment, docking is in one dimension (the robots and the box are aligned), and

the Labmate waits until the XR4000 finishes before starting its own docking.

After finishing the docking phase, the robots are allocated to the Transport role. The first experiment

13

(a) (b)

(c) (d)

Figure 5: Leadership resignation with four non-holonomic robots transporting an object.

demonstrates the leadership resignation process. The robots’ trajectories for this experiment are shown in

Figure 6(a). The XR4000 begins leading (0X), followed by the Labmate (0L), until it detects an obstacle

using its infrared sensor (1X). Then it sends a control message resigning the leadership to the Labmate.

The new leader moves backwards in a curvilinear trajectory (from 1L to 2L), returning the leadership to the

XR4000 (2X) when it finishes its plan. This experiment shows that, instead of trying to avoid the obstacle

locally, which is difficult to accomplish while carrying a box in cooperation, the robots can exchange roles:

the XR4000 offers the leadership to the Labmate, which takes it and modifies the trajectory. In this case,

the modification is a simple open loop reversal with a turn. Note that during the execution the modes and

controllers are changed dynamically due to the role exchange.

The second experiment (Figure 6(b)), shows the leadership request process. The Labmate begins leading

by going backwards in a curvilinear trajectory (from 0L to 1L). The XR4000 begins following (0X) using

its controller and requests the leadership when its infrared sensor detects an obstacle in its way (1X). After

moving to avoid the obstacle, the XR4000 (2X) returns the leadership to the Labmate (2L) that leads until

the end of the task. The leadership exchange here is very important because the leader is not aware of the

obstacle in the path of the follower. The XR4000 therefore requests the leadership, avoids the obstacle, and

returns the leadership to the Labmate.

14

−500 0 500 1000 1500 2000 2500 3000 3500
−1000

−500

0

500

1000

1500

2000

2500

x (mm)

y
(m

m
)

XR4000 (X)
Labmate (L)

0X 0L 1X 1L

2X

2L

(a)

−3000 −2500 −2000 −1500 −1000 −500 0 500 1000 1500
−1400

−1200

−1000

−800

−600

−400

−200

0

200

400

600

x (mm)

y
(m

m
)

XR4000 (X)
Labmate (L)

0X 0L

1X

1L

2X

2L

(b)

Figure 6: Experiments: (a) the XR4000 resigns the leadership (1X) and receives it back (2X); (b) the XR4000
requests the leadership (1X) and returns it (2X) to the Labmate.

6 Cooperative Search and Transportation

In this section, our role assignment mechanism is demonstrated in a Cooperative Search and Transportation

task, in which a group of robots must find and cooperatively transport several objects scattered in the

environment [4]. It is a combination of a loosely coupled task, where the robots search the area looking

independently for objects, and a tightly coupled task, in which the robots must manipulate objects in

cooperation. We use the cooperative search and transportation mainly to demonstrate the role reallocation

mechanism, showing that its use can improve the task performance and avoid deadlocks.

6.1 Description

The cooperative search and transportation task can be stated as follows: a group of n robots must find m

objects that are scattered in an area and transport them to a goal location. Each object j requires at least k

robots (1 < k ≤ n) to be transported and has a importance value v. Thus, each object can be described by a

pair {k, v}, representing respectively the amount of work (in terms of number of robots) and the reward for

that object. Differently from a common foraging task, in which the robots can act independently from each

other and communication is not strictly necessary, this task requires the robots to coordinate themselves in

order to transport the objects in cooperation.

The coordination of the robots is done using the role assignment mechanism. Basically, there are five

different roles in the cooperative search and transportation. As shown in Figure 7, in each of these roles, the

robots compute a utility µ that is used for reallocating roles. Initially, all robots start in the Explore mode,

in which they randomly move in the environment searching for objects to be transported. When a robot

15

detects an object inside its sensing area, it finishes its exploration role and starts the Attach role, in which

it approaches the object preparing to transport it. But, if a robot is the first one to attach to an specific

object, it assumes the Attach Lead role instead. The attach leader is responsible for broadcasting messages

informing the other robots about the new role available, and the number of volunteers that are necessary

to transport that object to the goal. All robots that receive this message compare the new role utility µr′

with their current utility µr and send a message back to the attach leader if they want to volunteer for

the new role. This works like a bidding process4, in which the volunteers with the higher utility values are

recruited by the attach leader. These robots reallocate to the Approach role and start moving towards the

object. When an approaching robot detects an object inside its sensor range, it assumes the Attach role

and when the number of robots necessary to carry the object is sufficient, they assume the Transport role

and cooperatively move the object to the goal. It is important to mention that, when a robot assumes the

