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Abstract

Extreme teams are on the horizon: large-scale agent
teams operating in dynamic environments, problematic for
current task allocation algorithms due to the lack of local-
ity in agent interactions. We propose a novel distributed task
allocation algorithm for extreme teams, called LA-DCOP,
that incorporates three key ideas. First, LA-DCOP’s task
allocation is based on a dynamically computedminimum
capability thresholdwhich uses approximate knowledge of
task load — given lack of locality, obtaining knowledge of
exact task load at each agent is highly communication in-
tensive. Second, LA-DCOP uses tokens to represent tasks
and further minimize communication. Third, it createspo-
tential tokensto deal with inter-task constraints of simulta-
neous execution. We show that LA-DCOP convincingly out-
performs competing distributed task allocation algorithms
while using orders of magnitude fewer messages. LA-DCOP
has allowed a dramatic scale-up in extreme teams, allocat-
ing tasks in a fully distributed, proxy-based team of 200
agents, and its varying threshold are seen to be key in its
outperforming competing distributed algorithms in the do-
main of simulated disaster rescue.

1. Introduction

Distributed task allocation is a fundamental research
challenge in multiagent systems, with recent results report-
ing significant progress in task allocation in teams[16, 7, 20,
18, 15]. However, a significant large class of practical ap-
plications — that we callextreme teams— has emerged,
imposing new requirements for task allocation in teams.
Extreme teams include mobile sensor or UAV teams[6],
robot teams for Mars colonies[5], disaster rescue simu-
lations, as well as large-scale future integrated manufac-
turing and service organizations (e.g., hospitals)[13]. Ex-
treme teams require team members, each with limited re-
sources, to act in real-time dynamic environments. More
importantly, team members possess overlapping functional-
ity, but differing capabilities to perform different tasks. For
instance, in disaster rescue simulations, different fire fight-
ers and paramedics comprise an extreme team; and while
fire fighters and paramedics have overlapping functional-
ity to rescue civilians, for a specific rescue task, one set of
paramedics may have a higher capability given rapidly de-
teriorating health of civilians.

The problem of task allocation in teams is one of opti-
mally assigning tasks in a team plan to agents to maximize
overall team utility[11, 20]. Extreme teams emphasize four
key constraints on task allocation: (i) domain dynamics may
cause tasks to disappear; (ii) agents may perform multiple
tasks within resource limits; (iii) many agents have over-
lapping functionality to perform each task, but with differ-
ing levels of capability; and (iv) inter-task constraints (such
as simultaneous execution requirements) may be present.
This task allocation challenge in extreme teams will be re-
ferred to as E-GAP, as it subsumes the generalized assign-
ment problem (GAP), which is NP-complete[19].

The first two constraints in E-GAP above (dynamics and
multiple tasks) make approximations a necessity, since it is
extremely difficult to obtain optimal solutions in a timely
fashion. The remaining two constraints emphasizelack of
locality in agent interactions, e.g., due to overlapping agent
functionality, in assigning a specific task, an agent must po-
tentially consider all other agents (and not a small subset).
In practical extreme team domains, such global interactions
imply that agents will frequently possess reasonable esti-
mates of the team capabilities or the situation. For exam-
ple, fire fighter team members may know the number of fire
trucks to an order of magnitude, and have (only) a probabil-
ity distribution on the locations of fires. This imperfect team
knowledge is a key property of extreme teams, and provides
a valuable way to restrict the search space to good (if sub-
optimal) solutions.

This paper builds on Distributed Constraint Optimization
(DCOP)[10, 4] for task allocation, as DCOP offers the key
advantages of distributedness, presence of fast/approximate
algorithms and a rich representational language which can
consider costs/utilities of tasks. Despite these advantages,
previous DCOP approaches to task allocation suffer from
three key weaknesses. First, DCOP algorithms are unable to
use imperfect team knowledge to efficiently and effectively
allocate tasks. Second, constraints exist between any team
members with overlapping functionality, resulting in dense
constraint graphs that dramatically increase communication
within DCOP algorithms; even approximate DCOP algo-
rithms suffer from communication overload. Third, DCOP
algorithms handle interdependencies between tasks (such as
requirements of simultaneous execution) very inefficiently,
as these are in effect non-binary constraints.

