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Abstract

In this paper we analyze the process of allocating tasks
to self-interested agents in uncertain changing open en-
vironments. The allocator in our model is responsible
for the performance of dynamically arriving tasks using
a second price reverse auction as the allocation protocol.
Since the agents are self-interested (i.e. each agent at-
tempts to maximize its own revenue), previous models
concerning cooperative agents aiming for a joint goal are
not applicable. Thus the main challenge is to identify
a set of equilibrium strategies - a stable solution where
no agent can benefit from changing its strategy given the
other agents’ strategies - for any specific environmental
settings. We formulate the model and discuss the diffi-
culty in extracting the agents’ equilibrium strategies di-
rectly from the model’s equations. Consequently we pro-
pose an efficient algorithm to accurately approximate the
agents’ equilibrium strategies. A comparative illustration
through simulation of the system performance in a closed
and open environments is given, emphasizing the advan-
tage of the allocator operating in the latter environment,
reaching results close to those obtained by a central en-
forceable allocation.

Introduction

Allocating tasks to agents in Multi-Agent Systems (MAS)
is a fundamental problem that has attracted the attention of
many authors in the field of Al. Obviously, the best allocation
(given any efficiency criteria) can be reached when a non-
computational bounded allocator assigns tasks to agents it
fully controls, while having complete information concerning
tasks and and the agents’ performance capabilities. Neverthe-
less, since such a scenario is principally non-realistic, many
mechanisms have been suggested for enhancing the task al-
location process in environments where agents are not nec-
essarily cooperative (Walsh & Wellman 1999; Vulkan & Jen-
nings 2000) or when a centralized mechanism is infeasible
due to uncertainty, incomplete information, communication
costs, computational complexities, etc. (Sander, Peleshcuk,
& Grosz 2002; Shehory & Kraus 1998).

In this paper we consider the problem of a self-interested
agent (“central manager”) responsible for performing differ-
ent types of tasks which arrive dynamically along time. This
central manager may be defined as a government, a munic-
ipality, a company, a project manager, etc., operating in an
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uncertain environment. The central manager can reassign any
of the arriving tasks to other self-interested agents, operating
in its environment. The incentive for reassigning a task is ei-
ther insufficient required resources for performing the task by
itself or the possibility of performing it with a smaller cost
by one of the agents. Nevertheless, since the central manager
does not own these agents (i.e. the agents represent different
organizations and/or individuals) or cannot acquire full con-
trol over them (Vulkan & Jennings 2000), their willingness to
perform a task is associated with a payment they demand in
return. Therefore, the central manager needs to come up with
a negotiation mechanism (protocol), defining the payments it
is willing to pay in exchange for performing each task, and
the rules by which it selects the performer among the agents
that are willing to perform this task.

We focus on open environments, allowing the entrance and
exit of agents. New agents are not always available, but rather
arrive dynamically, and choose to enter only if they find the
process profitable. Similarly, agents leave the environment
upon being assigned tasks (willingly) or if their expected net
revenue at the current time is negative (i.e. loss).

Different agents have different sets of basic capabilities. In
the context of our model, an agent’s capability for performing
a given task depends on the specific world state it needs to op-
erate in. By being assigned a task, an agent receives an imme-
diate payment. However it needs to allocate resources in or-
der to perform the task, thus incapable of competing for addi-
tional tasks in the near future (possibly associated with better
world states and/or smaller competition). Hence, each agent
determines its negotiation strategy according to the tradeoff
between the immediate gains and the loss of future opportu-
nities. Both, are affected by the protocol set by the central
manager, the current world state and its beliefs concerning
the other agents’ strategies in current and future world states.

Though the allocation is central, the control of the central
manager over the final result is limited to the selection of the
allocation mechanism. In order to evaluate a specific alloca-
tion protocol, the central manager needs to be able to extract
the strategies used by different agents given such a protocol
(Vulkan & Jennings 2000). For any environment and specific
settings, a stable solution is a set of strategies, derived from
an equilibrium where no agent can benefit from changing its
strategy given the other agents’ strategies. The main perfor-
mance measure used by the central manager for the evaluation
of the achieved allocation, using a specific protocol, is the av-
erage expense per task.

