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Abstract coordination configuration, e.g., the number of roles that
each team member can handle, environmental conditions,
Coordination of large numbers of agents for perform- e.g., the observability of the environment, and performance,
ing complex tasks in complex domains is a rapidly pro- e.g., the number of messages that will be sent during coordi-
gressing area of research. Because of the high complexitynation, is highly non-linear and extremely complex. Hence,
of the problem, approximate and heuristic algorithms are getting best performance from a set of coordination algo-
typically used for key coordination tasks. Such algorithms rithms often involves a complex parametric tuning process,
usually require tuning of algorithm parameters to get the that must be performed on a per problem basis.

best performance in particular circumstances. This tuning  previous approaches to configuring a team for a par-
of parameters is something of a black art. In this paper, we icyjar domain typically either required hand-tuning [3] or
use a dynamic neural network to model the way a coordi- |garning [1] in the domain. Hand-tuning of parameters is a
nation algorithm will work under particular circumstances.  jme consuming process that typically requires extensive ex-
The neural network model can be used to rapidly determine yarience with the algorithms for good performance. Learn-
an appropriate configuration of the algorithm for a partic-  jng requires that the team perform many trials in the specific
ular domain. A user can also specify required tradeoffs in cjrcymstances it is to be used. If the environment can vary
algorithm performance and use the neural network to find gramatically, e.g., the specific characteristics of a disaster
the best configuration for those tradeoffs. Reconfiguration response scenario can vary greatly from disaster to disas-

can even be performed online to improve the performancee, pyt the same team should respond to each one, learning

of an executing team as situation changes. We present reynay pe infeasible.[11] Thus, previous work does not pro-
sults showing the approach facilitating users to configure \;iqe a good solution to the problem of rapid team configu-
and control a large team executing sophisticated teamwork 5tion.

algorithms.
g We have developed an approach to configuring coordina-

tion algorithms that incorporates three key ideas. The first

idea is to create deam performance mod#hat captures
1. Introduction the relation between the environment and team configu-

ration parameters and measures of performance in a way

Sophisticated, complex coordination allows large groups that allows rapid exploration by users. We have developed

of agents to perform complex tasks in domains such asan abstract simulation of the coordination algorithms and
space [6], the military [4] and disaster response [5]. Due a highly configurable environment to test these ideas. Be-
to the high computational complexity of coordination, criti- cause the simulation is fast it can be used to create large
cal coordination algorithms typically use heuristics which amounts of data containing relationships between parame-
are parameterized and need to be tuned for specific doters. Due to the non-determinism of environments and co-
mains for best performance. For example, different coor- ordination algorithms and the sensitivity of performance
dination configurations might be required for different rates to circumstances these relationships are highly non-linear.
of change in the world, individual failure rates or communi- They are also highly variable even for the same configura-
cation bandwidth availability. A coordination configuration tion. To create a concise model of the data we use genetic
specifies parameter values for a team’s coordination algo-algorithms to learn a dynamic neural network.[8] A neural
rithms. When several coordination algorithms are used to-network with two hidden layers is sufficiently powerful [7]
gether, e.g., algorithms for task allocation, communication to capture the complexity of these data and thus provides
and planning, the performance of one algorithm will likely a rapid mapping from environment and configuration para-
affect the performance of the other algorithms, thus tuning meters to performance parameters. The aim of this work is
parameters of the individual algorithms must be performed to remove some of the art from configuring a team for a par-
together. As we show in Section 2, the relationship betweenticular environment. The team performance model captures