We propose a novel DCOP algorithm called LA-DCOP



(Low communication Approximate DCOP) to meet the
requirements of E-GAP. LA-DCOP uses a representation
where agents are variables that can take on values from a
common pool, i.e., the pool of tasks to be assigned. The
mechanism for allocating tasks to agents encapsulates three
novel ideas. First, LA-DCOP improves efficiency by not
solving for an exact optimal reward; instead, it focuses on
maximizing the team’s expected total reward, given avail-
able probabilistic information, by computing a minimum
capabilitythresholdfor each task. This threshold is dynam-
ically computed and altered based on dynamic knowledge
of the team and task environment. Second,token-based ac-
cess to values reduces the communication overhead due to
constraint graph denseness by allowing at most one agent
to perform each task at any given time. Third, to deal with
groups of interdependent tasks, we introduce the idea of al-
lowing values to be represented bypotential tokens. By ac-
cepting a potential token, an agent confirms that it will per-
form the task once the interdependencies have been worked
out. In the meantime, the agent can perform other tasks.

We have extensively empirically evaluated the LA-
DCOP algorithm using a mixture of high and low fi-
delity simulation environments. Experiments on a sim-
plified testbed illustrate four key points. First, the key
features of the algorithm, including thresholds and po-
tential tokens, significantly improve its performance.
Second, when compared to other approximate DCOP algo-
rithms, LA-DCOP finds better task allocations, while us-
ing up to six orders of magnitude fewer messages. Third,
we illustrate that the algorithm performs well on two re-
alistic domains, by embedding it in teamwork proxies.
LA-DCOP has allowed a dramatic scale up in task alloca-
tion for proxy teams, from 20 agents to 200 agents. We also
illustrate effective task allocation in a large-scale disas-
ter rescue application and illustrate LA-DCOP significantly
outperforming its competitors.

2. Problem Statement

A static task allocation problem is an example of a GAP
instance with a setΘ = {θ1, . . . , θm} of tasks to be per-
formed and a setE = {e1, . . . , en} of team members to
perform them[19]. Each team memberei ∈ E has a capa-
bility to perform each taskθj ∈ Θ, and a limited amount
of resources with which to perform all of its tasks. Capa-
bility reflects the quality of the output or the speed of task
performance or other factors affecting output, and is a mea-
surement of the reward the team receives for the agent per-
forming a task. Mathematically, the capability ofei to per-
form θj is given by:Cap(ei, θj) → [0, 1]; if Cap(ei, θj) >
0, we say thatei is functional for θj . In extreme teams,
Cap(ei, θj) > 0 for a significant proportion (or even all)ei

for eachθj , to model overlapping functionality. We assume
that each agent has a single type of resource with which to

perform tasks, and denote the amount of resources avail-
able toei by ei.res; ei must spendRes(ei, θj) to perform
θj .

Following convention, we define an allocation matrixA,
whereaij is the value of theith row andjth column given
by

aij =

{
1 if ei is performingθj

0 otherwise

The goal in GAP is to findA that maximizes team reward:

A = arg max
A′

∑

ei∈E

∑

θj∈Θ

Cap(ei, θj)× a′ij

such that all agents’ resource limitations are respected:

∀ei ∈ E,
∑

θj∈Θ

Res(ei, θj)× aij ≤ ei.res

and at most one team member performs each task:

∀θj ∈ Θ,
∑

ei∈E

aij ≤ 1

While GAP captures many aspects of task allocation, its
simplistic relationship between capability and reward does
not capture interdependencies between tasks. Also, the so-
lution A corresponds to a single static allocation, and thus is
not suited for dynamic domains. We tackle both shortcom-
ings next by extending GAP.

