Diagnosis of Multi-Robot Coordination Failures
Using Distributed CSP Algorithms

Meir Kalech' and Gal A. Kaminka! and Amnon Meisels? and Yehuda Elmaliach’
Computer Science Departments
IBar Ilan University, Israel {kalechm,galk,elmaley}@cs.biu.ac.il
2Ben Gurion University of the Negev, Israel am@cs.bgu.ac.il

Abstract

With increasing deployment of systems involving multiple
coordinating agents, there is a growing need for diagnosing
coordination failures in such systems. Previous work pre-
sented centralized methods for coordination failure diagnosis;
however, these are not always applicable, due to the signifi-
cant computational and communication requirements, and the
brittleness of a single point of failure. In this paper we pro-
pose a distributed approach to model-based coordination fail-
ure diagnosis. We model the coordination between the agents
as a constraint graph, and adapt several algorithms from the
distributed CSP area, to use as the basis for the diagnosis
algorithms. We evaluate the algorithms in extensive exper-
iments with simulated and real Sony Aibo robots and show
that in general a trade-off exists between the computational
requirements of the algorithms, and their diagnosis results.
Surprisingly, in contrast to results in distributed CSPs, the
asynchronous backtracking algorithm outperforms stochastic
local search in terms of both quality and runtime.

Introduction

With increasing deployment of systems involving multiple
coordinating agents or robots, there is growing need for di-
agnosing coordination failures. Coordination failures often
lie at the boundaries between the agents and their environ-
ment, including other agents. For instance, a robot may send
a message that another robot, due to an intermittent radio
failure, did not receive. As a result, the two agents come to
disagree on an action to be taken.

Previous work in diagnosis of coordination failures has
focused on centralized methods for such diagnosis (Lam-
perti & Zanella 2003; Micalizio, Torasso, & Torta 2004;
Ardissono et al. 2005; Kalech & Kaminka 2005). Unfor-
tunately, centralized methods suffer from key limitations:
First, they can be computationally expensive in practice, in
terms of communications and run-time. Second, they rely
on a single diagnoser, and thus risk a single point of fail-
ure. Moreover, this assumes no communication limitations,
e.g., range. Finally, they do not not necessarily exploit the
different knowledge of different agents; e.g., an intended
receiver faces difficulty detecting that a message to it was
lost, where the sender may do it more readily. However, dis-
tributed methods that have been proposed, e.g., (Roos, Teije,
& Witteveen 2003) do not address coordination failures.

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

970

This work takes a first step towards distributed model-
based diagnosis of coordination (inter-agent) failures. Fol-
lowing (Kalech & Kaminka 2005) we model the coordi-
nation between the agents as a graph of concurrence and
mutual-exclusion constraints on agents’ actions. The ba-
sic idea of the diagnosis process is to compare the cur-
rent observed actions of the agents to those that satisfy the
coordination constraints. Deviations which cause the con-
straints to be violated lead to suspecting agents of being at
fault. The diagnosis output includes the agents that deviate
from the expected coordination (i.e., a minimal set of ab-
normal agents). Modeling the coordination as a constraint
graph brings to bear solution methods from distributed con-
straint satisfaction (DisCSP) literature, as solutions to the
constraint graph form the basis for diagnoses.

We present four distributed model-based diagnosis algo-
rithms to compute the diagnosis, based on DisCSP algo-
rithms. While the reasoning behind all is the same as out-
lined above, the algorithms differ from each other with re-
spect to their expected run-time (based on DisCSP literature)
and their completeness of the diagnoses (based on whether
they find all or a single DisCSP solution). Two of the algo-
rithms (based on synchronous backtracking) are expensive,
but compute a complete set of minimal diagnoses . One
algorithm, (asynchronous backtracking) is expected to be
computationally cheaper, and guarantees computing a sin-
gle diagnosis (though not necessarily minimal). The last
algorithm (distributed stochastic search) is a local search
algorithm that is not guaranteed to find a diagnosis, but is
known to be highly effective (and cheapest of the above)
in solving DisCSPs in practice (Yokoo & Hirayama 2000;
Zhang et al. 2005).

