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Abstract The problem of task allocation in teams is one of opti-
mally assigning tasks in a team plan to agents to maximize
Extreme teams are on the horizon: large-scale agent gyerall team utility[11, 20]. Extreme teams emphasize four
teams operating in dynamic environments, problematic for ey constraints on task allocation: (i) domain dynamics may
current task allocation algorithms due to the lack of local- ¢5yse tasks to disappear; (ii) agents may perform multiple
ity in agent interactions. We propose a novel distributed task tasks within resource limits: (i) many agents have over-
allocation algorithm for extreme teams, called LA-DCOP, lapping functionality to perform each task, but with differ-
that incorporates three key ideas. First, LA-DCOP's task ing |evels of capability; and (iv) inter-task constraints (such
allocation is based on a dynamically computethimum a5 simultaneous execution requirements) may be present.
capability thresholdvhich uses approximate knowledge of Thjs task allocation challenge in extreme teams will be re-
task load — given lack of locality, obtaining knowledge of ferred to as E-GAP, as it subsumes the generalized assign
exact task load at each agent is highly communication in- ment problem (GAP), which is NP-complete[19].
tensive. Second, LA-DCOP uses tokens to represent tasks The first two constraints in E-GAP above (dynamics and

and further minimize communication. Third, it creaf#s  yjiple tasks) make approximations a necessity, since it is
tential tokengo deal with inter-task constraints of simulta- extremely difficult to obtain optimal solutions in a timely

neous execution..We S.hO\.N that LA-DCOP cqnvincinglly OUt-tashion. The remaining two constraints emphadis of
per.form§ competing dlstrlputed task allocation algorithms locality in agent interactions, e.g., due to overlapping agent
while using orders of magnitude fewer messages. LA-DCOPynctionality, in assigning a specific task, an agent must po-
has allowed a dramatic scale-up in extreme teams, allocat-nia|ly consider all other agents (and not a small subset).
ing tasks in a fully distributed, proxy-based team of 200 |, yractical extreme team domains, such global interactions
agents, and its varying threshold are seen to be key in itSy 5y that agents will frequently possess reasonable esti-
outperforming competing distributed algorithms in the do- 15tes of the team capabilities or the situation. For exam-
main of simulated disaster rescue. ple, fire fighter team members may know the number of fire
. trucks to an order of magnitude, and have (only) a probabil-
1. Introduction ity distribution on the locations of fires. This imperfect team
Distributed task allocation is a fundamental research knowledge is a key property of extreme teams, and provides
challenge in multiagent systems, with recent results report-2 valuable way to restrict the search space to good (if sub-
ing significant progress in task allocation in teams[16, 7, 20, optimal) solutions.
18, 15]. However, a significant large class of practical ap-  This paper builds on Distributed Constraint Optimization
plications — that we calextreme teams— has emerged, (DCOP)[10, 4] for task allocation, as DCOP offers the key
imposing new requirements for task allocation in teams. advantages of distributedness, presence of fast/approximate
Extreme teams include mobile sensor or UAV teams[6], algorithms and a rich representational language which can
robot teams for Mars colonies[5], disaster rescue simu-consider costs/utilities of tasks. Despite these advantages,
lations, as well as large-scale future integrated manufac-previous DCOP approaches to task allocation suffer from
turing and service organizations (e.g., hospitals)[13]. Ex- three key weaknesses. First, DCOP algorithms are unable to
treme teams require team members, each with limited re-use imperfect team knowledge to efficiently and effectively
sources, to act in real-time dynamic environments. More allocate tasks. Second, constraints exist between any team
importantly, team members possess overlapping functional-members with overlapping functionality, resulting in dense
ity, but differing capabilities to perform different tasks. For constraint graphs that dramatically increase communication
instance, in disaster rescue simulations, different fire fight- within DCOP algorithms; even approximate DCOP algo-
ers and paramedics comprise an extreme team; and whilgithms suffer from communication overload. Third, DCOP
fire fighters and paramedics have overlapping functional- algorithms handle interdependencies between tasks (such as
ity to rescue civilians, for a specific rescue task, one set of requirements of simultaneous execution) very inefficiently,
paramedics may have a higher capability given rapidly de- as these are in effect non-binary constraints.
teriorating health of civilians. We propose a novel DCOP algorithm called LA-DCOP