Extended GAP
Coordination constraints,./, are interdependencies be-

tween tasks. For example, in anAND constraint, the team
only receives reward for each task if all the constrained tasks
are simultaneously executed. AnAND constrained set of
tasks can be used to represent a task that requires multi-
ple agents to successfully perform (such as extinguishing
a large fire). More complex coordination constraints such
as XOR or XOR − K may specify that exactly one or
exactlyK of the constrained tasks be simultaneously per-
formed, or else the team suffers a penalty. We explicitly fo-
cus onAND constraints here, but the formalization can be
extended to these other constraint types as well.

Let ./= {α1, . . . , αp}, whereαk = {θk1 , . . . , θkq} de-
notes thekth set ofAND constrained tasks. The number of
tasks inαk that are being performed is then

xk =
∑

ei∈E

∑

θkj
∈αk

aikj

Lettingvij = Cap(ei, θj)×aij , we then have that the value
of ei performingθj given./ is

V al(ei, θj , ./) =





vij if ∀αk ∈./, θj /∈ αk

vij if ∃αk ∈./ with θj ∈ αk ∧ xk = |αk|
0 otherwise

where the first case is the reward for unconstrained tasks
and the last two are for constrained tasks.



To introduce the dynamics of extreme teams into GAP,
we indexΘ, E, Cap, Res, ./ andV al by time. The most
important consequence of this is that we no longer seek a
single allocationA; rather we need a sequence of alloca-
tions, A→, one for each discrete time step. A delay cost
function,DCt(θt

j), captures the cost of not performingθt
j

at time t. Thus, the objective of the E-GAP problem is to
maximize:

f(A→) =
∑

t

∑

et
i∈Et

∑

θt
j∈Θt

(V alt(et
i, θ

t
j , ./

t)× at
ij)

−
∑

t

∑

θt
j∈Θt

(1−
∑

et
i∈Et

at
ij)×DCt(θt

j)

such that

∀t, ∀et
i ∈ Et,

∑

θt
j∈Θt

Rest(et
i, θ

t
j)× at

ij ≤ et
i.res

and
∀t,∀θt

j ∈ Θt,
∑

et
i∈Et

at
ij ≤ 1

Thus, extreme teams must allocate tasks rapidly to accrue
rewards, or else incur delay costs at each time step.

3. LA-DCOP

LA-DCOP is a DCOP algorithm that attempts to solve E-
GAP in an approximate fashion, since high delay costs and
dynamic changes in costs precludes an optimal response. In
the DCOP framework, each agent is provided with a vari-
able to which it must assign values[4, 21, 10], which cor-
respond to tasks the agent will perform. Since agents can
execute multiple tasks at once, variables can take on multi-
ple values simultaneously, as in graph multi-coloring. LA-
DCOP very compactly represents agents’ knowledge by ex-
ploiting key properties of extreme teams that arise due to
their large scale and similar agent functionality. The task al-
location algorithms run by each agent is shown in Algo-
rithms 1 and 2

A central requirement of E-GAP is that at most one team
member performs each task, or, in DCOP terms, the same
value is not assigned to two distinct variables. Thus, there is
a ”not-equal” constraint between every agent with function-
ality for the same task, which results in dense graphs due
to the overlapping functionality of extreme team members.
Dense graphs are problematic for DCOP algorithms[10, 4]
because of the large amount of communication required to
remove conflicts. To avoid this communication, we create
a tokenfor each value. The holder of a token has the ex-
clusive right to assign the corresponding value to its vari-
able, and must either do so or pass the token to a teammate.
In this way, conflicts cannot occur and so communication is
reduced.