the complex relationship between the environment, config-

: Configuration Parameters Range Type
uration and performance of the team.
. o . Number of Team Members 10...1000 S
The second idea in this work is to use the team perfor-
: : ; Number of Plan Templates 1..20 S
mance model to find the best configuration of the team to
o . Roles Per Team Member 1..5 S
meet specific performance constraints, e.g., the tradeoff be- .
S . : Total Number of Preconditions 20...120 S
tween communication bandwidth and good allocation of re- s
. . ., Preconditions Per Plan 1..10 S
sources. Using the team performance model in "reverse
) . Roles Per Plan 1..10 S
allows users to specify performance tradeoffs and rapidly .
. . ; : Plan Template Policy 00..10 S
receive a configuration that best meets those constraints. -
. ' Number of Capability Types 2.20 S
Since not all parameters are configurable, e.g., the observ-
- : : : Percent Capable 00..10 S
ability of the domain cannot be changed during execution, "
. . New Precondition Rate 0.0..10 S
we cannot simply use back propagation of the neural net- o )
. . Precondition Detection Rate 0.0..10 S
work to find input parameters that meet our output require- . .
Associate Network Density 1..16 S
ments. Instead we perform a search over the changeable
. . . . . Role Threshold 0.0..10 C
configuration parameters to find a configuration that best o
. Instantiation Rule 00..10 C
meets the required performance tradeoffs. .
The third idea is to allow the team to be reconfigured on Instantiate Rate 0.0..1.0 - C
9 Information Token (Time To Live) 1..10 C

line, using the team performance model to determine appro
priate parameters for the prevailing conditions. The recon-
figuration can either be prompted manually by a human or
initiated autonomously by an agent monitoring team perfor-
mance. When users have changing preferences or know of
changing constraints, they can simply specify these require-
ments and allow the team performance model to find al-
gorithm parameters that will best meet those requirements:
This approach provides a powerful and effective way for

Table 1. List of configuration parameters with
their possible ranges and types. (S=system,
C=configurable)

Performance Parameters

manipulation of team performance during execution time Percentage Possible
and provides an additional mechanism for the supervisory Reward
control of executing teams. Messages Per Agent

Conflicts Detected

Plans Instantiated

Conflict Resolution Messages
Role Allocation Messages

We have implemented and tested this approach with an
abstract teamwork simulation, TeamSim as well as with the
fully distributed Machinetta proxy [13][12] architecture in
a domain. The abstract teamwork simulation was also used
to prOVide a Iarge amount of data from which the dynamiC Table 2. List of measures of performance_
neural network model was created. The model was shown
to accurately capture the behavior of the coordination al-
gorithms across a wide range of configurations. The modelbigger sets. We define the target functiah: M (s,c) — P
was then used to configure teams and change configurationto indicate that this function accepts as a vector of input pa-

online with results as predicted by the model. rameters from the set of environmental parameters )
and the set of configurable parametatrsq C) and pro-
2 Problem Model duces as a vector of output parameters from the set of sys-

tem performanceg®. In other words )/ is the team perfor-

' . _ mance model we are trying to find. Finally, with user pref-
We definesand C’, which are a set of system parame erences functionf(P) — Value, the aim of this work is

ters and a set of configurable parameters respectively. The .

system parameters ar?a fixed k?y the environmpent, bu¥ maﬁO findarg maxcec f(M(s,c)).
change during the mission, e.g., communication networks

might become congested. The configurable parameters ar@.1. System Complexity

allowed to change. Next, let us defiie which is a set of

system performances measures. The Sets' and P will The major difficulty of this work is the complexity of
depend on mission domain and coordination algorithms. Ta-interactions in multi-agent system. From Table 1, with the
ble 1 and Table 2 list an example of system and configurabletotal of 16 input parameters and their possible ranges, the
parameters and measures of performance which are used inombination of these parameters, which imply coordina-
particular domain. Other domains may be different or have tion configurations for this problem, are very huge: more



NO.TEAM _MEMBERS ~ 900 3. Algorithm and Approach

PRECONDITIONSPERPLAN <=1

NEW_PRECONDITIONRATE > 0.208264 We hgye developeq aln gpprcr)]achlto'facililtgte users in un-
PRECONDITIONDETECT RATE <= 0.0541394 derstanding and manipulating the relationship between con-
figurations of coordination algorithms and measures of their

ASSOCIATESNW_DENSITY > 5 .
ASSOCIATESNW_DENSITY <= 8 performance. The approach has several steps. It starts with

-~ class V.Good [87.1%)] the coIIectiqn of Igrge data sets gener_ated by our abs_tract

teamwork simulation. Then, an evolutionary computation
approach is used to learn team performance models. An in-
put/output model of artificial neural networks with dynamic
features is used to represent the team performance model.
Finally, mission experiments with our abstract teamwork
simulation and a network of Macinetta proxies were used to
investigate the performance of the team performance model.
Figure 1 shows the outline of our approach.