Two typical applications associated with the above model
are described in (Sarne, Hadad, & Kraus 2004). The first is
an under-water exploration mission (where different compa-



nies are encouraged to compete for different tasks, such as
underwater surveys, inspections, mapping, pollution preven-
tion and recovery, using their own Remotely Operated Ve-
hicles (ROVs)). The second involves self interested servers,
with different configurations and changing loads, competing
for the execution of jobs arriving from an external source,
such as universities. Additional typical applications in this
domain include exploration of remote planets, urban search,
and rescue (Dias 2004). In all these applications the agents’
capabilities (i.e. costs) to perform any given task are dissim-
ilar in different world states. Thus, upon the arrival of a new
task, each agent can calculate its own cost (given the current
world state) and assess the distribution of costs among the
other agents for performing it. Based on this information the
agents have to promptly decide their negotiation strategies.

In this paper, we focus on a specific negotiation mechanism
used by the central manager - an auction. Auctions provide
an efficient way to resolve one-to-many negotiations, particu-
larly in automated agents based environments (Vulkan & Jen-
nings 2000). Specifically, the central manager in our model
uses a reverse Vickrey auction!.

The proposed model and part of the analysis are partially
based on the framework introduced in (Sarne, Hadad, &
Kraus 2004). Nevertheless, the solution methodology given
there is limited to closed environments where the entrance
of new agents is prohibited (i.e. once an agent is awarded
a task, the number of remaining agents always decreases by
one). Using such a permissive assumption allowed a simple
backward induction based solution, which we cannot use in
our open environment based model. While in closed environ-
ments there are no mutual dependencies between the strate-
gies applied in different auctions, in our model the strategy
taken in any of the world states affects all other possible world
states’ strategies. This significantly complicates our problem.

The main contributions of this paper are threefold: First,
we formally model and analyze the task allocation problem
using a specific auction based mechanism in an open environ-
ment with self-interested agents (which is more compatible to
real-life applications). Second, we prove that the use of the
mechanism in open environments results in lower bids of the
agents (i.e. less expenses for the central manager) in compar-
ison to closed environments in similar world states. Finally,
we supply efficient algorithms to approximate the equilibrium
strategies, thus the mechanism’s performance can be evalu-
ated for any specific open environment.

Related Work

The main objective of task allocation (often referred to in lit-
erature as “'task reallocation”) is to decide who does what and
how to collaborate with others (Shen & Salemi 2002). Gen-
erally, task allocation mechanisms in MAS can be divided ac-
cording to a bi-dimensional classification. The first dimension
is the distribution level of the mechanism, ranging from a cen-
tral allocator for the entire system (Gerkey & Mataric 2002;
Simmons et al. 2000) to a complete distributed approach
where agents have initial tasks which they can reallocate
through negotiations (Sander, Peleshcuk, & Grosz 2002;
Sandholm 1993). While the distributed algorithms do not

'A reverse Vickrey auction is a sealed bid auction in which the
winner is payed the lowest amount bid by a loser

necessarily reach the optimum allocation, they have the ad-
vantage of decreasing the communication and coordination
requirements, as well as eliminating the need for a neu-
tral central allocator. The second dimension is the level
of cooperation between the agents in the system, ranging
from fully cooperative agents (Dias 2004; Shehory & Kraus
1998) to self-interested agents (Vulkan & Jennings 2000;
Walsh & Wellman 1999). The latter can be found also in
the wide Contract Net protocol literature (Sandholm 1993).
While cooperative agents share the same goals or have no no-
tion of individual utilities or preferences, when considering
self-interested agents, there is a possibility that some might
have an incentive to deviate from the requested cooperation.
Thus equilibrium considerations (which become significantly
complex in open environments) are the basic infrastructure of
the self interested case.