Approach or Attach roles, it makes a commitment to the attach leader. The attach leader keeps broadcasting

messages in a fixed rate offering the role until the number of committed robots is sufficient to transport the

object. We use cj to represent the number of committed robots for a certain object j. If a committed robot

reallocates to another role, it must send a message to the leader resigning the previous role. We are not

considering the possibility of robot and communication failures in these experiments.

In each one of these roles, robots may be controlled by different continuous equations. For example, in

the Explore mode they move randomly while in the Approach and Attach modes they use a potential field

like controller in order to approach the objects. Figure 7 shows the hybrid automaton for the cooperative

search and transportation. For clarity, only the roles (top level modes) and transitions between roles (role

assignments) are presented. The solid arrows represent the role allocation and the dashed arrows represent

the reallocation, in which the robots interrupt the performance of one role to assume another.

As mentioned, a robot performing a role r reallocates to another role r′ when the difference µr′ − µr

is greater than a threshold τ . There are four role reallocations in this diagram: the first one is when an

explorer volunteers and is recruited to approach a certain object, as explained before. The same thing can

happen when the robot is already in the Attach mode and an Approach role with better utility is offered.

The other two reallocations happen from/to the Attach Lead mode: an attach leader can reallocate itself to

an Approach role with higher utility if its object has no other attachers. In this case, the robot stores its last

position in a local memory in order to return to this object after finishing the new role. Also, a robot that

is approaching can become a attach leader if it finds a new object and the utility of the new role is higher

than its current utility. Another kind of reallocation that is possible is when a robot approaching an object

j1 reallocates to approach a different object j2. In this case, the robot will be performing the same role but

with a different parameter.

The choice of a suitable function to measure the role utilities is a fundamental aspect of this task. The

4The bidding process is relatively simple. There is a single auctioneer for each object (the Attach Leader) and all robots are
considered, but only robots for which the gain in utility is greater that the threshold τ bid. The process is repeated until the
number of robots is sufficient to transport the object.

16

Figure 7: Roles and role assignments for the cooperative search and transportation task.

execution of the role assignment mechanism and consequently the performance of the task will vary according

to the function chosen to measure the role utilities. Depending on the objective of the cooperative search and

transportation, for example minimize execution time or maximize the value in a shorter time, different utility

functions can be implemented. In the experiments presented here we use a simple heuristic function in order

to test the execution of the role assignment mechanism. We do not intend to compare different functions

or search for optimal results. Instead, we just want to provide a simple testbed for our role assignment

mechanism. The selection of optimal utility functions for the role assignment (and for task allocation in

general) is a difficult problem in itself and is beyond the scope of this paper.

The utility function µ used in the experiments presented here is defined as follows: robots performing

the Explore role have a very low utility (0) while robots transporting any object have the highest utility (1).

The other roles (Attach, Attach Lead and Approach) depend on the target object j. We have defined an

utility function that balances the value of the object (vj), the number of robots that are still necessary to

start its transportation (kj − cj) and a function of the distance from the robot to the object (f(dij)). This

value is multiplied by a constant α so the maximum value of this function is 1. Thus, the utility for a robot

i to perform a role r with a target object j is given by:

µ =































0, r = Explore,

1, r = Transport,

α(
v2

j

kj−cj+1 + 1
f(dij)

), otherwise.

(9)

Using this heuristic function, each robot tries to maximize the value recovered in a short time but also gives

priority to objects that need fewer robots to be transported and are near the robot’s current position. Note

that robots in the Transport mode will never be reallocated while robots performing the Explore role have

17

a great probability of being reallocated, depending on the threshold. For example, for a threshold τ = 0 the

robots in the Explore mode will always be reallocated.

6.2 Simulations

The dynamic role assignment in the cooperative search and transportation task was tested using MuRoS.