We evaluated the use of these algorithms in comprehen-
sive experiments with a team of physical and simulated Sony
Aibo robots, experiencing systematic coordination failures.
We examined the computational requirements of the algo-
rithms (i.e., their run-time and bandwidth usage), and the
correctness of the diagnoses produced. We find that in gen-
eral, synchronous backtracking methods that compute the
entire space of minimal diagnoses are naturally more expen-
sive than others, though they produced better diagnosis re-
sults. However, a surprising result is that, the local search
algorithm (which typically outperforms asynchronous back-
tracking methods in DisCSPs) shows only mediocre results,

both in terms of quality of the diagnosis, as well as in terms
of computational requirements.

Related Work

Micalizio et al. (2004) cope with coordination faults by us-
ing causal models of failures and diagnoses to centrally de-
tect and respond to multi-robots and single-robot failures.
Similarly, Lamperti and Zannela (2003) focus on using fault-
models for diagnosis. In contrast to these, we compute the
diagnosis in a distributed fashion, and use model-based di-
agnosis with no fault models.

Ardissono et al. (2005) divide the system to sub-systems
where every agent is responsible to its own sub-system. In-
stead of letting the agents compute the global diagnosis by
exchanging information, the agents send only necessary in-
formation to a central diagnostic service by request. Kalech
and Kaminka (2005) propose centralized consistency-based
and abductive diagnosis methods for diagnosis of coordina-
tion faults. In contrast, the methods we report on here are
all distributed, and thus avoid the shortcomings of central-
ized methods. Moreover, in contrast to (Kalech & Kaminka
2005), we present here empirical results, where the previous
work has only provided a theoretical analysis.

Roos et al. (2003) presented model-based diagnosis meth-
ods for spatially distributed, where a set of n agents are re-
sponsible for diagnosing n sub-systems, respectively. Ev-
ery agent makes a local diagnosis to its own sub-system and
then all agents compute a global diagnosis. In order to build
a global diagnosis set, each agent should consider the cor-
rectness of those inputs of its subsystem that are determined
by other agents. Unlike our work, they assume that there are
no conflicts between the knowledge of the different agents,
i.e., that no coordination faults occur.

To date, only a few researchers use CSP methods to prac-
tically diagnose a system. Wotawa (2004) makes use of the
corresponding representation of the environmental models
as constraint satisfaction problems. He shows how this rep-
resentation can be used directly to derive explanations and
diagnoses. To this goal, he models the system using cause-
effect model, such that different solutions to the CSP are
actually different explanations of the system, and the diag-
noses are derived from them. Sachenbacher and Williams
(2004) extends this model to cope with constraint optimiza-
tion problems over lattices, and with semiring-CSPs. Here
again a satisfaction of constraints signifies an explanation to
a fault. In contrast, we use constraints to model the ideal co-
ordination relationships. Thus the diagnosis algorithm goal
is to diagnose the violated constraints. In addition, previous
systems are not distributed and the diagnosis is computed
centrally, in contrast to our work.

The Social Diagnosis Problem

To present the distributed methods we develop in this paper,
we first begin by briefly describing the model-based coordi-
nation diagnosis problem. We refer the reader to (Kalech &
Kaminka 2005) for a detailed discussion and explanation.

Let T be a group of n agents, where each agent has a
single action variable with domain d—the actions that can be
selected by the agent. The coordination between the agents
is defined by constraints on the values of the agents’ actions:

971

A pair (Agentl = Valuel, Agent2 = Value2), represents
a constraint between the action Valuel of Agentl and the
action Value2 of Agent2.

There are two kinds of constraints, which restrict the joint
action selected by agents: Concurrence constraints (CCRN)
signify that the agents must select their respective specific
action values jointly, at the same time. Mutual-exclusion
constraints (MUEX) signify that the specific actions must
never be selected jointly, at the same time (example below).