Our model resides in the domain of centralized allocation
to self-interested agents, thus requiring a market based ap-
proach - an auction. Market based allocation methods in com-
petitive environments are not new (Walsh & Wellman 1999;
Vulkan & Jennings 2000). However, they mainly focus on
static environments where tasks and other agents are known.
Our model integrates an open environment where both agents
and tasks arrive dynamically, thus equilibrium considerations
become much more complex. The same holds for the analy-
sis given for auctions in ecommerce domains. Here, the main
emphasis is (basically due to the large number of participating
agents) on maximizing the utility of a single agent that faces
multiple dynamic opportunities (Shehory 2002), rather than
long term equilibrium analysis.

The Model

We consider an open environment with a central manager and
a changing number of self interested agents. The central man-
ager is responsible for allocating tasks which arrive from an
external source dynamically, at some inter-arrival time (as-
sumed as a single time unit, for simplification) between two
subsequent occurrences. We assume both the central manager
and the agents are rational and seek to maximize their net rev-
enue (minimize the costs in the case of the central manager).

The dynamic nature of the environment suggests possible
entrance of new agents (either former auction winners once
they have completed their tasks, or brand new ones). The
potential number of agents entering the environment between
two subsequent auctions is associated with a probability func-
tion. We assume new agents enter the environment sequen-
tially, right after an auction, and only if the expected net rev-
enue in this environment is positive for the entering agent.

An agent’s capability of performing a specific task is asso-
ciated with a cost derived by its basic capabilities, the task’s
characteristics and the world state. This cost can be mod-
eled as drawn from a specific probability function, shared by
all agents (Sarne, Hadad, & Kraus 2004). Additionally, each
agent is associated with a cost per time unit, while waiting
idly for a task (common to all agents, as similar resources
need to be spent).

Upon the arrival of a new task, the central manager initi-
ates a reverse Vickrey auction, assigning the task to the agent
with the lowest bid, paying it a payment equal to the second
lowest bid in the auction. We assume the environment is con-
trolled and the central manager does not need to worry about



signaling problems and colluding (Vulkan & Jennings 2000).

Regardless of the bids made for any specific auction, the
maximum payment to an agent for performing a task is lim-
ited by a value set by the central manager. This can be seen as
the cost of performing the task by the central manager itself or
an external fixed-cost contractor, thus the central manager is
willing to delegate a task to any agent for a payment smaller or
equal to this cost. If all agents in the environment bid above
this value, the task is not allocated but rather performed by
the central manager or the contractor with a cost equal to the
maximum payment.

We assume all agents are acquainted with the total number
of agents in the environment at the current time, the costs dis-
tribution function, the cost per time unit in an idle state, the
maximum payment set by the central manager, the interar-
rival time between tasks, and the entrance rate of new agents.
Thus, within a given auction, each agent can evaluate its own
cost to perform the proposed task and knows the distribution
associated with the other agents’ costs.

Problem Formulation

We base our problem formulation on the definitions given in
(Sarne, Hadad, & Kraus 2004) and extend them to better re-
flect our open environment model, where agents are allowed
to enter and exit. We consider a set A of k self interested
agents. We denote an agent g by A,. An agent’s cost asso-
ciated with the performance of a given task in world state sy,
is denoted ¢ (s;), drawn from a probability function P.(x)
defined over an N discrete values interval [¢pin, - - -, Cmaz]-

An agent’s cost per time unit in an idle state, is denoted
C. The maximum payment to an agent for performing a
task is M. The probability of having z new agents arriving
to the environment within a time unit is given by Pj,cq(2),
z2=0,...,m, Y Phew(z) = 1 where m is the maximum num-
ber of new agents considering entrance. For any specific en-
vironment and given a total of k agents in a world state s;, our
problem is finding the equilibrium bid, denoted B* (¢4 (s;)),
for each agent A, associated with a cost ¢4 (s;).