Given the token-based access to values, the decision for
the agent becomes whether to assign to its variable values

represented by tokens it currently has or to pass the tokens
on. First, a team member must decide whether it is in the
best interests of the team for it to assign the value repre-
sented by a token to its variable (Alg 1, line 8). Algorithms
like DSA and DBA[21] attempt hill-climbing at each step
by enabling an agent to change its value to enable max-
imum gain to the team, given knowledge of neighboring
agents. However, communication of neighboring agents’
values is expensive (section 5 provides detailed experimen-
tal results). Instead, LA-DCOP uses athresholdon the min-
imum capability an agent must have in order to assign the
value. This threshold is attached to the token, which is then
circulated through the team until it is held by an agent with
capability above threshold for the task and within resource
constraints. (To avoid agents passing tokens back and forth,
each token maintains the list of agents it has visited; if all
agents have been visited, the token can revisit agents, but
only after a small delay.) In this way, LA-DCOP performs a
search for a local maximum similar to DBA and DSA, but
without additional communication beyond passing the to-
ken; the threshold guides the tokens towards agents with
higher capabilities to perform them.

The burden of finding a good allocation thus rests
with computing good thresholds. Computing thresh-
olds that maximize expected utility is a key part of this
algorithm and is described in Section 4. The thresh-
old is calculated once (Alg 1, line 7), when the task arises
due to team plan instantiation. A token’s threshold there-
fore reflects the state of the world when it was created. As
the world changes, agents will be able to respond by chang-
ing the threshold for newly-created tokens. This allows
the team great flexibility in dealing with dynamics by al-
ways seeking to maximize expected utility based on the
most current information available.

Once the threshold is satisfied, the agent must check
whether the value can be assigned while respecting its lo-
cal resource constraints (Alg. 1, line 15). If the value can-
not be assigned within the resource constraints of the team
member, it must choose a value(s) to reject and pass on to
other teammates in the form of a token(s) (Alg. 1, lines 20
and 22). The agent keeps values that maximize the use of
its capabilities (performed in theMAX CAP function, Alg.
1, line 16), and so acts in a locally optimal manner.

AND Constrained Tasks
In addition to dynamics, E-GAP presented the difficulty

of coordination constraints between tasks. When there are
AND constraints between tasks there is the potential for
deadlocksor, at best, severe inefficiencies. To avoid such
problems we introduce the idea ofpotential values. A sec-
ond algorithm, shown in Algorithm 2, runs alongside Algo-
rithm 1 and works as follows. The tokens for all tasks in an
AND constrained set are given to one team member. For
each of the tokens the team member sends out a small num-



ALGORITHM 1: VARMONITOR(Cap, Resources)
(1) V ← ∅, PV ← ∅
(2) while true
(3) msg ← getMsg()
(4) if msg is token
(5) token ← msg
(6) if token.threshold = NULL
(7) token.threshold ← CALCTHRESHOLD(token)
(8) if token.threshold < Cap(token.value)
(9) if token.potential
(10) PV ← PV ∪ token.value
(11) SENDMSG(token.owner, “retained”)
(12) else
(13) V ← V ∪ token.value

(15) if
∑

v∈V Resources(v) ≥ agent.resources
(16) out ← V− MAX CAP(V )
(17) foreachv ∈ out
(18) if v.potential
(19) SENDMSG(pv.owner, “release”)
(20) PASSON(new token(v, potential))
(21) else
(22) PASSON(new token(v))
(23) V ← V − out

(25) else
(26) PASSON(token) /* threshold< Cap */
(27) else ifmsg is “lock v a∗”
(28) if v ∈ PV
(29) PV ← PV − v
(30) V ← V ∪ v
(31) else
(32) ∀a ∈ a∗ SENDMSG(a, “released”)
(33) else ifmsg is “releasev”
(34) PV ← PV − v

ber ofpotential tokens(Alg. 2, line 3). The potential tokens
work in exactly the same way as normal tokens except that
when a team member accepts a potential token it agrees to
accept the task represented by the token (Alg. 1, line 10),
only if a potential token for each of the other real tokens is
accepted and may perform other tasks in the meantime. This
allows LA-DCOP to simultaneously allocate tasks and co-
ordinate agents to perform interdependent tasks. This par-
allelism is not available to other DCOP algorithms and is a
major advantage of LA-DCOP.