Table 3. An example of rule generated by De-
cision Tree induction (C4.5).

S
TeamSim
Learning
Process

3.1. Data sets

Team
Of Agents

TeamSims an abstract teamwork simulation developed
to investigate coordination algorithms in cooperative multi-
agent teams within simulated environments. Running the
sec simulation provided a huge training data set. This data set
pertee was used to learn models of team performance. To create

a precise team performance model, very large amounts of
Figure 1. Process diagram. data were needed to capture the complex relationships be-
tween parameters. As we show in section 2, the complete
configurable space is very large. Providing full coverage
of all possible configurations was impossible. To overcome

than102° cases. In addition, not only does each configura- this difficulty we collected simulation data using two meth-
tion have high uncertainty in performance caused by non-0ds: non-random sampling and random sampling. The non-
determinism in algorithms, but different configurations also fandom sampling method gathered data by specifying cases

have different levels of uncertainties in output performances ¢hosen to roughly to cover the possible ranges of input pa-
caused by interactions with the domain. rameters. Although this data set roughly represents the en-

tire configuration space it has sparse coverage. The ran-
Previously we have investigated modeling the system by yom sampling method was designed to collect data from
using decision tree induction (C4.5)[10]. With 14 input at- throughout the space but without guarantees of coverage. It
tributes, only 4 distintive output classes and 30000 casesiggk several weeks to collect the approximately five hun-
(much smaller than the actual possible problem space Wegred thousand data entries used in this study. Each data en-

use in this work), we ended up having 573 classification IF- try consists of all environmental and configurable parame-

74.2% correct classification. However, these rules were far

from being able to solve our configuration problem, because

the C4.5 decision tree only classified into small classes3.2. Neural Network Models

making optimization difficult. An example of one of the

generated rules is shown in Table 3. This rule basically says To represent the highly non-linear relationship be-
that if you have as follows: total number of members of the tween the environment, configuration and performance
team is more than 900 members, average number of preof the team, we used multilayer feed-forward neural net-
conditions per plan is not more than 1, chance of a particu-works. The network topology consists of sixteen nodes in
lar precondition coming true at any step is more than 20%, the input layer (one input node representing each config-
chance that a particular team member locally senses a parurable or system parameter), sixteen nodes in the first hid-
ticular new pre-condition is very low, and average number den layer, eight nodes in the second hidden layer, and seven
of links each team member creates between 5 and 8, themodes in the output layer. The two hidden layers used sig-
the performance will be very good with 87% confidence.  moid units, and the output layer use linear units. This

Team
Performance
Model Lo

AN




three-layer feed-forward network is capable of represent-

ing any arbitrary function.[7]

Peter Eggenberger et al [2] introduced the idea of dy-
namic rearrangement of biological nervous systems to ac-
commodate learning in nonstationary environments. Their
approach allows neural networks an additional mechanism
to dynamically change synaptic weight modulations and
neuronal states during execution. This capability of chang-
ing the modulation types allows the control networks to
change their structures when the environment is changed.

With inspirations from the dynamic rearrangement idea
[2], we use the concept, callddynamic Network$8][9],
which allows all internal nodes in the network to act sto-
chastically and independently even though all external in-
put data remain unchanged. Figure 2 shows an abstract ex
ample of a dynamic network compared with a regular net-

a traditional network

a dynamic network
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work. Dynamic networks capture randomness from the ad-
ditional input nodes fed with internal random signals. These
random signals along with weights between the additional
nodes and the hidden nodes bring dynamic states into in-
ternal nodes within the network and output nodes. Chang-
ing the weights results in changing behaviors of the dy-
namic networks. This kind of network enlarges the capabil-
ity to deal with non-deterministic problems. Moreover, this
stochastic-ness adds robustness and flexibility to the net-
work. If a target system has high variation in output even
for the same input configuration, the dynamic network can
adapt the weights to match this variance. If the target sys-
tem were deterministic, these weights would adapt to zero.
Because team coordination algorithms are dynamic and
non-deterministic a Dynamic Network provides a good
model. Dynamic networks were applied into our multi-
layer neural network by adding four special nodes into the