(Low communication Approximate DCOP) to meet the perform tasks, and denote the amount of resources avail-
requirements of E-GAP. LA-DCOP uses a representationable toe; by e;.res; e; must spendRes(e;, 6,) to perform
where agents are variables that can take on values from &;.

common pool, i.e., the pool of tasks to be assigned. The Following convention, we define an allocation matAx
mechanism for allocating tasks to agents encapsulates threehereq,; is the value of théth row andjth column given
novel ideas. First, LA-DCOP improves efficiency by not by

solving for an exact optimal reward; instead, it focuses on {1 if ¢, is performingd.
i J
a/l_] =

maximizing the team’s expected total reward, given avail- 0 otherwise
Wi

able probabilistic information, by computing a minimum
capabilitythresholdfor each task. This threshold is dynam-
ically computed and altered based on dynamic knowledge
of the team and task environment. Secaoéterrbased ac- A = arg niax Z Z Cap(e;, 0;) x a;j

cess to values reduces the communication overhead due to e cE0;€0

constraint graph denseness by allowing at most one agensuch that all agents’ resource limitations are respected:
to perform each task at any given time. Third, to deal with
groups of interdependent tasks, we introduce the idea of al-
lowing values to be represented pgtential tokensBy ac-
cepting a potential token, an agent confirms that it will per- and at most one team member performs each task:
form the task once the interdependencies have been worked V8, € ©, Z ai; < 1

out. In the meantime, the agent can perform other tasks.

We have extensively empirically evaluated the LA-
DCOP algorithm using a mixture of high and low fi-
delity simulation environments. Experiments on a sim-
plified testbed illustrate four key points. First, the key

The goal in GAP is to findd that maximizes team reward:

Ve, € B, z Res(e;,0;) x a;; < e;.res
9]‘69

e, €F
While GAP captures many aspects of task allocation, its
simplistic relationship between capability and reward does
not capture interdependencies between tasks. Also, the so-
lution A corresponds to a single static allocation, and thusis

:ea’;_urlest ?(f the a_Igo_r]J_thm,tl mqludlng th_rteshold]:c, and po- not suited for dynamic domains. We tackle both shortcom-
ential tokens, significantly improve its performance. ings next by extending GAP.

Second, when compared to other approximate DCOP algo- Extended GAP
rithms, LA-DCOP finds better task allocations, while us- Coordination constraintsg, are interdependencies be-

ing up to six orders of magnitude fewer messages. Third'tween tasks. For example, in a1V D constraint, the team
we lllustrate that the algorithm performs well on two re- only receives reward for each task if all the constrained tasks

ﬁl&stlljccg%mr?ms, ”by edmb((ajddlngt. It in lteamvyo:k pklro|>|<|es. are simultaneously executed. AW D constrained set of
A as aflowed a dramatic scale up In task alloca- gy s can pe used to represent a task that requires multi-

tion for proxy teams, from 20 agents to 200 agents. We alsople agents to successfully perform (such as extinguishing

Lllustrate effeclt_lvet_task ?j"_(ﬁca?ort' 'E AaDlgrgle;-spalt_af_ d'si‘ls' a large fire). More complex coordination constraints such
er rescue application and rfiustrate LA- signilicantly’ 55 xOR or XOR — K may specify that exactly one or

outperforming its competitors. exactly K of the constrained tasks be simultaneously per-
formed, or else the team suffers a penalty. We explicitly fo-
cus onAN D constraints here, but the formalization can be
A static task allocation problem is an example of a GAP extended to these other constraint types as well.