Model Analysis

The main complexity in our open environment based model
is the increased number (in magnitude) of possible future
world states the agent may encounter during each step of the
process. Thus, when analyzing an open environment with
agents’ entrances and exits, a key issue under consideration
is the highest possible number of participants an agent might
encounter in an auction, denoted K. Obviously the value K
is derived from the internal forces forming the equilibrium
rather than set by the central manager. In fact, the central
manager would never decide to limit the number of agents
participating in an auction. This is simply because any in-
crease in the number of agents competing for a task enhances
rigorous competition and thus reduces the overall expected
cost paid eventually for any given number of tasks being per-
formed. From the single agent’s perspective, the increase in
the number of competitors within the environment has a two-
fold negative effect. First, the increased competition in each
specific auction results in a smaller revenue as the margin
between its bid (upon winning) and the second best bid de-
creases. Second, the expected number of auctions the agent
needs to participate in until winning, increases, thus the ex-
pected cost of being in an idle state increases.

The value K can be seen as the number of agents that once
reached, no additional agent will have an incentive to join
such an auction mechanism, as its expected revenue (as well
as the other agents’ expected revenues) from the process is
negative. Similarly, the existence of K suggests that none
of the agents will leave the environment intentionally (unless
assigned a task) as long as the number of agents in the envi-
ronment is smaller or equal to K. Formally, the existence of

K can be proved by using K > 2AM=cmin) _ 1 Here each of
the agents in the environment will undoubtedly gain a nega-
tive revenue, as the lower bound for the agent’s expected cost
is greater than the upper bound for its expected payment.

The usage of K is critical for the completeness of the
equilibrium analysis. The disregarding of this parameter in
(Sarne, Hadad, & Kraus 2004) causes two fundamental weak-
nesses. First, it prevents a solution for the scenario where new
agents enter the environment, as the number of equations that
needs to be handled simultaneously is not bounded by any
means. Second, it allows the existence of scenarios where
agents still compete in multi-participant auctions where it is
obvious that their expected long term revenue in such envi-
ronments is negative (loss). In the rest of this section we
present the appropriate modifications of the equilibrium equa-
tions given in (Sarne, Hadad, & Kraus 2004), adjusted to re-
flect a revenue based entrance of new agents into the environ-
ment, and discuss the equilibrium structure.

First, notice that given the above specific model’s assump-
tions, the agents’ strategy is stationary, i.e., any agent A;
associated with a cost ¢1(s1) and k& competing agents in a
given auction will bid the same as agent A, associated with
c2(s5) and k competing agents, where ¢ (s1) = ¢42(sz).
Thus in the rest of this paper, we will refer to all costs ¢4 (s;)
satisfying c9(s¢) = ¢; € [Cimins-- - Cmaz) (A € A) as ¢;.
Similarly, we denote the equilibrium bid B*(c;) as BF.

Based on the above, consider an agent which is about to at-
tend an auction with a total of k£ (k < K) participating agents.
We denote the expected revenue of this agent by R*. The ex-
pected revenue of the agent currently participating in an auc-
tion, where its cost for the proposed task is ¢; is denoted by
R . Thus the expected revenue R* can be calculated as:

RF =—C+) REP.(y) (1)
YE[Cmin,Cmaz]

An agent winning an auction, when bidding Bf, will
be awarded the second bid value (bounded by A). Oth-
erwise, it will move on to the next auction where its ex-
pected revenue will be either (assuming k£ agents in the last
auction) Y Py () R™™UHR=1K) 1if one of the other
agents won this auction; or 327" Ppey (§)R™UTEED if
all agents used a bid higher than M. For simplification,
in the rest of this paper we will use: RF™P(U) to denote
>0 Prew(f)R™™UTRE) - The probability, Prew(j) is
closely related to the eagerness of the agents to win an auc-
tion. Any increase in this parameter’s mean results in lower
expected bids within any auction and a greater number of
tasks assignments per time unit. Consequently, such an in-
crease has an opposite affect on K (the equilibrium value of
K decreases as the entrance rate increases).

