
Configuration and Reconfiguration of Large Teams

Paper ID: 320

Abstract

Coordination of large numbers of agents for perform-
ing complex tasks in complex domains is a rapidly pro-
gressing area of research. Because of the high complexity
of the problem, approximate and heuristic algorithms are
typically used for key coordination tasks. Such algorithms
usually require tuning of algorithm parameters to get the
best performance in particular circumstances. This tuning
of parameters is something of a black art. In this paper, we
use a dynamic neural network to model the way a coordi-
nation algorithm will work under particular circumstances.
The neural network model can be used to rapidly determine
an appropriate configuration of the algorithm for a partic-
ular domain. A user can also specify required tradeoffs in
algorithm performance and use the neural network to find
the best configuration for those tradeoffs. Reconfiguration
can even be performed online to improve the performance
of an executing team as situation changes. We present re-
sults showing the approach facilitating users to configure
and control a large team executing sophisticated teamwork
algorithms.

1. Introduction

Sophisticated, complex coordination allows large groups
of agents to perform complex tasks in domains such as
space [6], the military [4] and disaster response [5]. Due
to the high computational complexity of coordination, criti-
cal coordination algorithms typically use heuristics which
are parameterized and need to be tuned for specific do-
mains for best performance. For example, different coor-
dination configurations might be required for different rates
of change in the world, individual failure rates or communi-
cation bandwidth availability. A coordination configuration
specifies parameter values for a team’s coordination algo-
rithms. When several coordination algorithms are used to-
gether, e.g., algorithms for task allocation, communication
and planning, the performance of one algorithm will likely
affect the performance of the other algorithms, thus tuning
parameters of the individual algorithms must be performed
together. As we show in Section 2, the relationship between

coordination configuration, e.g., the number of roles that
each team member can handle, environmental conditions,
e.g., the observability of the environment, and performance,
e.g., the number of messages that will be sent during coordi-
nation, is highly non-linear and extremely complex. Hence,
getting best performance from a set of coordination algo-
rithms often involves a complex parametric tuning process,
that must be performed on a per problem basis.

Previous approaches to configuring a team for a par-
ticular domain typically either required hand-tuning [3] or
learning [1] in the domain. Hand-tuning of parameters is a
time consuming process that typically requires extensive ex-
perience with the algorithms for good performance. Learn-
ing requires that the team perform many trials in the specific
circumstances it is to be used. If the environment can vary
dramatically, e.g., the specific characteristics of a disaster
response scenario can vary greatly from disaster to disas-
ter but the same team should respond to each one, learning
may be infeasible.[11] Thus, previous work does not pro-
vide a good solution to the problem of rapid team configu-
ration.

We have developed an approach to configuring coordina-
tion algorithms that incorporates three key ideas. The first
idea is to create ateam performance modelthat captures
the relation between the environment and team configu-
ration parameters and measures of performance in a way
that allows rapid exploration by users. We have developed
an abstract simulation of the coordination algorithms and
a highly configurable environment to test these ideas. Be-
cause the simulation is fast it can be used to create large
amounts of data containing relationships between parame-
ters. Due to the non-determinism of environments and co-
ordination algorithms and the sensitivity of performance
to circumstances these relationships are highly non-linear.
They are also highly variable even for the same configura-
tion. To create a concise model of the data we use genetic
algorithms to learn a dynamic neural network.[8] A neural
network with two hidden layers is sufficiently powerful [7]
to capture the complexity of these data and thus provides
a rapid mapping from environment and configuration para-
meters to performance parameters. The aim of this work is
to remove some of the art from configuring a team for a par-
ticular environment. The team performance model captures



the complex relationship between the environment, config-
uration and performance of the team.

The second idea in this work is to use the team perfor-
mance model to find the best configuration of the team to
meet specific performance constraints, e.g., the tradeoff be-
tween communication bandwidth and good allocation of re-
sources. Using the team performance model in ”reverse”
allows users to specify performance tradeoffs and rapidly
receive a configuration that best meets those constraints.
Since not all parameters are configurable, e.g., the observ-
ability of the domain cannot be changed during execution,
we cannot simply use back propagation of the neural net-
work to find input parameters that meet our output require-
ments. Instead we perform a search over the changeable
configuration parameters to find a configuration that best
meets the required performance tradeoffs.