2. Problem Statement

instance with a se® = {6,,...,0,,} of tasks to be per- Letoa= {a1,...,a;}, Whereay = {0,,..., 0k, } de-
formed and a seff = {ey,...,e,} of team members to  notes thekth set of AN D constrained tasks. The number of
perform them[19]. Each team memberc E has a capa-  tasks ina; that are being performed is then

bility to perform each task; € ©, and a limited amount T = Z Z air,

of resources with which to perform all of its tasks. Capa-
bility reflects the quality of the output or the speeq of task Lettingvi; = Capl(e;, 6;) x ai;, e then have that the value
performance or other factors affecting output, and is a mea- ; - -

. of e; performingd; givenr< is
surement of the reward the team receives for the agent per-

e, €E Ok]. Cayg

forming a task. Mathematically, the capability @fto per- vij  if Yoy, €, 0 ¢ ay,
form 6, is given by:Cap(e;,6;) — [0,1]; if Cap(e;,0;) > Val(ei, 05,) = ¢ v;;  if Joy, epawith 0; € ap Az = |ou]
0, we say thate; is functional for §;. In extreme teams, 0 otherwise

Cap(e;, 0;) > 0 for a significant proportion (or even aH)
for eachd;, to model overlapping functionality. We assume where the first case is the reward for unconstrained tasks
that each agent has a single type of resource with which toand the last two are for constrained tasks.



To introduce the dynamics of extreme teams into GAP, represented by tokens it currently has or to pass the tokens
we indexO, E, Cap, Res, < andVal by time. The most  on. First, a team member must decide whether it is in the
important consequence of this is that we no longer seek abest interests of the team for it to assign the value repre-
single allocationA; rather we need a sequence of alloca- sented by a token to its variable (Alg 1, line 8). Algorithms
tions, A—, one for each discrete time step. A delay cost like DSA and DBA[21] attempt hill-climbing at each step
function,DCt(ej), captures the cost of not performiﬁg by enabling an agent to change its value to enable max-
at timet. Thus, the objective of the E-GAP problem is to imum gain to the team, given knowledge of neighboring
maximize: agents. However, communication of neighboring agents’

-\ _ tet pt it t values is expensive (section 5 provides detailed experimen-
A7) =22 D, D (Val'(el,0),0) x afy) tal results). Instead, LA-DCOP useth@esholdon the min-

t ejeE! 9lcO! . - . .
imum capability an agent must have in order to assign the

B Z Z (1- Z aﬁj) X DCt(0§) value. This threshold is attached to the token, which is then
t gjeer ¢;€E! circulated through the team until it is held by an agent with
such that capability above threshold for the task and within resource
constraints. (To avoid agents passing tokens back and forth,
Vt, Vel € B, Z Res'(e},0%) x a}; < €].res each token maintains the list of agents it has visited; if all
oteor agents have been visited, the token can revisit agents, but
and only after a small delay.) In this way, LA-DCOP performs a
vt, Vot € O, Z al, <1 search for a local maximum similar to DBA and DSA, but
! ele Rt ’ without additional communication beyond passing the to-

en; the threshold guides the tokens towards agents with
igher capabilities to perform them.

The burden of finding a good allocation thus rests
3. LA-DCOP with computing good thresholds. Computing thresh-

LA-DCOP is a DCOP algorithm that attempts to solve E- o:ds Fg]at maélmlzedexpgtc):tedd .utllgy 'f. a k:ley _??rt ?P: th'ﬁ
GAP in an approximate fashion, since high delay costs andalgo.rI rT almt dls esc:l el Il'n 7ec |ohn 'Eh te K resh-
dynamic changes in costs precludes an optimal response. Q¢ IS caicuiated once (Alg 1, line 7), when the task arises

e DCOP framenors each aget = provided wih  var- (4 9 227 DA, tetalon, & okens (reshold e
able to which it must assign values[4, 21, 10], which cor- '

respond to tasks the agent will perform. Since agents canthe world changes, agents will be able to respond by chang-