Given a set S of selected actions of the agents and the
constraints between them, and assuming that all the agents
did not fail (in terms of model-based diagnosis, are not ab-
normal), the system is inconsistent if the constraints are vi-
olated. This can imply a failure in the joint action selection,
i.e., in coordination. In that case, the goal of the social diag-
nosis process is to find a minimal diagnosis set of abnormal
agents that account for the failure; i.e., agents whose action
selection we can change to cause the system to become con-
sistent (in terms of CSP—that enable the satisfaction of all
constraints). We seek a set of minimal diagnoses, where no
proper subset of any of them is also a diagnosis.

To illustrate, assume a group of robotic space explorers,
whose goal of is to slowly creep on a newly-discovered
alien. To capture the alien, they must approach it from all
sides in alternating steps: A bit from the left, then from the
right, then again from the left, etc. To do this in coordinated
manner, the robots divide into teams of three that spread
around the alien, each with a leader and two followers, that
move in formation using cameras to maintain distances and
angles. A mission commander directs the team leaders, al-
ternating commands for them to go and stop, as needed.

The robots must coordinate all through their mission. The
team leaders are coordinated with each other via the mission
commanders’ commands; and each team’s leader is coordi-
nated with its followers using vision. Once a coordination
failure(s) is detected, the mission must be suspended, in or-
der to diagnose the failed robotic soldiers and then reestab-
lish collaboration. A coordination failure could happen due
to intermittent communication failures (between the mission
commander and team leaders) or due to a vision failure (a
team leader and its followers).

Focusing on a case with a single team, T
{B1,C4, D1, D>}, where Dy, Dy are followers, C; team
leader, and B; mission commander, we define the domain
of the agents to be the actions go (g) or stop (s), d = {g, s}
The coordination constraints between the agents are:

[CCRN:]1 (C1 = g, D1 = g),(C1 =g, D2 = g)

[MUEX:] (B; = 5,C1 = g)

We can represent the constraints between the agents in a
coordination graph (Figure 1), where the vertices represent
the values of the agents’ variables, and the edges represent
the constraints (solid edges mark concurrence constraints;
dashed edges mark mutual exclusion).

/\
g g——=8._
©, ®, ©, .6

Figure 1: Coordination graph for mission commander B,
team leader C1, and the two followers.

Assume follower D; thinks, due to a vision failure, that
the team leader C' stopped, selecting the action s, then the
actual assignments are: S = {By; = ¢,Cy = g,D1 =
s,Dy = g}, ie. the constraint: (C; = ¢g,D; = g) is
violated. By finding solutions to the constraint graph, and
comparing these to .S, the agent can generate two minimal
diagnoses: Ay = {D1},Ay = {By,Cy,D3}. A; corre-
sponds to the possibility that D, is wrong in its belief, A,
corresponds to the possibility that everyone else is wrong.

Distributed Social Diagnosis

We present a distributed approach, where the agents find the
satisfaction(s) and compute the diagnosis by exchanging in-
formation with each other. As in the centralized approach,
computing the diagnosis is done by finding the satisfactions
of the coordination graph, and contrasting these with ac-
tual values. As far as we know, there is no existing algo-
rithm which finds a minimal satisfaction (in terms of mini-
mal diagnosis), where no proper subset of the changed val-
ues could also satisfy the constraints. Thus the minimality
goal is preserved only for some algorithms (see below).

In the next two subsections we propose four distributed
algorithms to find the satisfactions and compute the diagno-
sis. All the algorithms use communication, therefore they
work only in nonpermanent communication breakdowns. In
permanent communication breakdowns neither distributed
nor centralized approach will work. In the first subsection
we present two algorithms for computing the complete set
of minimal diagnoses, and in the following subsection we
present two algorithms for computing an incomplete diagno-
sis which is not guaranteed to be minimal. As we shall see,
these can offer an attractive alternative, despite their lack of
guarantees.