The basic rationale and analysis given in (Sarne, Hadad, &
Kraus 2004) for the bidding strategies of the different agents,



given a world state s; and a total of k£ competing agents, re-
mains valid in our model using the above modifications. Con-
sequently we can prove that in equilibrium the agents are di-
vided according to their cost, c;, into 3 continuous groups.
The first consists of agents with a cost ¢; for performing the
current task, satisfying ¢; < M — RFTPU)=1_ These agents
(Type I) will always bid B¥ = RF+PW) =1 ¢ ¢; and their equi-
librium expected net revenue is given by:

R = (min(By, M) —¢i)(Pe(c > y) = Pe(c > )" ") (@)

yE[cit1,cmax]

4+ Peg(BF — i) + (1 = Pe(c > cim)" ' — Peq)Rkﬂ’(j)*l

_ i Nk—j—1
where P, = Zf:ll (kgl) Pe(es) ch(ﬁcl) is the proba-
bility the agent will win the auction when one or more addi-
tional agents have the same cost c;.

The second group (Type II) consists of agents bidding M as
their equilibrium strategy. The expected revenue of an agent
from this group, associated with a cost ¢; is:

RE = (M — ¢;)Pyin + (1 — Ppin) RFPO-1 - (3)

Ci

_ &) a)k—i—1

where Pi, = Z?:é (kjl) Pc(ggcgc)ji‘:l(oc) is the
probability the agent will win the auction when bidding M,
and ¢ and ¢ denote the lowest and highest costs associated
with an M bidding strategy, respectively.

The last group (Type III), is of agents associated with a cost
c; > ¢. These agents will bid Bf > M, as their preferred
strategy, given their cost ¢; is to wait for the next auction. The
expected net revenue of these agents is given by:

RF =P.(c > ) ' RFMPUL(1-P.(c > e)F ) RFFPO-L (4

At this point, two major obstacles prevent a solution. First,
we do not have any means for calculating K, thus we can-
not finalize the set of simultaneous equations of types (1-4)
that needs to be solved. Second, even if we did have the
value of K, the complexity of the equations and the mutual
dependencies of the different strategies suggest a major com-
putational challenge that needs to be overcome using an al-
gorithmic approach. For this purpose we propose three algo-
rithms, each built on top of the other, that can facilitate the
calculation of the equilibrium. The first algorithm is designed
to calculate the different agents’ equilibrium bids in an auc-
tion with k < K participants, given a value K and the ex-
pected revenues that can be obtained in any future auction,
RFi, Yk; # k. This algorithm is used as an infrastructure
for the second algorithm which calculates the equilibrium R¥
values, thus evaluating the validness of the value used for K.
Finally, we show how the value of K can be bounded effi-
ciently, and searched over the proposed interval.

Algorithm 1 calculating equilibrium bids for a specific auction
Input: p - precision level for the algorithm; K - Maximum number
of participants in equilibrium ; k - number of participants in current
auction ; M - maximum payment; c[1 : N], P:[1 : N]| - Vectors
of the possible discrete costs and their associated probabilities,
respectively; Prew(z) - entrance rate; R, ..., RE-L R RK
- expected revenues in future auctions.

Output: B[1 : N],R* - Array of equilibrium bids, and the expected
revenue of this auc@'aﬁ. (R

I Set Rk _ —-C+ Phew(3)R ’

S Prew(©)
2 Set Bli] = RFPW=Y L ¢i],Vi=1,...,N;
3 Find the first element, i, in B[], satisfying B[i] > M. If RJ[i]

calculated using Equation (3) is greater than when calculated using
Equation (4) then set B[i] = M. Repeat this stage until reaching an
element ¢ for which the above condition is not satisfied;

4 Calculate R][i] using equations (2-4),Vi=1,...,N;

5 Calculate R* using equation (1);

6 Set Bli] = min(R*PW=1 4 ¢[i], M), Vi=1,..,¢

7 Find the last element, i, in B[], satisfying B[i] = M. If RJ[i]
calculated using Equation (3) is smaller than when calculated using
Equation (4) then set B[i] = M + 1. Repeat this stage until reaching
an element ¢ for which the above condition is not satisfied;

8 If the condition in step 7 was satisfied at least once, or the differ-
ence between the last two calculations of R* is greater than p then
goto 4. Else, stop and return B[1:N];

Theorem 1 (a) Algorithm 1 will always terminate in finite
time. (b) The array B[l : N] will store the equilibrium bids
with a precision p after the algorithm execution is completed®.