Figure 2. Two abstract examples of neural
networks are shown. On the left, a tradi-
tional network maps input - output pairs as

shown in the table below. On the right, a dy-
namic network maps every input with all pos-

sible output patterns with different probabil-

ities of each output one to occur. By allow-
ing all active nodes to turn on/off stochasti-

cally (depicted by dash lines), with the same
input pattern, during a period of time, the
network changes internally and produces dy-
namically all possible output patterns, which

finally represent a non-deterministic control

system.

input layer, so that the total number of input nodes be-
comes twenty. These special nodes insert random values
between 0.0 and 1.0 into the network.

3.3. Genetic Algorithms

Genetic Algorithms (GA) is a search technique loosely
based on the mechanism of natural selection and genetics.
In relation to problem domains, structures of a possible so-
lution are represented in string formats. Given an environ-
ment and a goal formulated as a fithess function, an initial
population and selecting genetic operators are generated at
random. The new generation of possible solutions is gener-
ated using three common genetic operators, namely, repro-
duction, crossover and mutation. A number of processes of
generating new populations based on prior populations are
repeatedly executed until the termination condition is met.
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Figure 3. A graph shows the best fithess of
the GA after each generation.

The solution of the problem is found in the final popula-
tion.



Each generation of the population was set to have a
thousand individuals. Each individual represented a neural
network. The chromosomes of each individual were the
weights of the neural network. All weights are randomly
generated at the start. After evaluation with the training data
set, the first 500 best performances are kept and then used
to produce the new 500 individuals randomly by genetic op-
erations (i.e. crossover, mutation). The fitness function was
the average of square error between target output and actual
output, > (0¢ — 03)?/sizeof (D). The lower this score

deD

is, the better. The training data was sampled from the data ; A —
set, so that different training data was used in each genera- BEIEEETE=T——T—T=—T T-1
tion. The size of each training data set was 5000. The termi-
nation conditions were either reaching the maximum itera-  Figyre 4. User interface is designed to use
tion (10000) or reaching the minimum error of the network \yjth the team performance model. When the
output (0.05). When the termination condition was met, the  model is loaded, input parameters are shown
best performing individual was chosen to be our team per-  gn the left side. Performance measures are
formance model. shown on the right side. The user can switch
We |eal’ned our multilayer feed'forWard neural netWOfk between forward mode and backward mode
using an evolutionary algorithm because the relationship  when working offline. In online mode, a plot-
between variables was not only non-linear, but also highly  ting window is shown in the middle.
dynamic and non-deterministic, which is demanding for
backpropagation which must overcome a huge number of
local minima. Secondly, in GA, the unit of adaptation is not
an individual agent, but a population of agents, which is ex-
cellent for dealing with very huge and noisy training data
set. Figure 3 shows how quickly the GA converged. The
learning process converged to 20 percent error quickly and
slowly converged to 15 percent error after that.

both in input and output. The user specifies domain pa-
rameters by selecting check boxes. In order to find in-
put parameters that meet output requirements, the interface
performs a search over the changeable configuration pa-
rameters using the team performance model to find a
configuration that gives the required performance trade-
offs. The search space covers all changeable configuration
3.4. User Interface parameters and the search constraints are all output perfor-
mance parameters.

Our user interface is shown in Figure 4. The user inter- | online mode, the user interface is connected with
face can be used in two modes: offline and online. Offline Teamsim and allows the user to display system per-
mode is designed for interacting with the team performancesormances and to change configuration during execution.
model to help users develop a better understanding of theyhen running in this mode, an additional window is used to
relationship bet\_/veen coordination parameters and perfor-disp|ay the online output performance parameters in graph-
mance. The offline mode has two featuriegut-to-output 4| plots. When the user changes the configuration online,
featureandoutput-to-input feature a mark is indicated on the plotting window. During exe-
Input-to-Output FeatureUsing the team performance cution in online mode, the user is allowed to use offline
model in forward mode, a user can experiment with chang- interface features such as output-to-input to aid in select-
ing input parameters and observing how output parametersng reconfiguration parameters.
change. Although System parameters are part of the team
performance model they cannot be changed from the in-4_ Experiments and Results
terface. Users can change Configurable parameters. When