Algorithms for Complete Minimal Diagnoses

In order to compute a complete set of minimal diagnoses, the
agents must compute the whole satisfaction space of the sys-
tem. We use a synchronous backtracking algorithm (SBT)
to compute the satisfactions (Yokoo et al. 1998). This algo-
rithm is based on a distributed depth-first search. The agents
are arranged in a static order. Every agent sends its possi-
ble values to its next agent. The receiving agent checks the
compatibility of the former assignments with every value of
its domain, separately. It returns backward a nogood mes-
sage upon inconsistency, or the partial assignments to the
next agent, upon consistency.

In a system where the constraints between the agents are
static, i.e. they do not change dynamically, the agents could
compute all the satisfactions in advance (offline). During
run-time, every agent keeps a copy of all solutions, using
them to compute the diagnosis. We denote this method
SBT_OFF. On the other hand, in systems where the con-
straints can change dynamically, the agents must compute
the satisfactions, as well as the diagnosis, online. We denote
this SBT_ON.

During diagnosis, every agent reports to the other agents
the indexes of the satisfaction database in which that agent
found an inconsistency. Every agent collects this informa-
tion from the others and computes the diagnoses by dividing
the agents according to the reported indexes. So as to pro-
duce minimal diagnoses, if a diagnosis set is a superset of

972

another diagnosis, it is dropped.

In the previous example the values that satisfy the team
variables are: s1 = (g,9,9,9) and s3 = (s, s, s, s) (corre-
sponding to the order of the agents (By, C1, D1, D2)). As-
sume that follower D failed due to a failure in its vision,
which caused it to select the action stop (s). The agents
exchange the satisfaction indexes in which they found an
inconsistency. Bj sends index 2 since its current value is
g which is not equal to its expected value in satisfaction
So. In the same manner, C; sends index 2, D; sends in-
dex 1 and D> sends index 2. Once an agent accepts this
information from all the others, it divides them according
to the indexes, to form two diagnoses: A; = {D;} and
Ay = {B1,C1, D2}

The first stage, of building the satisfaction database, in-
volves an exponential number of messages and its compu-
tation is also exponential in the number of agents. How-
ever, the diagnosis process itself entails only the exchang-
ing of the indexes of the satisfactions in which the agents
found an inconsistency. The rest of the computation is lin-
ear in the number of agents and polynomial in the size of the
satisfaction database. It only divides the group according
to the indexes. In systems where the constraints are static,
these costs are most delegated to offline processes. How-
ever, where constraints change dynamically, the agents must
compute all the satisfactions dynamically, and these compu-
tational costs are incurred during runtime.

Indeed, distributed CSP literature recognizes the compu-
tational costs of SBT, and offers cheaper alternatives (Yokoo
& Hirayama 2000). These are examined bellow.
Non-Minimal Diagnosis
One alternative taken by many distributed CSP algorithms
is to settle for computing only one solution to a given CSP.
However, for diagnosis, this means that the results are not
guaranteed to be minimal. Moreover, since only one of pos-
sibly many diagnoses would be produced, the result may not
even be correct. Once a satisfaction is found, the agents
compute the diagnosis by comparing their current values to
the expected values in the satisfaction. The deviant agents
are suspected as the abnormal agents.We examine two dis-
tributed CSP algorithms: Asynchronous backtracking and
distributed stochastic search.

Asynchronous Backtracking (ABT). In ABT, the prior-
ity order of agents’ variables is fixed, and each agent com-
municates its value assignment to neighboring agents via
ok? messages. Each agent maintains an agentview, the cur-
rent value assignment of other agents. An agent changes its
assignment if its current value assignment is not consistent
with the assignments of higher priority agents. If there ex-
ists no value that is consistent with the higher priority agents,
the agent generates a new constraint (called a nogood), and
communicates the nogood to a higher priority agent, thus
the higher priority agent changes its value.

ABT is complete in terms of CSP. It always finds a so-
lution if one exists, and terminates if no solution exists, so
we are guaranteed to find one diagnosis. However, still it
has three drawbacks, first, we cannot be sure in advance
which agents will communicate with each other, since an

agent that detects a nogood constraint with non-neighboring
agent adds communication channel to it. Second, in contrast
to SBT, here at the end of the diagnosis process, each agent
may have only a portion of the diagnosis, related only to its
agentview. Third, once a satisfaction is found, the agents
do not continue to look for it, but on the other hand, they do
not know that the search was completed. The next algorithm
copes with some of these drawbacks.