execute multiple tasks at once, variables can take on multi-"9 the threshold f.or' .ne\'/vly-cre'ated .tokens. Th|s allows
ple values simultaneously, as in graph multi-coloring. LA- the team g_reat erX|b|I!ty_|n dealing with _Qynamlcs by al-
DCOP very compactly represents agents’ knowledge by ex-Nays seekmg to maximize _expected utility based on the
ploiting key properties of extreme teams that arise due to most current |nformat|or? avallfatple.
their large scale and similar agent functionality. The task al- ~ ©Once the threshold is satisfied, the agent must check
location algorithms run by each agent is shown in Algo- whether the value can be asagngd while respecting its lo-
rithms 1 and 2 cal resource constraints (Alg. 1, line 15). If the value can-
A central requirement of E-GAP is that at most one team not be assigned within the resource constraints of the team
member performs each task, or, in DCOP terms, the samel€mber, it must choose a value(s) to reject and pass on to
value is not assigned to two distinct variables. Thus, there isCther ttammates in the form of a token(s) (Alg. 1, lines 20
a"not-equal’ constraint between every agent with function- @nd 22). The agent keeps values that maximize the use of
ality for the same task, which results in dense graphs due'tS capabilities (performed in thilAx CAP function, Alg.
to the overlapping functionality of extreme team members. 1, lin€ 16), and so acts in a locally optimal manner.
Dense graphs are problematic for DCOP algorithms[10, 4] AND Constrained Tasks
because of the large amount of communication required to  In addition to dynamics, E-GAP presented the difficulty
remove conflicts. To avoid this communication, we create of coordination constraints between tasks. When there are
a tokenfor each value. The holder of a token has the ex- AN D constraints between tasks there is the potential for
clusive right to assign the corresponding value to its vari- deadlocksor, at best, severe inefficiencies. To avoid such
able, and must either do so or pass the token to a teammateproblems we introduce the idea pbtential valuesA sec-
In this way, conflicts cannot occur and so communication is ond algorithm, shown in Algorithm 2, runs alongside Algo-
reduced. rithm 1 and works as follows. The tokens for all tasks in an
Given the token-based access to values, the decision forAN D constrained set are given to one team member. For
the agent becomes whether to assign to its variable valuegach of the tokens the team member sends out a small num-

) k
Thus, extreme teams must allocate tasks rapidly to accrug,
rewards, or else incur delay costs at each time step.



ALGORITHM 1: VARMONITOR(Cap, Resources) ALGORITHM 2: ANDMONITOR(V)

1) V«0,PV—0 (1) foreachv € V
(2) while true 2) for 1to No. Potential Values
3) msg < getMsg() 3) PAssON(new tokeng,potential))
(4) if msg is token
(5) token «— msg (5) /* Wait to accept potential tokens */
(6) if token.threshold = NULL (6) while IL,cv|Retained[v]] = 0
@) token.threshold « CALCTHRESHOLD(token) @ msg «— getMsg()
(8) if token.threshold < Cap(token.value) 8) if msg is “retainedv”
9) if token.potential 9) Retained[v] < Retained[v] Umsg.sender
(20) PV «— PV Utoken.value (10) elseifmsg is “releasey”
(11) SENDM sG(token.owner, “retained”) (11) Retained[v] < Retained[v] — msg.sender
12) else
(23) V — V Utoken.value (13) /* Send real tokens */
(14) foreachv € V
(15) if 3 ,c Resources(v) > agent.resources (15) a*x =Va € Retained[v] Cap(ax,v) > Cap(a,v)
(16) out — V— MAXCAP(V) (16) foreacha € ax
a7 foreachv € out a7) SENDMSG(a, { “lock v”, ax })
(18) if v.potential (18) foreacha € Retained[v] — ax
(29) SENDM SG(pv.owner, “release”) (19) SENDMSG(a, “releasev”)
(20) PAssON(new tokeng, potential))
(21) else kens that are not replaced with real tokens are also released
(22) PASSON(new token()) (Alg. 2, line 19).
(23) Ve V—ou Observe that a similar approach would be sufficient for
other constraints such 80OR — K. Instead of waiting for
(25) else all agents to respond, a lock could be issued as soon as po-
(26) PASSON(token) /* threshold< Cap */ . L
(27)  else ifmsg is “lock v ax" tential tokens for the first K tasks are accepted, and any
(28) ifve PV agents not part of the locked group could be released. The
(29) PV — PV —uv flexibility to deal with multiple types of constraints demon-
(30) V—VuUv strates the generality of the potential token approach.
(31) else .
(32) Va € ax SENDMSG(a, “released”) 4. Calculating Thresholds
gzg elspevlf”isf;'; ieqldeaseu In this section, we present a model which allows calcu-