The third idea is to allow the team to be reconfigured on-
line, using the team performance model to determine appro-
priate parameters for the prevailing conditions. The recon-
figuration can either be prompted manually by a human or
initiated autonomously by an agent monitoring team perfor-
mance. When users have changing preferences or know of
changing constraints, they can simply specify these require-
ments and allow the team performance model to find al-
gorithm parameters that will best meet those requirements.
This approach provides a powerful and effective way for
manipulation of team performance during execution time
and provides an additional mechanism for the supervisory
control of executing teams.

We have implemented and tested this approach with an
abstract teamwork simulation, TeamSim as well as with the
fully distributed Machinetta proxy [13][12] architecture in
a domain. The abstract teamwork simulation was also used
to provide a large amount of data from which the dynamic
neural network model was created. The model was shown
to accurately capture the behavior of the coordination al-
gorithms across a wide range of configurations. The model
was then used to configure teams and change configurations
online with results as predicted by the model.

2. Problem Model

We defineS andC, which are a set of system parame-
ters and a set of configurable parameters respectively. The
system parameters are fixed by the environment, but may
change during the mission, e.g., communication networks
might become congested. The configurable parameters are
allowed to change. Next, let us defineP , which is a set of
system performances measures. The setsS, C andP will
depend on mission domain and coordination algorithms. Ta-
ble 1 and Table 2 list an example of system and configurable
parameters and measures of performance which are used in
particular domain. Other domains may be different or have

Configuration Parameters Range Type
Number of Team Members 10 ... 1000 S
Number of Plan Templates 1 ... 20 S
Roles Per Team Member 1 ... 5 S
Total Number of Preconditions 20 ... 120 S
Preconditions Per Plan 1 ... 10 S
Roles Per Plan 1 ... 10 S
Plan Template Policy 0.0 ... 1.0 S
Number of Capability Types 2 ... 20 S
Percent Capable 0.0 ... 1.0 S
New Precondition Rate 0.0 ... 1.0 S
Precondition Detection Rate 0.0 ... 1.0 S
Associate Network Density 1 ... 16 S
Role Threshold 0.0 ... 1.0 C
Instantiation Rule 0.0 ... 1.0 C
Instantiate Rate 0.0 ... 1.0 C
Information Token (Time To Live) 1 ... 10 C

Table 1. List of configuration parameters with
their possible ranges and types. (S=system,
C=configurable)

Performance Parameters
Percentage Possible
Reward
Messages Per Agent
Conflicts Detected
Plans Instantiated
Conflict Resolution Messages
Role Allocation Messages

Table 2. List of measures of performance.

bigger sets. We define the target functionM : M(s, c) → P
to indicate that this function accepts as a vector of input pa-
rameters from the set of environmental parameters (s ∈ S)
and the set of configurable parameters (c ∈ C) and pro-
duces as a vector of output parameters from the set of sys-
tem performancesP . In other words,M is the team perfor-
mance model we are trying to find. Finally, with user pref-
erences function,f(P ) → V alue, the aim of this work is
to findarg maxc∈C f(M(s, c)).

2.1. System Complexity

The major difficulty of this work is the complexity of
interactions in multi-agent system. From Table 1, with the
total of 16 input parameters and their possible ranges, the
combination of these parameters, which imply coordina-
tion configurations for this problem, are very huge: more



NO TEAM MEMBERS> 900
PRECONDITIONSPERPLAN <= 1
NEW PRECONDITIONRATE > 0.208264
PRECONDITIONDETECT RATE <= 0.0541394
ASSOCIATESNW DENSITY > 5
ASSOCIATESNW DENSITY <= 8
————-> class V.Good [87.1%]

Table 3. An example of rule generated by De-
cision Tree induction (C4.5).