Distributed Stochastic Search Algorithm (DSA). In
contrast to ABT, DSA is synchronous in that all processes
proceed in synchronized steps. The agents go through a
sequence of steps until a termination threshold is met (for
example, limited number of cycles). In each step, an agent
sends its current variable value to its neighboring agents, and
concurrently receives the values from the neighbors. It then
decides stochastically, whether to keep its current value or
change to a new one. This is done based on a pre-defined
strategy that depends on the possibility to reduce violated
constraints. The most critical step of DSA is for an agent to
decide the next value, based on its current state and its per-
ceived states of the neighboring agents. The decision strat-
egy we utilized is the following: If the agent cannot find a
new value to improve its current state (reduces violations),
it will not change its current value; if there exists such a
value that improves its state, the agent may change to the
new value with probability p, or keep the current value un-
changed with probability 1 — p. This continues until a termi-
nation threshold is reached (i.e., a certain number of cycles).
DSA is incomplete, so it may return no solution even
when one exists. However, it copes with some disadvan-
tages of ABT. First we know in advance the communication
channels of every agent (neighboring agents). Second, if an
agent is diagnosed as abnormal, this diagnosis is known to
the abnormal agent and its neighboring agents. Third, the
termination threshold is known to all the agents.

Experiments and Discussion
This section evaluates the distributed diagnosis algorithms

we presented, in terms of computation and communication.
In addition, we examine, for every algorithm, the trade-off
between its computational costs and its ability to produce
correct diagnosis.

We created laboratory versions of the space exploration
example described previously. We evaluated every algo-
rithm in different size groups: 4 robots, 7 robots and 10
robots. In the experiments for 4 robots, the group consisted
of a mission commander and a team consisting of one team
leader and two followers. The group of 7 robots consisted
of a mission commander and two teams, and the group of 10
robots consisted of a mission commander and three teams.

In order to evaluate the algorithms on a representative and
diverse set of problems, a wide set of combination of po-
tential failures was selected. First, we generated all single-
faults possible (1-7 in the list below). Note that we as-
sume all followers/leaders are the same, so it does not matter
which follower/leader has failed. Then we created double-
fault combinations (8—12), and a quadruple failure (13):

1. afollower thinks that the leader stops, although the leader
continues to go.

973

2. a follower thinks that the leader started to go although it

actually did not.

3. ateam leader thinks that it got a message from the mission

commander to stop, although the message was not sent.

4. ateam leader thinks that it got a message from the mission

commander to go, but the message was not sent.

5. the mission commander sent a message to the team lead-

ers, but only some of them received it.

6. a follower stops because of an individual technical prob-

lem (nothing to do with coordination).

7. aleader stops because of an individual technical problem

(nothing to do with coordination).

8. failure 1 above, in two different followers.
9. failure 2 above, in two different followers.
10.
11.
12.
13.

failures 3 and 4 above (one in each team).
failure 5 above for two team leaders.
failures 2 and 6 above.

failure 2 above (twice, for two different followers), and
failure 5 above (twice, for two different team leaders).

Failures 6 and 7 reflect a local fault but not a coordina-
tion fault, since the action values of the robots in the group
remain the same. In particular, although the robot stopped,
it did not select the "stop" action; it believes that its current
action is "go". For these failures, we expect the diagnosis
process to find that the agents’ values satisfy the constraints
and therefore the agents will continue to diagnose the fault
locally. This process is beyond the scope of this paper.