the user s_ets a configura_tion a full model with all input pa- In this section we present evidence that our approach
rqmeters is used_ to estimate the performance parameterg iaves our primary goals which are: 1) capturing the
displayed on the interface. effects of configuration parameters on performance mea-
Output-to-Input FeatureUsing the team performance sures in the team performance model 2) demonstrating the
model in backward mode, the interface allows a user correspondence between predicted and obtained changes
to change output parameters and receive a configurain performance using the output-to-input feature of the
tion that best meets some specific performance constraintdeam performance model 3) demonstrating that relations be-
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MNurber of Tear Members 200 200 200 200
Nurnber of Plan Ternplates 10 10 10 10
Roles Per Tearn Mermber| 1 1 1 1
Total Number of Preconditions 100 100 100 100
Preconditions Per Plan 5 5 5 5

Roles Per Plan 5 5 5 5
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, ,ﬁ -l w Figure 6. Four team configurations are set
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e —— during the mission according to occurred sit-
(a) Verification data set (b) Trained from verification data set (c) Trained from random data set A )
uations, and along with performance mea-
sures predicted by the user interface.

Figure 5. These graphs are plotted between
number of messages per agent and num-
ber of team members. Each row shows
graphs for different numbers of communicat-

ing neighbors. In column (a), three graphs are
plotted from the data in the verification data

set. After learning process, graphs in cloumn

(b) and (c) are plotted from the team perfor-
mance model learned from verification data
set and learned from random data set respec-
tively.

As expected the correpondence is closest for the high res-
olution model yet even the low resolution model captures
the increases in messaging with team size and the flatten-
ing of the curves as network density decreases. While these
comparisons are qualitative they support our approach by
demonstrating that team performance models can learned
for large parameter sets that perform well even when exam-
ined closely over a small range of settings.

4.2. User Interface Verification

tween configuration parameters of team performance hold

: Lo ) i In this subsection, we examine the performance of the
for higher fidelity team simulations

output-to-input feature of the team performance model and
its use through the user interface.
4.1. Team Performance Model Verification We use TeamSim, our abstract simulation, as the target
system. The interface is connected directly with TeamSim,
The objective of the team performance model is to cap- so that users can set team configurations and monitor team
ture the relation between a vast space of possible system angerformance measures online. The user configures the team
configuration parameters and the performance measures. Tat the start of the mission. Performance measures from the
obtain high resolution for comparisons, we created a smallsimulation are graphically displayed on the user interface at
reference data set consisting of data obtained from runningevery time step. When performance changes are requested
our abstract simulation by varying only 3 input parame- the offline features of the team performance model are used
ters: Number of Team Memberéssociate Network Den-  to find suitable reconfigurations
sity, Plan Template Policyleaving other input parameters The user interface and reconfiguration assistance were
fixed. Some of these data entries are plotted in column (a)evaluated over 10 scenarios. Scenarios were selected to pro-
of Figure 5. A second data set of much lower resolution vide situations that would require users to reconfigure their
was created by generating the same number of observateam in order to meet performance targets. For example, in
tions using random configurations over all the input para- a mission involving a very large team of 300 agents the user
meters. These two data sets were used to learn new teammight be requested at some point in the mission to reduce
performance models which in turn generated graphs whichthe number of messages per agent or increase the number
were compared with those plotted from the original refer- of plans instantiated. Performance measures are recorded
ence data set. As Figure 5 shows there is close corresponthroughout the execution. Each scenario was run for 250
dence between the team performance models and data s¢ime steps, with each step taking 5 seconds. The data pre-
in the relation between messages per agent and number asented here represents 4 hours of runtime with a user in the
agents (columns) for each level of network density (rows). loop. One scenario with a team of 200 agents is shown in