Figure 1. Process diagram.

than1025 cases. In addition, not only does each configura-
tion have high uncertainty in performance caused by non-
determinism in algorithms, but different configurations also
have different levels of uncertainties in output performances
caused by interactions with the domain.

Previously we have investigated modeling the system by
using decision tree induction (C4.5)[10]. With 14 input at-
tributes, only 4 distintive output classes and 30000 cases
(much smaller than the actual possible problem space we
use in this work), we ended up having 573 classification IF-
THEN rules. On test data, these rules performed with only
74.2% correct classification. However, these rules were far
from being able to solve our configuration problem, because
the C4.5 decision tree only classified into small classes
making optimization difficult. An example of one of the
generated rules is shown in Table 3. This rule basically says
that if you have as follows: total number of members of the
team is more than 900 members, average number of pre-
conditions per plan is not more than 1, chance of a particu-
lar precondition coming true at any step is more than 20%,
chance that a particular team member locally senses a par-
ticular new pre-condition is very low, and average number
of links each team member creates between 5 and 8, then
the performance will be very good with 87% confidence.

3. Algorithm and Approach

We have developed an approach to facilitate users in un-
derstanding and manipulating the relationship between con-
figurations of coordination algorithms and measures of their
performance. The approach has several steps. It starts with
the collection of large data sets generated by our abstract
teamwork simulation. Then, an evolutionary computation
approach is used to learn team performance models. An in-
put/output model of artificial neural networks with dynamic
features is used to represent the team performance model.
Finally, mission experiments with our abstract teamwork
simulation and a network of Macinetta proxies were used to
investigate the performance of the team performance model.
Figure 1 shows the outline of our approach.

3.1. Data sets

TeamSimis an abstract teamwork simulation developed
to investigate coordination algorithms in cooperative multi-
agent teams within simulated environments. Running the
simulation provided a huge training data set. This data set
was used to learn models of team performance. To create
a precise team performance model, very large amounts of
data were needed to capture the complex relationships be-
tween parameters. As we show in section 2, the complete
configurable space is very large. Providing full coverage
of all possible configurations was impossible. To overcome
this difficulty we collected simulation data using two meth-
ods: non-random sampling and random sampling. The non-
random sampling method gathered data by specifying cases
chosen to roughly to cover the possible ranges of input pa-
rameters. Although this data set roughly represents the en-
tire configuration space it has sparse coverage. The ran-
dom sampling method was designed to collect data from
throughout the space but without guarantees of coverage. It
took several weeks to collect the approximately five hun-
dred thousand data entries used in this study. Each data en-
try consists of all environmental and configurable parame-
ters and output performances from a run.

3.2. Neural Network Models

To represent the highly non-linear relationship be-
tween the environment, configuration and performance
of the team, we used multilayer feed-forward neural net-
works. The network topology consists of sixteen nodes in
the input layer (one input node representing each config-
urable or system parameter), sixteen nodes in the first hid-
den layer, eight nodes in the second hidden layer, and seven
nodes in the output layer. The two hidden layers used sig-
moid units, and the output layer use linear units. This



three-layer feed-forward network is capable of represent-
ing any arbitrary function.[7]

Peter Eggenberger et al [2] introduced the idea of dy-
namic rearrangement of biological nervous systems to ac-
commodate learning in nonstationary environments. Their
approach allows neural networks an additional mechanism
to dynamically change synaptic weight modulations and
neuronal states during execution. This capability of chang-
ing the modulation types allows the control networks to
change their structures when the environment is changed.

With inspirations from the dynamic rearrangement idea
[2], we use the concept, calledDynamic Networks[8][9],
which allows all internal nodes in the network to act sto-
chastically and independently even though all external in-
put data remain unchanged. Figure 2 shows an abstract ex-
ample of a dynamic network compared with a regular net-
work. Dynamic networks capture randomness from the ad-
ditional input nodes fed with internal random signals. These
random signals along with weights between the additional
nodes and the hidden nodes bring dynamic states into in-
ternal nodes within the network and output nodes. Chang-
ing the weights results in changing behaviors of the dy-
namic networks. This kind of network enlarges the capabil-
ity to deal with non-deterministic problems. Moreover, this
stochastic-ness adds robustness and flexibility to the net-
work. If a target system has high variation in output even
for the same input configuration, the dynamic network can
adapt the weights to match this variance. If the target sys-
tem were deterministic, these weights would adapt to zero.