To evaluate the performance of the algorithms from a
computational perspective, two independent measures of
performance were used. We measured communication load
in terms the total number of messages sent (Lynch 1996).
We also measured runtime in terms non-concurrent con-
straint checks (cycles) (Meisels et al. 2002). Each of the
test-case failures is different, and for all algorithms other
than DSA, a single run is sufficient to determine the re-
sults, since no randomization takes place, and no noise is
involved in the observations or deterministic decisions of the
algorithms. However, for DSA (which is a stochastic algo-
rithm), results may change between runs, even starting with
the same initial conditions. For DSA, we therefore run every
experiment 30 times and takes the average. The termination
threshold for DSA was set to the number of robots in the
team (below we will present results using a lower—fixed—
termination threshold).

Experiments with 4 robots were carried out on physical
Sony Aibo robots (Figure 2). These experiments were then
repeated using the Player/Stage software package (Gerkey,
Vaughan, & Howard 2003) simulator, a popular and prac-
tical development tool for robotics (Figure 3). We verified
that the results of the physical and simulated robots (group
of 4) were identical, and then continued the experiments in
larger groups in simulation. Also, experiments using the
DSA were all carried out using the simulator (because of
the need for a significant number of repeated trials).

Figure 2: Sony Aibo robots capturing a mock alien.

~ - [- B[%
@31\ /ED
o &L,
[(2l

Figure 3: Screen shot of Stage simulator in action.

The results of the communication load and the runtime are
presented in Figure 5 and Figure 4, respectively. The z axis
shows the diagnosis algorithm and the y axis presents the
total number of messages sent (Figure 5) and the runtime
(Figure 4). For each algorithm, three bars are shown, one
for each of the group sizes. Each bar represents the average
results across the different failures.

‘El4 agents @7 agents 010 agents

700 2620 216
220 191
200
180
¢ 160
S 140 12y
o 120
o 100
£ 80 71 6
£ 60
20 ﬁ 1130
20 4 311
o 4
< s & v
A ¥ &
X S single single
11, minimal -
acz)mlpiilel?ea complete non-complete

Figure 4: Average number of cycles in different diagnosis
methods.

As expected, computing all the satisfactions online
(SBT_ON) is expensive in terms of both communication
as well as computation. Obviously, computing the satisfac-
tions offline (SBT_OFF) and then online the diagnosis, sig-
nificantly improves the efficiency. SBT_OFF is even better
than the local search algorithm, DSA, although it computes

974

a complete set of diagnoses and not a single one. The reason
for this is that in SBT_OFF the agents communicate only the
indexes of the inconsistent satisfactions, and do not search
online for CSP solutions.

‘ O 4 agents @7 agents O 10 agents
256 173

190

90

#messages
-
o
o
|

N
o
I
—
>
—
R
L
N

&O)

single single

all, minimal

complete complete

non-complete

Figure 5: Average number of messages in different diagnosis
methods.

Surprisingly, ABT outperforms DSA. These results are
surprising in light of previous research that showed that
the stochastic search algorithm is more efficient than ABT
(Zhang et al. 2005). This has to do with the likely state of
a multi-agent system after a coordination failure. In a team
that was in coordination and then failed, the selected actions
of most agents are likely going to be close to the satisfaction.
This enables ABT to find a satisfaction in only a few steps.
On the other hand, in DSA the search may proceed towards
a different part of the space; also, the termination threshold
may cause DSA to continue running needlessly (see below
for experiments with a reduced threshold).

In order to further evaluate the diagnosis algorithms we
examine also the correctness of the diagnoses they produce.
SBT_ON and SBT_OFF produce a complete set of minimal
diagnoses. However, the other algorithms produce only a
single diagnosis. This diagnosis is not guaranteed to be min-
imal and thus to correctly explain the fault(s). In this sense,
ABT is better than DSA, since it is complete and so guaran-
teed to find a diagnosis if one exists (although its minimality
is not guaranteed).

We examine three factors in diagnosis correctness (Table
1): (i) the percentage of robots (out of the group) that failed
to find a solution to the DisCSP, even if some of their peers
did (here the diagnosis did not completely fail); (ii) the per-
centage of experiments in which the group failed to compute
a diagnosis; and (iii) the percentage of experiments in which
the computed diagnosis did not match the correct explana-
tion of the failure(s). Obviously, ABT always succeeds to
compute a diagnosis, because it is complete, and therefore
the number of failed robots and failures in computing the
diagnosis is zero. DSA is based on local search and is in-
complete; some robots failed to compute a diagnosis in 8%
of cases, and all failed to compute even a single diagnosis
in 33%. Both of the algorithms generate diagnoses that do
not match the correct explanation (ABT: 28%, DSA: 46%),
since they compute only a single diagnosis and not a com-
plete set of all the diagnoses.