lation of themaximum expected utility (MEU) threshdtat

ber ofpotential tokengAlg. 2, line 3). The potential tokens ~©one simple class of problems. This type of calculation can
work in exactly the same way as normal tokens except thatbe done by a team member to determine the best threshold
when a team member accepts a potential token it agrees tdor @ newly-created token, as described in the previous sec-
accept the task represented by the token (Alg. 1, line 10),tion. Our calculation is based on te&pected utilitf EU)
only if a potential token for each of the other real tokens is to the team of using that threshold. Specifically, we calcu-
accepted and may perform other tasks in the meantime. Thidate an expectation of which tasks will be executed and the
allows LA-DCOP to simultaneously allocate tasks and co- capability of the agents that will be executing those tasks
ordinate agents to perform interdependent tasks. This parWhen the algorithm settles into a steady state. Abstractly,
allelism is not available to other DCOP algorithms and is a We can write the EU of using a particular threshdld as:
major advantage of LA-DCOP. EU(T) E(# tasks executed|T) x

When the team member holding the real tokens is in- E(capability of capable agent|T)
formed that at least one potential token for each real token E(# capable agents|T) x
(
(

has been accepted by a team membéodks the group. E(# tasks per capable agent|T) x

Locking is done by selecting the holder of one potential E(capability of capable agent|T)

token for each real token and sending them the real token

(Alg. 2, line 15). A list of agents accepting the other real to- where a capable agent has at least one capability above the
kens is also sent. Note that this mechanism guards againsthreshold. Notice that since we are using expectations for
deadlocks: if an ageni sends a “Release” message first each value, the result is an expectation of the utility to the
and then receives a “Lock” messageis now responsible  team, not a precise calculation of the utility it will receive.
for sending messages to other receivers of the “Lock” mes-While the above equation is the most general, calculating
sage to also release (Alg. 1, line 32). Holders of potential to- the values of the the terms for specific teams is non-trivial.



%NT if Np < Ny,
u u—1 u
E(# tasks executed|T) = ¢ 2 Np+ 3 (1 — Z)P;M ifforany u € {2,q}, 3 Nr, < Nr < 3 Ny,
“ i “ i=1 i=1

—1
i=1

M otherwise

Eqgn 1: Calculation of the number of tasks executed.

L -TF)NT if T > (1— DBy
L x u—1 N T _il ripiM uill ripiM
EU(T) = (;(1 —T")N + ;1(1 — ﬁ)PiM)T ifforany u € {2,¢},(1 - =5F—)* <T < (1 - =xF—)%
q
1+7T H iglmpijw L
M == if (1-=xF—)x>T

Eqn 2: Calculation of the expected utility of a particular threshald,

Below we look at class of models that covers a wide range5. EXxperiments and Results

of extreme team domains. We have tested LA-DCOP extensively in three environ-

We assume thatlassesof tasks require the same capa- ments. The firstis an abstract simulator that allows us to run
bility and that there ard/ tasks,N agents and{ classes  many experiments with very large numbers of agents[12].
of tasks % tasks of each class). Each agent has a capabil-In the simulator, agents are randomly given capabilities for
ity for a class of tasks chosen from a uniform, random dis- each of 5 types of task, with some percentage being given
tribution over[0, 1]. An agent’s capability to perform one zero capability. For each time step that the agent has the
type of task is independent of its ability to perform any an- task, the team receives ongoing reward based on the agent’s
other type. capability. Message passing is simulated as perfect (loss-

We also assume that each agent has one normalized umjtess) communication that takes one time step. As the sim-

. - ulation progresses, new tasks arise spontaneously and the
of resources (i.e¥e, e.res = 1). Tasks within a class re- ; L
. . o . corresponding tokens are distributed randomly. The new
quire different amounts of resources. Specifically, we dis- .
. . tasks appear at the same rate that old tasks disappear, thus
cretize the resource requirements of task& tor; < 7o < . .
. keeping the total number of tasks constant. This allows a
... < ry < 1and say that a proportion; of the tasks re- . '
: single, fixed threshold for all tasks to be used throughout
quires an amount; of resources. To execute all tasks re- . .
o " . the experiment. Each data point represents the average from
quiring a specific amount of resourecg, requires number

of agentsN,, = p; x r; x M (which is an approximation 20 runs.
? AR PP The first set of experiments tested LA-DCOP against
of | ;-] x Ny, = p; x M).