Because team coordination algorithms are dynamic and
non-deterministic a Dynamic Network provides a good
model. Dynamic networks were applied into our multi-
layer neural network by adding four special nodes into the
input layer, so that the total number of input nodes be-
comes twenty. These special nodes insert random values
between 0.0 and 1.0 into the network.

3.3. Genetic Algorithms

Genetic Algorithms (GA) is a search technique loosely
based on the mechanism of natural selection and genetics.
In relation to problem domains, structures of a possible so-
lution are represented in string formats. Given an environ-
ment and a goal formulated as a fitness function, an initial
population and selecting genetic operators are generated at
random. The new generation of possible solutions is gener-
ated using three common genetic operators, namely, repro-
duction, crossover and mutation. A number of processes of
generating new populations based on prior populations are
repeatedly executed until the termination condition is met.
The solution of the problem is found in the final popula-
tion.

Figure 2. Two abstract examples of neural
networks are shown. On the left, a tradi-
tional network maps input - output pairs as
shown in the table below. On the right, a dy-
namic network maps every input with all pos-
sible output patterns with different probabil-
ities of each output one to occur. By allow-
ing all active nodes to turn on/off stochasti-
cally (depicted by dash lines), with the same
input pattern, during a period of time, the
network changes internally and produces dy-
namically all possible output patterns, which
finally represent a non-deterministic control
system.

Figure 3. A graph shows the best fitness of
the GA after each generation.



Each generation of the population was set to have a
thousand individuals. Each individual represented a neural
network. The chromosomes of each individual were the
weights of the neural network. All weights are randomly
generated at the start. After evaluation with the training data
set, the first 500 best performances are kept and then used
to produce the new 500 individuals randomly by genetic op-
erations (i.e. crossover, mutation). The fitness function was
the average of square error between target output and actual
output,

∑
d∈D

(Od
t − Od

a)2/sizeof(D). The lower this score

is, the better. The training data was sampled from the data
set, so that different training data was used in each genera-
tion. The size of each training data set was 5000. The termi-
nation conditions were either reaching the maximum itera-
tion (10000) or reaching the minimum error of the network
output (0.05). When the termination condition was met, the
best performing individual was chosen to be our team per-
formance model.

We learned our multilayer feed-forward neural network
using an evolutionary algorithm because the relationship
between variables was not only non-linear, but also highly
dynamic and non-deterministic, which is demanding for
backpropagation which must overcome a huge number of
local minima. Secondly, in GA, the unit of adaptation is not
an individual agent, but a population of agents, which is ex-
cellent for dealing with very huge and noisy training data
set. Figure 3 shows how quickly the GA converged. The
learning process converged to 20 percent error quickly and
slowly converged to 15 percent error after that.

3.4. User Interface

Our user interface is shown in Figure 4. The user inter-
face can be used in two modes: offline and online. Offline
mode is designed for interacting with the team performance
model to help users develop a better understanding of the
relationship between coordination parameters and perfor-
mance. The offline mode has two features:input-to-output
featureandoutput-to-input feature.

Input-to-Output FeatureUsing the team performance
model in forward mode, a user can experiment with chang-
ing input parameters and observing how output parameters
change. Although System parameters are part of the team
performance model they cannot be changed from the in-
terface. Users can change Configurable parameters. When
the user sets a configuration a full model with all input pa-
rameters is used to estimate the performance parameters
displayed on the interface.

Output-to-Input FeatureUsing the team performance
model in backward mode, the interface allows a user
to change output parameters and receive a configura-
tion that best meets some specific performance constraints

Figure 4. User interface is designed to use
with the team performance model. When the
model is loaded, input parameters are shown
on the left side. Performance measures are
shown on the right side. The user can switch
between forward mode and backward mode
when working offline. In online mode, a plot-
ting window is shown in the middle.

both in input and output. The user specifies domain pa-
rameters by selecting check boxes. In order to find in-
put parameters that meet output requirements, the interface
performs a search over the changeable configuration pa-
rameters using the team performance model to find a
configuration that gives the required performance trade-
offs. The search space covers all changeable configuration
parameters and the search constraints are all output perfor-
mance parameters.