Sketch of Proof:

Since the detailed proof is quite extensive only its general
flow is presented. First, we prove that R¥ calculated in step
1 is a lower bound for the equilibrium R*. Then we prove
that using the bids calculated in step 2, the execution of step
3 will lead to a lower bound for ¢ and an upper bound for ¢
(defining the interval of agents bidding M). For this purpose,
we prove and use a proposition, stating that if an agent’s opti-
mal bid is M (type (I)), then any other agent associated with
a smaller cost and not complying with the condition for type
I agents, will bid M as well. Finally, we prove that in the
loop executed in steps 4-8: (a) The value of R¥ inevitably in-
creases over each calculation; (b) The value of ¢ (¢) derived
from each execution of steps 7-8 can only decrease (increase),
respectively; (c) It is suffice to check the stability of M -value
bids downward. Thus over each execution of the main loop,
the bid values as well as the value of R? and the division of
types defined by ¢ and ¢ converge to their equilibrium values.
Also, since all parameters’ values are either strictly increas-
ing or strictly decreasing throughout the algorithm execution,
a stable configuration (in terms of the division into different
types) eventually is reached. The accuracy of the bids’ values
in equilibrium is determined by the parameter p. [

The complexity of the algorithm is 0(%). Any attempt

to find the equilibrium bids for £ agents using direct compu-

tation of equations (1-4) will require solving w permu-

tations of N simultaneous linear equation sets. Each such set
can be solved using Gaussian Elimination with a complexity
of o(N?). Since N is highly correlated with the number of
possible world states, we expect the ratio between M and p to
be smaller in its magnitude compared to N2,

Finding the System Equilibrium
Denoting the expected revenue of an agent in a closed envi-
ronment by R* and the expected revenue of the agent cur-
rently participating in an auction where its cost for the pro-
posed task is ¢; by RE,, we introduce the following theorem.

Theorem 2 For any k value satisfying k < K, the expected
revenue of an agent participating in an auction in a closed
environment is an upper bound for the expected revenue of an
agent participating in an action with k' > k agents in an open
environment. Formally stated: R* > R**Vi =0,..., K — k.

*Notice that the discrete essence of the environments also sug-
gests rare scenarios where an equilibrium does not exist. Neverthe-
less, the algorithm can be extended to handle such scenarios.



Sketch of Proof: Proof by induction. Consider agent Az op-
erating in a closed environment and agent A, operating in
an open environment. When k£ = 1, agent Ag can use the
same strategy as A, (in any k-agents’ auction), resulting in
an equal or better revenue as its cost components are similar
to A,’s, while its expected payment, M, is an upper bound for
the expected payment to A,. Thus R! is an upper bound for
RF (k=1, ..., K). Similarly for k=2 each agent uses higher
bids in the open environment, since its alternative expected
revenue (i.e. if it does not win the current auction) is greater
(because R! > RFt* Vi =0, ..., K — k). Thus we obtain that
R? is an upper bound for R* (k =2, ..., K). And so on.[]

The above theorem suggests that the solution for the closed
environment can be a good starting point for finding the equi-
librium in an open environment.

Theorem 3 Given a value K and a set R = (@, ..., &)
where & is an upper bound to the equilibrium R', if a sub-
set of new upper bounds R’ can be found where R < @
V(RZJ € R’), then any R7" calculated by substituting R* =
min(B, R"WR' € R (where i # j) in equation (1) is also an
upper bound for R’ satisfying R¥' < 3.