Diagnosis | % failed | % diagnosis | % incorrect
robots failures diagnosis
ABT 0 0 28
DSA 8 33 46

Table 1: Diagnosis failures and correctness measures.

The results of DSA are affected by the termination thresh-
old, which determines how long the stochastic search runs.
To evaluate the effect of this factor, we reran the above ex-
periments for DSA with a threshold of two cycles. Table
2 summarizes the results of the number of messages and
runtime. Comparing these results to the results presented
in Figures 5 and 4, shows a significant improvement espe-
cially in terms of runtime cycles. However, compared to
running with non-fixed threshold, diagnosis quality has de-
teriorated further: 23% robot failure cases, 49% diagnosis
failure cases, and 56% of diagnoses incorrect.

4 agents | 7 agents | 10 agents
messages 25 30 46
runtime 23 23 23

Table 2: DSA with a threshold of 2 cycles. Each data point
is an average of 30 trials.

One lesson—expected to some degree—is that there ex-
ists trade-off between the effectiveness of the algorithms in
terms of communication and computation and the correct-
ness of the diagnosis that the algorithms produce. Algo-
rithms that produce only a single diagnosis cannot always
provide the correct diagnosis (ABT: in 28% of experiments,
DSA: 46%).

However, there are two surprises. First, ABT outperforms
DSA in running time and communications, in contrast to re-
sults in distributed CSP. We believe that this is a general
result in the use of ABT for coordination diagnosis, be-
cause when there are only few failures at a time, ABT deter-
mines in a few steps a close solution to the CSP (and based
on it, a diagnosis), compared to the stochastic behavior of
DSA. Second, ABT outperforms DSA in terms of the diag-
nosis results: ABT provides a guarantee to find a diagnosis
(DSA does not), and empirically returns the correct diagno-
sis much more often than DSA.

Summary and Future Work

To counter limitations of centralized coordination diagno-
sis methods, we presented an empirical investigation of dis-
tributed diagnosis algorithms, using distributed CSP algo-
rithms as a basis. Two algorithms compute all minimal di-
agnoses: SBT_OFF (suitable for systems where the coordi-
nation is static), and SBT_ON (for dynamic coordination).
One algorithm guarantees a single diagnosis (ABT), and one
algorithm utilizes a local search approach and therefore does
not guarantee any solution (DSA).

We evaluated the algorithms with real and simulated
robots, and concluded that there is a trade-off between the
effectiveness of the algorithms in terms of communication
and computation and the correctness of the diagnosis that the
algorithms produce. However, The ABT algorithm provides
a surprise: It runs faster, communicates less, and provides
better diagnoses than the stochastic local search algorithm—
in contrast to lessons in the distributed CSP literature (Zhang

975

et al. 2005). However, ABT has three disadvantages: (i) The
diagnosis is known only to some of the agents; (ii) the agents
do not know that the diagnosis process is complete; and (iii)
the diagnosis is not guaranteed to be minimal. We hope to
address these difficulties in the future.
Acknowledgements

This research was supported in part by BSF grant #2002401.
We thank Avi Rosenfeld for his helpful comments. As al-
ways, thanks to K. Ushi and K. Raviti.

References

Ardissono, L.; Console, L.; Goy, A.; Petrone, G.; Picardi,
C.; Segnan, M.; and Duprpé, D. T. 2005. Cooperative
model-based diagnosis of web services. In 16th Interna-
tional Workshop on Principles of Diagnosis (DX 05), 125—
130.

Gerkey, B. P.; Vaughan, R. T.; and Howard, A. 2003. The
player/stage project: Tools for multi-robot and distributed
sensor systems. In Proceedings of the International Con-
ference on Advanced Robotics, 317-323.