In online mode, the user interface is connected with
TeamSim and allows the user to display system per-
formances and to change configuration during execution.
When running in this mode, an additional window is used to
display the online output performance parameters in graph-
ical plots. When the user changes the configuration online,
a mark is indicated on the plotting window. During exe-
cution in online mode, the user is allowed to use offline
interface features such as output-to-input to aid in select-
ing reconfiguration parameters.

4. Experiments and Results

In this section we present evidence that our approach
achieves our primary goals which are: 1) capturing the
effects of configuration parameters on performance mea-
sures in the team performance model 2) demonstrating the
correspondence between predicted and obtained changes
in performance using the output-to-input feature of the
team performance model 3) demonstrating that relations be-



Figure 5. These graphs are plotted between
number of messages per agent and num-
ber of team members. Each row shows
graphs for different numbers of communicat-
ing neighbors. In column (a), three graphs are
plotted from the data in the verification data
set. After learning process, graphs in cloumn
(b) and (c) are plotted from the team perfor-
mance model learned from verification data
set and learned from random data set respec-
tively.

tween configuration parameters of team performance hold
for higher fidelity team simulations

4.1. Team Performance Model Verification

The objective of the team performance model is to cap-
ture the relation between a vast space of possible system and
configuration parameters and the performance measures. To
obtain high resolution for comparisons, we created a small
reference data set consisting of data obtained from running
our abstract simulation by varying only 3 input parame-
ters: Number of Team Members, Associate Network Den-
sity, Plan Template Policy, leaving other input parameters
fixed. Some of these data entries are plotted in column (a)
of Figure 5. A second data set of much lower resolution
was created by generating the same number of observa-
tions using random configurations over all the input para-
meters. These two data sets were used to learn new team
performance models which in turn generated graphs which
were compared with those plotted from the original refer-
ence data set. As Figure 5 shows there is close correspon-
dence between the team performance models and data set
in the relation between messages per agent and number of
agents (columns) for each level of network density (rows).

Figure 6. Four team configurations are set
during the mission according to occurred sit-
uations, and along with performance mea-
sures predicted by the user interface.

As expected the correpondence is closest for the high res-
olution model yet even the low resolution model captures
the increases in messaging with team size and the flatten-
ing of the curves as network density decreases. While these
comparisons are qualitative they support our approach by
demonstrating that team performance models can learned
for large parameter sets that perform well even when exam-
ined closely over a small range of settings.

4.2. User Interface Verification

In this subsection, we examine the performance of the
output-to-input feature of the team performance model and
its use through the user interface.

We use TeamSim, our abstract simulation, as the target
system. The interface is connected directly with TeamSim,
so that users can set team configurations and monitor team
performance measures online. The user configures the team
at the start of the mission. Performance measures from the
simulation are graphically displayed on the user interface at
every time step. When performance changes are requested
the offline features of the team performance model are used
to find suitable reconfigurations

The user interface and reconfiguration assistance were
evaluated over 10 scenarios. Scenarios were selected to pro-
vide situations that would require users to reconfigure their
team in order to meet performance targets. For example, in
a mission involving a very large team of 300 agents the user
might be requested at some point in the mission to reduce
the number of messages per agent or increase the number
of plans instantiated. Performance measures are recorded
throughout the execution. Each scenario was run for 250
time steps, with each step taking 5 seconds. The data pre-
sented here represents 4 hours of runtime with a user in the
loop. One scenario with a team of 200 agents is shown in



Figure 7. Six performance measures
recorded from TeamSim are ploted dur-
ing the mission with 3 times of reconfigura-
tion. Thick lines show the average values of
actual performance measures of each config-
uration setting. Thin lines are the predicted
values by the user interface.