When the team member holding the real tokens is in-
formed that at least one potential token for each real token
has been accepted by a team member itlocks the group.
Locking is done by selecting the holder of one potential
token for each real token and sending them the real token
(Alg. 2, line 15). A list of agents accepting the other real to-
kens is also sent. Note that this mechanism guards against
deadlocks: if an agenta sends a “Release” message first
and then receives a “Lock” message,a is now responsible
for sending messages to other receivers of the “Lock” mes-
sage to also release (Alg. 1, line 32). Holders of potential to-

ALGORITHM 2: ANDMONITOR(V )
(1) foreachv ∈ V
(2) for 1 to No. Potential Values
(3) PASSON(new token(v,potential))

(5) /* Wait to accept potential tokens */
(6) while Πv∈V |Retained[v]| = 0
(7) msg ← getMsg()
(8) if msg is “retainedv”
(9) Retained[v] ← Retained[v] ∪msg.sender
(10) else ifmsg is “releasev”
(11) Retained[v] ← Retained[v]−msg.sender

(13) /* Send real tokens */
(14) foreachv ∈ V
(15) a∗ = ∀a ∈ Retained[v] Cap(a∗, v) > Cap(a, v)
(16) foreacha ∈ a∗
(17) SENDMSG(a, { “lock v”, a∗ })
(18) foreacha ∈ Retained[v]− a∗
(19) SENDMSG(a, “releasev”)

kens that are not replaced with real tokens are also released
(Alg. 2, line 19).

Observe that a similar approach would be sufficient for
other constraints such asXOR−K. Instead of waiting for
all agents to respond, a lock could be issued as soon as po-
tential tokens for the first K tasks are accepted, and any
agents not part of the locked group could be released. The
flexibility to deal with multiple types of constraints demon-
strates the generality of the potential token approach.

4. Calculating Thresholds

In this section, we present a model which allows calcu-
lation of themaximum expected utility (MEU) thresholdfor
one simple class of problems. This type of calculation can
be done by a team member to determine the best threshold
for a newly-created token, as described in the previous sec-
tion. Our calculation is based on theexpected utility(EU )
to the team of using that threshold. Specifically, we calcu-
late an expectation of which tasks will be executed and the
capability of the agents that will be executing those tasks
when the algorithm settles into a steady state. Abstractly,
we can write the EU of using a particular threshold,T , as:

EU(T ) = E(# tasks executed|T )×
E(capability of capable agent|T )

= E(# capable agents|T )×
E(# tasks per capable agent|T )×
E(capability of capable agent|T )

where a capable agent has at least one capability above the
threshold. Notice that since we are using expectations for
each value, the result is an expectation of the utility to the
team, not a precise calculation of the utility it will receive.
While the above equation is the most general, calculating
the values of the the terms for specific teams is non-trivial.



E(# tasks executed|T ) =





1
r1

NT if NT < Nr1

1
ru

NT +
u−1∑
i=1

(1− ri
ru

)PiM if for any u ∈ {2, q},
u−1∑
i=1

Nri < NT <
u∑

i=1

Nri

M otherwise

Eqn 1: Calculation of the number of tasks executed.

EU(T ) =





1
r1

(1− T K)N 1+T
2

if T > (1− r1p1M
N

)
1
K

( 1
ru

(1− T K)N +
u−1∑
i=1

(1− ri
ru

)piM) 1+T
2

if for any u ∈ {2, q}, (1−
u∑

i=1
ripiM

N
)

1
K < T < (1−

u−1∑
i=1

ripiM

N
)

1
K

M 1+T
2

if (1−
q∑

i=1
ripiM

N
)

1
K > T

Eqn 2: Calculation of the expected utility of a particular threshold,T .

Below we look at class of models that covers a wide range
of extreme team domains.

We assume thatclassesof tasks require the same capa-
bility and that there areM tasks,N agents andK classes
of tasks (MK tasks of each class). Each agent has a capabil-
ity for a class of tasks chosen from a uniform, random dis-
tribution over[0, 1]. An agent’s capability to perform one
type of task is independent of its ability to perform any an-
other type.