The experiments were performed using 20 holonomic robots and 30 objects randomly distributed in the

environment. The dimensions of the search area and the goal region are 30 by 30 meters and 4 by 4 meters

respectively. Comparatively, the diameter of each robot is 30 centimeters. The value of each object (v)

and the number of robots necessary to transport it (k) were generated randomly, with v = {1, . . . , 5} and

k = {2, . . . , 5}. The utility function described above was used varying the threshold τ from 0 to 0.8. For

each value of τ , 100 runs were performed and the mean values were computed.

Firstly, the time to complete the task was measured. The results are presented in the left graph of Figure

8. The graph shows that the completion time starts to increase for values of τ greater than 0.2. This result

was expected because the number of role reallocations decreases as τ increases. With few reallocations, the

robots act more independently as they do not accept new role offers. In this situation, the work force is

divided and the level of cooperation decreases since each robot only attaches to the objects detected by

itself, not accepting offers from its teammates. Consequently, the time to gather the k robots necessary to

transport each object will increase, also increasing the overall time to complete the task.

The extreme case of this work division causes deadlocks. A deadlock occurs when all robots are performing

the Attach role to specific objects, but the number of robots attached to each object is not sufficient to

transport it. In this case, the robots keep waiting indefinitely and do not complete the task. The graph on

the right of Figure 8 shows the number of deadlocks for each value of τ in 100 experimental runs. More than

50% of the runs with large values of τ results in deadlocks.

60

70

80

90

100

110

120

130

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Threshold

E
xe

cu
tio

n
T

im
e

(s
)

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Threshold

D

ea
dl

oc
ks

Figure 8: Completion time and number of deadlocks varying the threshold τ .

In this task, deadlocks are detected by a timeout period, i.e., if the robots do not complete the task

within a certain amount of time then a deadlock has occurred. The timeout mechanism works fine in this

situation, where the only cause for not completing the task is the presence of a deadlock. But more elaborated

mechanisms to detect deadlocks can be used in general situations. An example is the use of a supervisory

18

process that monitors the global state of the system and detects if it is changing as time flows. In the

cooperative search and transportation, the global state can be a set composed by the current role plus the

position of each robot. If there are no role assignments and the robots do not move within a fixed period of

time, then the global state is not modified and the system is deadlocked.

Observing the results presented in this section, it can be seen that the dynamic role assignment allows

the successful execution of the cooperative search and transportation task. In this specific case, the use of

the role assignment with a suitable utility function and adequate threshold values brought good performance

in terms of time and other metrics while avoiding deadlocks that would prevent the task completion.

7 Conclusion

This paper presented a role assignment paradigm for coordinating multiple robots in the execution of coop-

erative tasks. Each robot performs a set of roles that define its actions during the cooperation. Dynamically

assuming and changing roles, the multi-robot team is able to complete cooperative tasks successfully, adapt-

ing to unexpected situations and improving their performance. The formulation is based on a hybrid systems

framework, with control modes used to model the different roles and transitions between modes allowing for

dynamic role assignment. Different types of cooperative tasks were performed both in real and simulated

environments to show the applicability of the proposed mechanism with empirical results demonstrating the

effectiveness of the paradigm.

As mentioned, we are primarily interested in tasks where physical interaction or maintaining continuous

constraints is critical for cooperation. Such tasks necessitate a more formal approach for modeling, developing

and implementing robot controllers and behaviors. We believe that the dynamic role assignment mechanism

presented here specially address these issues. The hybrid systems model gives us a more formal approach to

deal with these requirements allowing the implementation of a more stringent coordination mechanism.

The work also raises many interesting questions. A key issue is the choice of utility functions for the role

reallocation. While we selected meaningful functions in our experiments, the choice of the functions was

largely driven by heuristics. While one could apply formal optimization techniques to derive optimal roles

for simple tasks, it is difficult to see how such an approach might work for cooperative search, manipulation

and transportation. Empirical approaches to deriving good utility functions may well be the best approach.

Another avenue for further investigation is to see if the hybrid systems modeling paradigm might lend itself

to validation and verification. Our preliminary work [2] suggests that with appropriate simplifications on the

environment (cell decomposition), verification techniques can be used to compare different strategies with

some simplifications on the dynamics. It is difficult to predict if this work can be extended to complex tasks

such as the ones considered in this paper, primarily because nonlinearities such as the ones introduced by

angular dependency are not handled well by current verification tools. However, the use of some probabilistic

approaches may lead to satisfactory results.