Sketch of Proof: Using equation (1) we prove that as long as
any of the R’ values used is an upper bound to the real values,
the calculated value is also an upper bound. [

The above two theorems result in a structured method for
checking if a given K = k is the equilibrium maximum num-
ber of agents in an auction, and if so, for calculating the
agents’ equilibrium strategies. This concept is used in the
following algorithm.

Algorithm 2 An algorithm for checking the validity of K.

Input: similar to algorithm 1, excluding the R* values which are
not necessary for this algorithm

Output: B[1 : K|[1: N]| - An array of equilibrium bids (if exist).
01 Calculate R=(R', ..., R) using alg. 1 with Py (2)=0, Va;
02 Repeat {

03 SetR" =R Vi<K; _

04  For (j=1;j < K;j++) calculate R’ and B|j][] using alg. 1;
06 If(R" —R)<p Vi<K then{

07 Calculate R* ! using algorithm 1;

08 If RE*Y < 0 then return(null);

09 Else return B[][]; } };

Theorem 4 (a) Algorithm 2 will always terminate in finite
time. (b) If K is the equilibrium value, then B[ ][] will store
the equilibrium bids with a precision p after the algorithm
execution is completed.

Sketch of Proof: We use theorem 2 to establish any R’ in step
1 as an upper bound for the equilibrium expected net revenue
given ¢ agents Vi = 1, ..., K. Then, according to theorem 3,
R][]’s elements will always contain decreased upper bounds,
converging to the equilibrium strategy, given K. []

Notice that while in steps 4-5 of the algorithm we use a
simple heuristic by which we calculate R’ sequentially, many
alternative heuristics can be used. For example, a heuristic
that starts with RX and calculates the different R’ values
sequentially backward, or one that incorporates some level
of logic in identifying the next element which will have the
maximum affect over future calculations. The purpose of the
different heuristics is to enhance the calculation process and

shorten the algorithm execution time. Nevertheless as long as
the basic concept of continuously updating the expected net
revenue value is maintained, any heuristic concerning the or-
der by which the different elements are updated will result in
the appropriate result (i.e., equilibrium) in a finite time.

Finally, by using the above algorithm 2, we can outline an
additional algorithm that finds the equilibrium K value, by
exploring the interval (1, ..., Kypper ), Where K ypper is an up-
per bound for K (e.g. the bound given at the beginning of the
former section). The search for K in this interval can be done
using a binary search, since we know that below this value
the system will always yield a positive net revenue and above
this value a negative one. Obviously this algorithm, as well
as the former two algorithms, can be executed offline prior to
the agent’s entrance to the environment as they supply the full
set of strategies to be used in all possible world states.

Simulation Results

In this section we aim to illustrate the performance of the open
environment compared to those that can be obtained in the
closed environment model given in (Sarne, Hadad, & Kraus
2004) and in a central enforceable allocation model. We use
an environment where the costs are uniformly distributed in
the interval [10, 50] with 100 discrete values, and the parame-
ters: M = 100, C = 2. The entrance probability used is
P(0) =1— «and P(1) = a, thus E[Pew] = a.

Figure 1, considers the agents’ strategies when reaching a
specific auction with k£ = 4 participants within the sequence
of auctions. The four curves depict the expected bid as a pa-
rameter of the agent’s cost for performing the task, c¢; (the
horizontal axis), in a closed environment and for different en-
trance rates (o« = 0.1,0.5,0.9) in an open environment. As
expected, the bids of the agents in the closed environment are
always higher than in the open environment, as these agents
confront less competition.