4.3. Experiments with Machinetta proxies

4
1% Reward % | Messages Per Agent

" In this section we demonstrate that changes in a team
e T —l—l_\_ simulation parameter can produce changes in performance

, for a more realistic team simulation. While a team perfor-
R mance model has not yet been learned for this environment,

this demonstration suggests the feasibility of such a model.
We are integrating our software with Machinetta[13][12],

| ‘ |
100 20 1 A A N
ﬂ DU T i a proxy-based team coordination infrastructure for teams
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200 40
Conflicts Detected Plans Instantiated

‘ of robots, agents, and people (RAPs). In Machinetta, each
oo w RAP is represented in team coordination by a proxy, im-

a
Conflict Resolution Messages Role Allocation Messages

plemented as a lightweight Java process. These proxies ex-
Ll change coordination information, and each can also com-
” —I—\_\—— ) —/—\_\— municate with its own RAP. The flexibility and sophistica-
tion of Machinetta proxies will allow us to test our approach
e m ow o om omo w W w m w in complex, dynamic settings.

For this test we treated our user interface as a RAP
and provided a proxy for it. This proxy periodically sent
data collection messages, which circulated through the team
and collected statistics on the team status and performance.
These messages were returned to the originating proxy,
where they are processed and updated statistics displayed
on the user interface. The user reconfigured the team by
sending reconfigure messages through the interface proxy
which were circulated through the team, informing proxies
(and hence the team members) of the change.

We tested this mechanism and the effect of a reconfigura-
tion on performance using a team running Machinetta prox-
ies in a disaster simulation in which fire trucks (each rep-
resented by a proxy) fight fires in a city. In our scenario,

Figure 6. At step 2, the user is asked to increase level of re-N0 fires were present at the start of the simulation, but ig-
wards obtained by the team disregarding other performancelited randomly as the simulation progressed. In addition,
measures. Using the output-to-input feature of the team per_flres spread to neighboring areas unless extinguished. When
formance model the user finds a new coordination configu-2 firé truck sensed a fire, it formed a plan to extinguish it.
ration that increases reward performance and reconfigurediowever, a fire truck could only accept a role in a plan to
the team. At step 3 network communication bandwidth is extinguish a fire if its distance to the fire was less than a
reduced limiting the time-to-live for information tokens to threshold parameter. Otherwise, it would pass the informa-
2 hops requiring another team reconfiguration to lessen thellOn to a teammate.

degradation in performance. At step 4, the user is again In our experiment, 300 Machinetta proxies were dis-
asked to reconfigure to improve reward performance. Re-tributed over five networked computers running Linux. All
sults for six of the performance measures are shown in Fig-communication between proxies was carried out over the
ure 7. The bold lines show average values for the config- network. We simulated a city of size 200 by 200, where
ured system while the lighter lines indicate the values pre- fire trucks had an initial threshold of 200 (i.e., a fire truck
dicted by the output-to-input model. The jagged lines show had to be within 200 blocks of a fire, as measured by Man-
the moment to moment variation in the actual performance hattan distance, to accept a role to extinguish it). Each run
measures. Despite the high variablity of team performanceof the simulation ran for 200 steps. Eight independent runs
measures the model accurately predicts the effects of rein which a reconfigure command was issued by the user
configuration on average performance values across all sixnterface around step 90, and 7 control runs in which no
measures. By demonstrating the team performance model'such command was issued were collected. The reconfigu-
effectiveness for predicting the effects of team configura- ration called for thresholds to be reduced to 10. The aver-
tions these tests demonstrate the potential of our approact@ged number of fires extinguished are shown in figure 4.3.
for both the initial configuration of teams and supervisory

control of executing teams. The teams in control runs extinguished more fires than

Figure 7. Six performance measures
recorded from TeamSim are ploted dur-
ing the mission with 3 times of reconfigura-
tion. Thick lines show the average values of
actual performance measures of each config-
uration setting. Thin lines are the predicted
values by the user interface.




quire human experimentation and integration of configu-
ration control with other forms of control such as mission
200 planning, redirection, and goal manipulation available for
controlling teams.
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5. Conclusions and Future Work

In this paper, we have presented a preliminary ap-