19

References

[1] R. Alur, A. Das, J. Esposito, R. Fierro, G. Grudic, Y. Hur, V. Kumar, I. Lee, J. Ostrowski, G. Pappas,
B. Southall, J. Spletzer, and C. Taylor. A framework and architecture for multirobot coordination. In
D. Rus and S. Singh, editors, Experimental Robotics VII, LNCIS 271. Springer Verlag, 2001.

[2] R. Alur, J. Esposito, M.-J. Kim, V. Kumar, and I. Lee. Formal modeling and analysis of hybrid systems:
A case study in multirobot coordination. In Proc. of the World Congress on Formal Methods, 1999.

[3] L. Chaimowicz. Dynamic Coordination of Cooperative Robots: A Hybrid Systems Approach.
PhD thesis, Universidade Federal de Minas Gerais - Brazil, June 2002. Available at:
http://www.cis.upenn.edu/˜chaimo/thesis.pdf.

[4] L. Chaimowicz, M. Campos, and V. Kumar. Dynamic role assignment for cooperative robots. In Proc.
of the IEEE Int. Conf. on Robotics and Automation, pages 292–298, 2002.

[5] L. Chaimowicz, T. Sugar, V. Kumar, and M. Campos. An architecture for tightly coupled multi-robot
cooperation. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 2292–2297, 2001.

[6] M. B. Dias and A. Stentz. A market approach to multirobot coordination. Technical Report CMU-RI
-TR-01-26, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August 2001.

[7] B. Gerkey and M. Mataric. Sold! auction methods for multirobot coordination. IEEE Transactions on
Robotics and Automation, 18(5):758–768, October 2002.

[8] B. Gerkey and M. Mataric. A framework for studying multi-robot task allocation. In Proc. of the Int.
Workshop on Multi-Robot Systems, pages 15–26, 2003.

[9] T. Henzinger. The theory of hybrid automata. In Proc. of the 11th Annual Symposium on Logic in
Computer Science, pages 278–292, 1996.

[10] J. Jennings and C. Kirkwood-Watts. Distributed mobile robots by the method of dynamic teams. In
Distributed Autonomous Robotic Systems 3. Springer Verlag, 1998.

[11] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal, and A. Baader. Force strategies for
cooperative tasks in multiple mobile manipulation systems. In Proc. of the 7th Int. Symp. on Robotics
Research, pages 333–342, 1995.

[12] R. C. Kube and H. Zhang. Task modeling in collective robotics. Autonomous Robots, 4:53–72, 1997.

[13] M. Mataric. Interaction and Intelligent Behavior. PhD thesis, MIT, 1994.

[14] D. Milutinovic and P. Lima. Petri net models of robotic tasks. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, pages 4059–4064, 2002.

[15] A. Ollennu, H. Nayar, H. Aghazarian, A. Ganino, P. Pirjanian, B. Kennedy, T. Huntsberger, and
P. Schenker. Mars rover pair cooperatively transporting a long payload. In Proc. of the IEEE Int. Conf.
on Robotics and Automation, pages 3136–3141, 2002.

[16] L. E. Parker. Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Transactions
on Robotics and Automation, 14(2):220–240, April 1998.

[17] G. A. S. Pereira, V. Kumar, and M. F. M. Campos. Decentralized algorithms for multi-robot manipu-
lation via caging. International Journal of Robotics Research (to appear), 2003.

[18] R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D. Hershberger, and R. Zlot A. Stentz. A layered
architecture for coordination of mobile robots. In A. Schultz and L. Parker, editors, Multi-Robot Systems:
From Swarms to Intelligent Automata. Kluwer, 2002.

[19] P. Stone and M. Veloso. Task decomposition, dynamic role assignment, and low-bandwidth communi-
cation for real-time strategic teamwork. Artificial Intelligence, 110(2):241–273, 1999.

[20] T. Sugar and V. Kumar. Control of cooperating mobile manipulators. IEEE Transactions on Robotics
and Automation, 18(1):94–103, 2002.

20