Kalech, M., and Kaminka, G. A. 2005. Towards model-
based diagnosis of coordination failures. In American As-
sociation for Artificial Intelligence (AAAI-0S5).

Lamperti, G., and Zanella, M. 2003. Diagnosis of Active
Systems. Kluwer Academic Publishers.

Lynch, N. A. 1996. Distributed Algorithms. Morgan Kauf-
mann.

Meisels, A.; Kaplansky, E.; Razgon, I.; and Zivan, R. 2002.
Comparing performance of distributed constraints process-
ing algorithms. In Proceedings of Autonomous Agents and
Multi Agent Systems (AAMAS-02).

Micalizio, R.; Torasso, P.; and Torta, G. 2004. On-line
monitoring and diagnosis of multi-agent systems: a model
based approach. in Proceeding of European Conference on
Artificial Intelligence (ECAI 2004) 16:848-852.

Roos, N.; Teije, A. t.; and Witteveen, C. 2003. A protocol
for multi-agent diagnosis with spatially distributed knowl-
edge. In Proceedings of Autonomous Agents and Multi
Agent Systems (AAMAS-03), 655-661.

Sachenbacher, M., and Williams, B. 2004. Diagnosis as
semiring-based constraint optimization. In ECAI-2004.
Wotawa, F. 2004. e-Environement: Progress and Chal-

lenge, volume 11 of Research on Computing Science. 334—
347.

Yokoo, M., and Hirayama, K. 2000. Algorithms for dis-
tributed constraint satisfaction: A review. Autonomous
Agents and Multi-Agent Systems 3(2):185-207.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: For-
malization and algorithms. IEEE Trans. Knowl. Data Eng.
10(5):673-685.

Zhang, W.; Wang, G.; Xing, Z.; and Wittenburg, L.
2005. Distributed stochastic search and distributed break-
out: properties, comparison and applications to constraint
optimization problems in sensor networks. Artificial Intel-
ligence 161(1-2):55-87.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /Arial
 /ArialBlack
 /ArialBold
 /ArialBoldItalic
 /ArialItalic
 /ArialMTBlack
 /ArialMTCondensedLight
 /ArialNarrow
 /ArialNarrowBold
 /ArialNarrowBoldItalic
 /ArialNarrowItalic
 /ArialRoundedMTBold
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY7
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMDUNH10
 /CMEX10
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB7
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierNew
 /CourierNewBold
 /CourierNewBoldItalic
 /CourierNewItalic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /Euclid-Italic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /MSAM10
 /MSAM5
 /MSAM7
 /MSBM10
 /MSBM5
 /MSBM7
 /MT-Extra
 /MTEX
 /MTSY
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /NimbusMonAntL-Regu
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomD-Bold
 /NimbusRomD-BoldItal
 /NimbusRomD-ExtrBold
 /NimbusRomD-ExtrBoldItal
 /NimbusRomD-Regu
 /NimbusRomD-ReguItal
 /NimbusRomModComD
 /NimbusRomNo2T-Regu
 /NimbusRomNo9DCD-Regu
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusRomNo9SCT-Regu
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldCond
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-ExtrBold
 /NimbusRomNo9T-Medi
 /NimbusRomNo9T-MediItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguCond
 /NimbusRomNo9T-ReguCondItal
 /NimbusRomNo9T-ReguItal
 /NimbusRomanD-BoldItalicOu1
 /NimbusRomanD-BoldOu1
 /NimbusRomanD-ExtraBoldItalicOu1
 /NimbusRomanD-ExtraBoldOu1
 /NimbusRomanD-RegularItalicOu1
 /NimbusRomanD-RegularOu1
 /RMTMI
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRoman
 /TimesNewRomanBold
 /TimesNewRomanBoldItalic
 /TimesNewRomanItalic
 /TimesNewRomanMTExtraBold
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfDingbats
]
 /NeverEmbed [true
 /Geneva
 /HelveticaLTMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