Figure 6. At step 2, the user is asked to increase level of re-
wards obtained by the team disregarding other performance
measures. Using the output-to-input feature of the team per-
formance model the user finds a new coordination configu-
ration that increases reward performance and reconfigures
the team. At step 3 network communication bandwidth is
reduced limiting the time-to-live for information tokens to
2 hops requiring another team reconfiguration to lessen the
degradation in performance. At step 4, the user is again
asked to reconfigure to improve reward performance. Re-
sults for six of the performance measures are shown in Fig-
ure 7. The bold lines show average values for the config-
ured system while the lighter lines indicate the values pre-
dicted by the output-to-input model. The jagged lines show
the moment to moment variation in the actual performance
measures. Despite the high variablity of team performance
measures the model accurately predicts the effects of re-
configuration on average performance values across all six
measures. By demonstrating the team performance model’s
effectiveness for predicting the effects of team configura-
tions these tests demonstrate the potential of our approach
for both the initial configuration of teams and supervisory
control of executing teams.

4.3. Experiments with Machinetta proxies

In this section we demonstrate that changes in a team
simulation parameter can produce changes in performance
for a more realistic team simulation. While a team perfor-
mance model has not yet been learned for this environment,
this demonstration suggests the feasibility of such a model.
We are integrating our software with Machinetta[13][12],
a proxy-based team coordination infrastructure for teams
of robots, agents, and people (RAPs). In Machinetta, each
RAP is represented in team coordination by a proxy, im-
plemented as a lightweight Java process. These proxies ex-
change coordination information, and each can also com-
municate with its own RAP. The flexibility and sophistica-
tion of Machinetta proxies will allow us to test our approach
in complex, dynamic settings.

For this test we treated our user interface as a RAP
and provided a proxy for it. This proxy periodically sent
data collection messages, which circulated through the team
and collected statistics on the team status and performance.
These messages were returned to the originating proxy,
where they are processed and updated statistics displayed
on the user interface. The user reconfigured the team by
sending reconfigure messages through the interface proxy
which were circulated through the team, informing proxies
(and hence the team members) of the change.

We tested this mechanism and the effect of a reconfigura-
tion on performance using a team running Machinetta prox-
ies in a disaster simulation in which fire trucks (each rep-
resented by a proxy) fight fires in a city. In our scenario,
no fires were present at the start of the simulation, but ig-
nited randomly as the simulation progressed. In addition,
fires spread to neighboring areas unless extinguished. When
a fire truck sensed a fire, it formed a plan to extinguish it.
However, a fire truck could only accept a role in a plan to
extinguish a fire if its distance to the fire was less than a
threshold parameter. Otherwise, it would pass the informa-
tion to a teammate.

In our experiment, 300 Machinetta proxies were dis-
tributed over five networked computers running Linux. All
communication between proxies was carried out over the
network. We simulated a city of size 200 by 200, where
fire trucks had an initial threshold of 200 (i.e., a fire truck
had to be within 200 blocks of a fire, as measured by Man-
hattan distance, to accept a role to extinguish it). Each run
of the simulation ran for 200 steps. Eight independent runs
in which a reconfigure command was issued by the user
interface around step 90, and 7 control runs in which no
such command was issued were collected. The reconfigu-
ration called for thresholds to be reduced to 10. The aver-
aged number of fires extinguished are shown in figure 4.3.

The teams in control runs extinguished more fires than



0

50

100

150

200

250

First 70 Steps Last 70 Steps Total

N
u

m
b

er
 o

f 
fi

re
s 

ex
ti

n
g

u
is

h
ed

Reconfigured
Control

Figure 8. Number of fires extinguished before and
after the threshold was lowered, and in total.

the teams in reconfigured runs. This was expected, because
the lowered threshold reduced the likelihood that an fire
truck would accept a role of extinguishing a fire. It is par-
ticularly instructive to see when control teams put out more
fires. During the first 70 steps of the simulation, before the
reconfigure command was issued, the teams in both cases
extinguished nearly equal numbers of fires. However, dur-
ing the last 70 steps of the simulation, after the reconfig-
ure command had been issued, the reconfigured team extin-
guished fewer fires. This illustrates the effectiveness of our
reconfiguration mechanism for Machinetta and the ability
of configuration parameters to affect performance in more
realistic team settings.