We also assume that each agent has one normalized unit
of resources (i.e.,∀e, e.res = 1). Tasks within a class re-
quire different amounts of resources. Specifically, we dis-
cretize the resource requirements of tasks to0 < r1 < r2 <
. . . < rq ≤ 1 and say that a proportionpi of the tasks re-
quires an amountri of resources. To execute all tasks re-
quiring a specific amount of resource,ri, requires number
of agentsNri = pi × ri ×M (which is an approximation
of b 1

ri
c ×Nri = pi ×M ).

Due to the independence and uniformity of the capabil-
ity distributions, we can writeE(#capable agents|T ) =
(1 − TK) × N = NT . Due to the independence between
capability distributions, if all tasks cannot be performed, a
good approximation of the highest utility is received when
the tasks requiring the most resources are not performed.
Thus we can write a calculation based on assigning tasks re-
quiring least resources first, as shown in Eqn. 1. Given the
uniform capability distribution, the capability of an agent
performing a task will be1+T

2 . Hence, substituting forNT

andNri , we get the equation for EU given T shown in Eqn.
2. Since this is a continuous, piecewise function, if we take
the maximum of each of the pieces, we see that the maxi-
mum of these is the maximum of the overall function. We
can readily determine the maximizing value ofT on each
of the pieces via linear time numeric methods, and so find
the maximizing value forT . In the next section, we show
that the MEU threshold determined via this approach yields
a reward that is very close to the experimentally determined
maximum.

5. Experiments and Results

We have tested LA-DCOP extensively in three environ-
ments. The first is an abstract simulator that allows us to run
many experiments with very large numbers of agents[12].
In the simulator, agents are randomly given capabilities for
each of 5 types of task, with some percentage being given
zero capability. For each time step that the agent has the
task, the team receives ongoing reward based on the agent’s
capability. Message passing is simulated as perfect (loss-
less) communication that takes one time step. As the sim-
ulation progresses, new tasks arise spontaneously and the
corresponding tokens are distributed randomly. The new
tasks appear at the same rate that old tasks disappear, thus
keeping the total number of tasks constant. This allows a
single, fixed threshold for all tasks to be used throughout
the experiment. Each data point represents the average from
20 runs.

The first set of experiments tested LA-DCOP against
three competitors. The first is DSA, which is shown to out-
perform other approximate DCOP algorithms in a range of
settings [10, 4]; we choose optimal parameters for DSA
[21]. As a baseline we also compare against a centralized
algorithm that uses a “greedy” assignment[3]. Results are
shown for LA-DCOP using two different thresholds, T=0.0
and T=0.5. Figure 1(a) shows the relative performance of
each algorithm as the number of agents is increased. The ex-
periment used 2000 tasks over 1000 time steps. The y-axis
shows the total reward, while the x-axis shows the number
of agents. Not surprisingly, the centralized algorithm per-
forms best. LA-DCOP performs significantly better with a
threshold of 0.5 than with no threshold. LA-DCOP with ei-
ther threshold statistically outperforms DSA (with probabil-
ity greater than 99.9%, as determined by a t-test).

The real key to the comparison, however, is the amount
of communication used, as shown in Figure 1(b). Notice
that the y-axis is a logarithmic scale; thus LA-DCOP uses
approximately four orders of magnitude fewer messages
than the greedy algorithm and six orders of magnitude fewer
messages than DSA. LA-DCOP performs better than DSA
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Figure 1. (a) comparing the reward versus the
number of agents. (b) the number of messages
sent versus the number of agents

despite using far less communication and only marginally
worse than a centralized approach, despite using only a tiny
fraction of the number of messages. We can also see a trade-
off in the amount of messages that LA-DCOP uses com-
pared to its reward; with no thresholds, LA-DCOP uses
fewer messages than with a threshold of 0.5, at the cost of
reduced reward.