Figure 2 depicts the central manager’s average expense per
task, as a function of the entrance rate of new agents. In the
absence of a common ground for the different models we used
the following comparative method which equalize the testing
conditions for the open and closed environment. For each
« value, we extracted the appropriate equilibrium K value
in an open environment (results ranged from K%% = 42 to
K©95=7). Then, for each (c, K®) pair we simulated a closed
environment, starting with K'“ agents and obtained (using
10,000 runs each time) the expected number of tasks per-
formed (until running out of agents), ny. ..., and the expected
average cost per task (assuming non-assigned tasks are per-
formed by an external contractor with a cost M). The latter
parameter is described by the most upper curve in the graph,
and the changes in its value are associated with the differ-
ent K@ starting points used, as inherently it is not influenced
by a. Then we used a simulation of an open environment
(with new agents entering according to «), starting with K¢
agents, and checked the expected average cost per task (using
10,000 runs), for performing ny, ... tasks (described by the
middle curve). As expected, the increase in the the entrance
rate (associated with «) increases the difference between the
performance achieved in the two environments. The lower
horizontal line, represents the expected cost per task, when
the central manager fully controls the agents. Here the central
manager only needs to pay the cost C' per an idle time of the
agents it hires and the actual cost ¢; of the agent assigned an
arriving task (if any). Thus the central manager’s problem is
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Figure 1: Agents’ bids in different environments

finding the optimal number of agents, K, to be hired prior
to the arrival of a new task. This can be extracted by finding
the K value minimizing the expected cost function (per task),
R(K), of the central manager for this case:
c)(.,c
R(K)=C-K+ min(y, M)(P(z > y)" - P(z >9)") (5)

Y=Cmin

Notice that the second term on the left hand side of the equa-
tion is actually the expected minimum of a K-size sample.
For our environment we found that the optimum is K,,; = 4
and the associated expected cost is 26.

A complete analysis concerning the improvement achieved
as a function of the different model parameters would require
further detailed and more comprehensive scenarios and envi-
ronments. Nevertheless, such an analysis is beyond the scope
of this paper, as our main focus is on the introduction of the
general model and its unique solution method.

Discussion and Conclusions

Scenarios in which an agent or a central manager have lim-
ited control over the agents they wish to cooperate with and
reallocate tasks, are common in MAS environments. An im-
portant sub-class of these scenarios is where all agents are
self-interested and attempt to maximize their net revenue. In
such case, the performance evaluation of any negotiation pro-
tocol towards allocation should be derived from an equilib-
rium analysis. Here, each agent’s strategy should take into
consideration both the other agents’ long term strategies and
the influence changes in its own strategy will have on these
strategies. Such an analysis implies a significant complexity,
which increases further in open changing environments, thus
algorithmic based computational approaches are required. We
find the growing interoperability between different systems
and environments to be an important factor, leading towards
open environments rather than traditional closed ones. We
cannot think of a scenario where a central allocator will reject
new arrivals as such a strategy will necessarily reduce com-
petition and will result with greater costs per task.

In this paper we focused on the use of an important specific
allocation protocol - initiating a second price reverse auction
for each arriving task. Former analysis and results that are
available for a closed environment model (Sarne, Hadad, &
Kraus 2004), can be considered as a specific case of our gen-
eral open model. By presenting a solution for open environ-
ments, we significantly extend the applicability of our model,
as many MAS environments are inherently open. Obviously,
as new entries are allowed, the possible strategy space be-
comes infinite and a bound must be placed on the number of
agents in the environment. The advantage of our model is that
the restriction over the number of agents in the environment
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Figure 2: Central Manager’s average expense as a function of o

emerges from the internal balance according to equilibrium
considerations (i.e., the existence of an expected positive rev-
enue), rather than an external limit. This concept fits well
into our algorithmic-based solution approach, bypassing the
complexities of any attempt of solving the problem using per-
mutation based equation sets.

The solution methodology and the different algorithms
given in the former sections, are an important milestone in
the process of finding the best negotiation protocol the cen-
tral manager should use, in terms of the performance measure
defined in the introduction. In future work we intend to ex-
plore the performance of additional negotiation protocols to
be set by the central manager, using a similar equilibrium-
based analysis. Additionally, as suggested in the solution
methodology sections, we are currently evaluating alternative
heuristics that can be integrated in the proposed mechanism
to further improve the computation process of the equilibrium
strategies given different environmental parameters.
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