5. Conclusions and Future Work

In this paper, we have presented a preliminary ap-
proach to building a tool that makes it possible for users to
quickly explore relationships between configuration para-
meters of coordination algorithms and performance mea-
sures for large teams. Initial experiments showed that
the approach was able to aid users configuring and con-
troling a large team executing complicated coordination
teamwork algorithms.

While this preliminary work suggests that the parameters
of team work algorithms may be effectively controlled to
manage team performance in much the same way that indi-
vidual control parameters have been used to manage robotic
behaviors much research remains to be done. One question
is how to obtain greater precision in presenting the com-
plex relationships within such large dynamic models. An-
other issue is how well results or even modeling approaches
may generalize between domains. While we have qualita-
tively demonstrated that our methods produced a model that
behaves as we believe it should, quantitative measures and
comparisons with alternate approaches are needed to sup-
port this claim with greater certainty. Finally, the extension
of this work to supervisory control of large teams will re-

quire human experimentation and integration of configu-
ration control with other forms of control such as mission
planning, redirection, and goal manipulation available for
controlling teams.

References

[1] H. H. Bui, S. Venkatesh, and D. Kieronska. A framework
for coordination and learning among team members. InPro-
ceedings of the Third Australian Workshop on Distributed AI,
1997.

[2] P. Eggenberger, A. Ishiguro, S. Tokura, T. Kondo, and
Y. Uchikawa. Toward seamless transfer from simulated to
real worlds: A dynamically-rearranging neural network ap-
proach. InProceeding of 1999 the Eighth European Work-
shop in Learning Robot (EWLR-8), pages 44–60, 1999.

[3] R. Falcone and C. Castelfranchi. Tuning the collaboration
level with autonomous agents: A principled theory. InThe
IJCAI-01 Workshop on Autonomy, Delegation, and Control:
Interacting with Autonomous Agents, 2001.

[4] D. Glade. Unmanned aerial vehicles: Implications for mili-
tary operations. Technical Report Occasional Paper No. 16,
Center for Strategy and Technology Air War College, 2000.

[5] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi,
A. Shinjoh, and S. Shimada. Robocup rescue: Searh and
rescue in large-scale disasters as a domain for autonomous
agents research. InProc. 1999 IEEE Intl. Conf. on Systems,
Man and Cybernetics, volume VI, pages 739–743, Tokyo,
October 1999.

[6] D. Kortenkamp, D. Keirn-Schreckenghost, and R. P.
Bonasso. Adjustable control autonomy for manned space
flight. In IEEE Aerospace Conference, 2000.

[7] L. I. Perlovsky.Neural Networks and Intellect: Using Model-
Based Concepts. Oxford University Press, 2001.

[8] J. Polvichai and P. Khosla. An evolutionary behavior pro-
gramming system with dynamic networks for mobile robots
in dynamic environments. InProceedings of 2002 IEEE/RSJ
International Conference on Intelligent Robots and System,
volume 1, pages 978–983, 2002.

[9] J. Polvichai and P. Khosla. Applying dynamic networks
and staged evolution for soccer robots. InProceedings of
2003 IEEE/RSJ International Conference on Intelligent Ro-
bots and System, volume 3, pages 3016–3021, 2003.

[10] J. Quinlan.C4.5: Programs for machine learning. Morgan
Kaufmann, 1993.

[11] P. Riley and M. Veloso. An overview of coaching with lim-
itations. InProceedings of the 2nd International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS), pages 1110–1111, 2003.

[12] P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom,
N. Schurr, M. Si, and M. Tambe. A prototype infrastruc-
ture for distributed robot-agent-person teams. InThe Sec-
ond International Joint Conference on Autonomous Agents
and Multiagent Systems, 2003.

[13] P. Scerri, Y. Xu, E. Liao, J. Lai, and K. Sycara. Scaling team-
work to very large teams. InProceedings of AAMAS’04,
2004.