To validate the calculation of MEU threshold, Figure 2a
shows the reward found experimentally versus the expected
reward as calculated via the theory when the ratio of tasks
to agents (theload) is 1. The data points have a correlation
coefficient of 0.9679. The close match of the theory and ex-
perimental results illustrates that we can rely on mathemat-
ical analysis to approximate MEU thresholds.

Figure 2b shows the reward obtained using different
thresholds over experiments with loads of 0.2, 0.5, and 2.0,
averaged over 20 runs each. Such load variance models ex-
pected dynamic events in extreme team domains, e.g., the
spread of fires causing an explosion in disaster rescue. As
load is increased, the threshold that yields maximal reward
decreases. However, no single fixed threshold is able to
maximize reward under all three loads. The first bar, labeled
DC, shows the reward obtained using the MEU threshold
for each load (as calculated by Equation 2), as is done in
LA-DCOP. The figure clearly shows that the LA-DCOP ap-
proach of dynamically computing thresholds outperforms
fixed, static thresholds under varying load.

Even when load does not change dynamically in an ex-
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Figure 2. (a) comparison between theoretical and
experimental reward versus threshold. (b) effect of
thresholds on total reward for different loads of
tasks/agents.
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Figure 3. (a) the effects of different proportions
of tasks changing each step. The y-axis shows
the output, x-axis shows the percentage of agents
with capability > 0. (b) the effect of retainers, with
the lines representing no retainers, one retained
task per agent and five retained tasks per agent.

treme team domain, tasks will often turn over at a rapid rate.
In Figure 3a, we show that LA-DCOP performs well even
when this change is very rapid. The four lines represent dif-
ferent rates of change, with 0.01 meaning that every time
step (i.e., the time it takes to send one message) 1% of all
tasks are replaced with tasks requiring a different capability.
The x-axis measures the probability that an agent is func-
tional in type of task. When this value is 50%, with 1% dy-
namics, LA-DCOP loses 10% of reward/agent on average,
but when more agents are likely to be functional, the loss
due to even high dynamics is within 10% reward/agent.

Finally, Figure 3b shows the utility of potential tokens
when groups of tasks are AND constrained. In the fig-
ure, 60% of all tasks (900 tasks) are AND constrained into
groups of five tasks. Unless an agent with non-zero capabil-
ity is assigned to each task in the group, the team receives no
reward. It is clear that potential tokens help since the low-
est output is received without the potential tokens (labeled
“None”). Moreover, allowing agents to have up to five po-
tential tokens (labeled “Retain 5”) leads to better perfor-
mance than allowing them to have only one potential token
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Figure 4. (a) the number of fires extinguished by
200 fire trucks versus threshold (b) the number of
targets hit by UAVs versus threshold.

(labeled “Retain 1”). The effect is most pronounced when
about 40% of agents are functional because this is the case
when most deadlocks and idleness occur otherwise.

In our second set of experiments, we used 200 LA-
DCOP enhanced versions of Machinetta proxies[18], dis-
tributed over a network, executing plans in two simple
simulation environments. The proxies execute sophisticated
teamwork algorithms as well as LA-DCOP and thus pro-
vide a realistic test of LA-DCOP. The first environment is
a version of a disaster response domain where fire trucks
must fight fires. Capability in this case is the distance of
the truck from the fire, since this affects the time until the
fire is extinguished. Hence, in this case, the threshold cor-
responds to the maximum distance the truck will travel to
a fire. Figure 5(a) shows the number of fires extinguished
by the team versus threshold. Increasing thresholds initially
improves the number of fires extinguished, but too high a
threshold results in a lack of trucks accepting tasks and a de-
crease in performance. In the second domain, 200 simulated
unmanned aerial vehicles (UAVs) explore a battle space, de-
stroying targets of interest. While in this domain LA-DCOP
effectively allocates tasks across a large team, thresholds are
of no benefit. The key point of these experiments is to show
that LA-DCOP can work effectively, in a fully distributed
environment with realistic domains and large teams.