three competitors. The first is DSA, which is shown to out-
Due to the independence and uniformity of the capabil- perform other approximate DCOP algorithms in a range of
ity distributions, we can writé(#capable agents|T) = settings [10, 4]; we choose optimal parameters for DSA
(1 - TK) x N = Nr. Due to the independence between [21]. As a baseline we also compare against a centralized
capability distributions, if all tasks cannot be performed, a algorithm that uses a “greedy” assignment[3]. Results are
good approximation of the highest utility is received when shown for LA-DCOP using two different thresholds, T=0.0
the tasks requiring the most resources are not performedand T=0.5. Figure 1(a) shows the relative performance of
Thus we can write a calculation based on assigning tasks reeach algorithm as the number of agents is increased. The ex-
quiring least resources first, as shown in Egn. 1. Given theperiment used 2000 tasks over 1000 time steps. The y-axis
uniform capability distribution, the capability of an agent shows the total reward, while the x-axis shows the number
performing a task will be”TT. Hence, substituting foN, of agents. Not surprisingly, the centralized algorithm per-
andXN,,, we get the equation for EU given T shown in Eqn. forms best. LA-DCOP performs significantly better with a
2. Since this is a continuous, piecewise function, if we take threshold of 0.5 than with no threshold. LA-DCOP with ei-
the maximum of each of the pieces, we see that the maxi-ther threshold statistically outperforms DSA (with probabil-
mum of these is the maximum of the overall function. We ity greater than 99.9%, as determined by a t-test).
can readily determine the maximizing value®fon each The real key to the comparison, however, is the amount
of the pieces via linear time numeric methods, and so find of communication used, as shown in Figure 1(b). Notice
the maximizing value foff". In the next section, we show that the y-axis is a logarithmic scale; thus LA-DCOP uses
that the MEU threshold determined via this approach yields approximately four orders of magnitude fewer messages
areward that is very close to the experimentally determinedthan the greedy algorithm and six orders of magnitude fewer
maximum. messages than DSA. LA-DCOP performs better than DSA
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Figure 3. (a) the effects of different proportions
despite using far less communication and only marginally  of tasks changing each step. The y-axis shows
worse than a centralized approach, despite using only atiny the output, x-axis shows the percentage of agents
fraction of the number of messages. We can also see a trade- with capability > 0. (b) the effect of retainers, with
off in the amount of messages that LA-DCOP uses com-  the lines representing no retainers, one retained
pared to its reward; with no thresholds, LA-DCOP uses  task per agent and five retained tasks per agent.
fewer messages than with a threshold of 0.5, at the cost of
reduced reward.

To validate the calculation of MEU threshold, Figure 2a treme team domain, tasks will often turn over at a rapid rate.
shows the reward found experimentally versus the expectedn Figure 3a, we show that LA-DCOP performs well even
reward as calculated via the theory when the ratio of taskswhen this change is very rapid. The four lines represent dif-
to agents (théoad) is 1. The data points have a correlation ferent rates of change, with 0.01 meaning that every time
coefficient of 0.9679. The close match of the theory and ex- step (i.e., the time it takes to send one message) 1% of all
perimental results illustrates that we can rely on mathemat-tasks are replaced with tasks requiring a different capability.
ical analysis to approximate MEU thresholds. The x-axis measures the probability that an agent is func-

Figure 2b shows the reward obtained using different tional in type of task. When this value is 50%, with 1% dy-
thresholds over experiments with loads of 0.2, 0.5, and 2.0,namics, LA-DCOP loses 10% of reward/agent on average,
averaged over 20 runs each. Such load variance models exbut when more agents are likely to be functional, the loss
pected dynamic events in extreme team domains, e.g., thelue to even high dynamics is within 10% reward/agent.
spread of fires causing an explosion in disaster rescue. As Finally, Figure 3b shows the utility of potential tokens
load is increased, the threshold that yields maximal rewardwhen groups of tasks are AND constrained. In the fig-
decreases. However, no single fixed threshold is able toure, 60% of all tasks (900 tasks) are AND constrained into
maximize reward under all three loads. The first bar, labeledgroups of five tasks. Unless an agent with non-zero capabil-
DC, shows the reward obtained using the MEU threshold ity is assigned to each task in the group, the team receives no
for each load (as calculated by Equation 2), as is done inreward. It is clear that potential tokens help since the low-
LA-DCOP. The figure clearly shows that the LA-DCOP ap- est output is received without the potential tokens (labeled
proach of dynamically computing thresholds outperforms “None”). Moreover, allowing agents to have up to five po-
fixed, static thresholds under varying load. tential tokens (labeled “Retain 5”) leads to better perfor-