RoboCup Rescue Experiments
We also tested our approach in the RoboCup Rescue en-

vironment [8]. RoboCup Rescue provides an ideal, realis-
tic testing ground for LA-DCOP in allocating roles to an
extreme team comprised of fire engines. Our experimental
setting features 10 fire fighters and 18 ignition points. We
considered different distributions of agents and fires, testing
our approach in situations where fires are clustered in one,
three, and four regions of the map (Clusters-1, Clusters-3,
and Clusters-4, respectively).

In previous work, researchers have documented the fail-
ure of auction based algorithms for role allocation in
RoboCup Rescue[11], due to the high communica-
tion requirements. To test whether LA-DCOP can al-
locate roles within the communication and time limita-

tions of RoboCup Rescue, we compared against a shortest
distance based strategy, which exploits domain charac-
teristics and is similar to that used by top-performing
RoboCup Rescue teams. Agents’ capabilities are com-
puted considering whether the agent is blocked or not
and its current distance from the fire. Because the num-
ber and strength of fires varies with time, we also compared
against LA-DCOP run with fixed thresholds.
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Figure 5. LA-DCOP outperforms SD

Figure 5 compares the different strategies, averaged over
20 runs. LA-DCOP with dynamically computed thresholds
(LA-DCOP-DC) is seen to outperform (i.e., extinguish fires
faster than) competitors for the Clusters-1 and Clusters-3.
Indeed, in Clusters-3, LA-DCOP-DC extinguishes fires in
100 time units, while SD is unable to extinguish the fires
within even 300 units (our cutoff). In Cluster4, fires spread
throughout the city, creating a scenario that is very difficult
for LA-DCOP-DC. The key to note is that even in this dif-
ficult cluster4 scenario, LA-DCOP-DC is performing simi-
larly to SD.
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Figure 6. average threshold versus time

Figure 6 shows how the thresholds in LA-DCOP-DC
change with time. The thresholds averaged over all tokens
are plotted for each of the three scenarios. Average thresh-
olds begin high, then fall as load increases. Since thresh-
olds stay constant once assigned to tokens, this means that
as new tasks arise, the MEU thresholds calculated for them
are lower than at previous times. This ability under LA-



DCOP to compute thresholds based on current conditions
gives it valuable flexibility in dealing with the dynamic do-
mains in which extreme teams must operate.

6. Summary and Related Work

In this paper, we have described a novel approach to task
allocation in extreme teams. Our DCOP based approach
substantially outperforms other approximate DCOP algo-
rithms, both in total reward and in communication, where
we demonstrated a dramatic six orders of magnitude reduc-
tion in messages. It allows a scaling up in team size by an or-
der of magnitude, while coping with additional challenges
of extreme team domains that other algorithms cannot ad-
dress. In particular, the ability to use team knowledge to dy-
namically compute MEU thresholds allows LA-DCOP to
find good allocations even in dynamic domains.

Task allocation is an extensively studied area with work
ranging from high complexity, forward looking optimal
models[11], to symbolic matching that ignores cost[20, 14],
to centralized auctions[7], to swarm techniques[17, 1, 2], to
distributed constraint optimization[21, 10, 9]. Among these,
the forward looking optimal models and centralized auc-
tions are not only highly centralized, but their computation-
ally expensive considerations of optimality lead to difficul-
ties in their application in highly dynamic extreme team do-
mains. The symbolic matching models ignore costs com-
pletely, which is highly detrimental. Swarm techniques use
local sensing to modulate flexibility, but LA-DCOP permits
additional global knowledge to factor into thresholds. Fi-
nally, we have discussed the DCOP models, particularly in-
complete DCOP algorithms, in detail throughout the pa-
per and presented comparison of our work to these algo-
rithms. Complete DCOP algorithms like ADOPT and Op-
tAPO are appropriate in key domains where optimality is
critical, but the significant amount of communication en-
gendered would be highly problematic in densely connected
constraint graphs in extreme teams, and they are unable to
handle dynamics of extreme team domains.
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