Even when load does not change dynamically in an ex- mance than allowing them to have only one potential token




tions of RoboCup Rescue, we compared against a shortest
distance based strategy, which exploits domain charac-
teristics and is similar to that used by top-performing
RoboCup Rescue teams. Agents’ capabilities are com-
puted considering whether the agent is blocked or not
2w m and its current distance from the fire. Because the num-
ber and strength of fires varies with time, we also compared
(@) (b) against LA-DCOP run with fixed thresholds.
Figure 4. (a) the number of fires extinguished by
200 fire trucks versus threshold (b) the number of
targets hit by UAVs versus threshold.
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(labeled “Retain 1"). The effect is most pronounced when
about 40% of agents are functional because this is the case
when most deadlocks and idleness occur otherwise.

In our second set of experiments, we used 200 LA-  Clustersd | Clusters.3
DCOP enhanced versions of Machinetta proxies[18], dis-
tributed over a network, executing plans in two simple
simulation environments. The proxies execute sophisticated
teamwork algorithms as well as LA-DCOP and thus pro-
vide a realistic test of LA-DCOP. The first environment is
a version of a disaster response domain where fire trucks Figure 5 compares the different strategies, averaged over
must fight fires. Capability in this case is the distance of 20 runs. LA-DCOP with dynamically computed thresholds
the truck from the fire, since this affects the time until the (LA-DCOP-DC) is seen to outperform (i.e., extinguish fires
fire is extinguished. Hence, in this case, the threshold cor-faster than) competitors for the Clusters-1 and Clusters-3.
responds to the maximum distance the truck will travel to Indeed, in Clusters-3, LA-DCOP-DC extinguishes fires in
a fire. Figure 5(a) shows the number of fires extinguished 100 time units, while SD is unable to extinguish the fires
by the team versus threshold. Increasing thresholds initially Within even 300 units (our cutoff). In Cluster4, fires spread
improves the number of fires extinguished, but too high a throughout the city, creating a scenario that is very difficult
threshold results in a lack of trucks accepting tasks and a defor LA-DCOP-DC. The key to note is that even in this dif-
crease in performance. In the second domain, 200 simulatedicult cluster4 scenario, LA-DCOP-DC is performing simi-
unmanned aerial vehicles (UAVs) explore a battle space, deJarly to SD.
stroying targets of interest. While in this domain LA-DCOP

Extinguishing Time

Clusters-4

Figure 5. LA-DCOP outperforms SD

effectively allocates tasks across a large team, thresholds are

of no benefit. The key point of these experiments is to show z ! N —1 Cluster -
that LA-DCOP can work effectively, in a fully distributed 7 — =3 Clusters |
environment with realistic domains and large teams. £%T I

RoboCup Rescue Experiments gzz .

We also tested our approach in the RoboCup Rescue en- z | Shakate\ il B
vironment [8]. RoboCup Rescue provides an ideal, realis- 115 29 43 57 71 8 99
tic testing ground for LA-DCOP in allocating roles to an Time
extreme team comprised of fire engines. Our experimental . .
setting features 10 fire fighters and 18 ignition points. We Figure 6. average threshold versus time

considered different distributions of agents and fires, testing
our approach in situations where fires are clustered in one,
three, and four regions of the map (Clusters-1, Clusters-3, Figure 6 shows how the thresholds in LA-DCOP-DC
and Clusters-4, respectively). change with time. The thresholds averaged over all tokens
In previous work, researchers have documented the fail-are plotted for each of the three scenarios. Average thresh-
ure of auction based algorithms for role allocation in olds begin high, then fall as load increases. Since thresh-
RoboCup Rescue[ll], due to the high communica- olds stay constant once assigned to tokens, this means that
tion requirements. To test whether LA-DCOP can al- as new tasks arise, the MEU thresholds calculated for them
locate roles within the communication and time limita- are lower than at previous times. This ability under LA-
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