Multirobot /Multiagent Reading Group Notes

9/23/05

Discussion led by Mary Koes

1 Papers

[1] Jeffrey S. Cox and Edmund H. Durfee. An efficient algorithm for multiagent plan coordination.
In AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous agents
and multiagent systems, pages 828-835, New York, NY, USA, 2005. ACM Press.

[2] Jeffrey S. Cox, Edmund H. Durfee, and Thomas Bartold. A distributed framework for solving
the multiagent plan coordination problem. In AAMAS ’05: Proceedings of the fourth inter-
national joint conference on Autonomous agents and multiagent systems, pages 821-827, New

York, NY, USA, 2005. ACM Press.

2 Summary

The single agent partial order planning problem has been around for ages (think STRIPS).
Weld-1994 has a good description of all this. The planning problem for a single agent is to
create a consistent Partial Order Causal Link (POCL) plan [using as few steps as possible].

Single Agent Problem
Generate consistent POCL plan

Multiagent problem
Given a bunch of agents’ POCL plans, generate
consistent multiagent parallel POCL plan

P=(0,5,<r,<c)

P = <A707S7 '<T7"<Ca#7:7X>

A is set of agents

O is set of operators; each operator described
by preconditions and postconditions

O is set of operators; each operator described by
preconditions, inconditions, and postconditions

S is set of plan steps and are instances of O
(may be many to steps in .S from one operator in O)

same (except operators now have inconditions)

(si,55,c) means step s; produces c for s;

=<7 is set of ordering constraints: same
(si,5;) means step s; must be before s;
=< is set of causal links (Tate, 1977): same

implicitly includes all steps

is set of non-concurrency relations
(si,85) € #: s; and s; don’t happen at same time

implicitly empty

= is set of concurrency relations
(si,s85) €=: s; and s; happen at same time

X represents assignments:
(s,a): agent a is assigned to step s

What does it mean for a plan to be consistent?

There are no possible linearizations that are invalid. How do we know there are no
possible invalid linearizations? The plan doesn’t have any flaws. What does that mean?
Flaws

Open precondition flaws occur if there’s a step with precondition ¢ but no guarantee that
this precondition is met (no causal link producing ¢ for this step). To fix this flaw, if there’s
already a step in the plan that produces ¢ and there is no temporal ordering constraint that
says it has to be done later than the step that uses ¢, we can add a causal link. If there’s
no step that currently produces ¢ but the operators support such a step, we fix this flaw by
adding another step.

Causal link threat flaws occur if step 1 produces ¢ for step 2 (and step 2 needs ¢) but
there’s nothing to prevent step 3 from being executed after ¢ is produced but before c is
used. The simple fix for this is to add a constraint that step 3 isn’t executed between steps
1 and 2 (either it has to be demoted to before step 1 or promoted to after step 2).

Parallel step threat flaws occur only in the multiagent parallel planning problem if two
steps have conflicting postconditions or inconditions (post exclusion principle) and are not
constrained to occur at different times. These flaws are resolved by constraining the steps
to occur at separate times (adding the pair to #).

Plan merge flaws occur if there is a possible ordering where two steps could be executed
but one step would meet all the necessary conditions which creates an inefficiency. These
flaws don’t have to be fixed but can be resolved according to the process in both papers.
What else is in the first paper, An Efficient Algorithm for Multiagent Plan
Coordination?

Since they have these plan merge flaws, the first consistent plan may not be optimal so
they use branch and bound to find the optimal solution. Somebody else (Yang) already solved
the single agent problem (with a few differences) in 1997 so they compare their approach
to his approach. They conclude that, for loosely coupled systems, their approach is great
and even for tightly coupled systems, their branch and bound algorithm is still better than
Yang’s dynamic programming algorithm.

What else is in the second paper, A Distributed Framework for Solving the
Multiagent Plan Coordination Problem?

They have a method for modeling the problem as a constraint optimization problem and
apply ADOPT (distributed constraint optimization algorithm by Jay Modi) to the problem.
There are all sorts of challenges is modeling the problem so that it can be used by ADOPT.
Then the compare two different flaw distribution strategies (who has control over which
variables) and find that one is much better than the other, but only works in loosely coupled
problems which is why that’s what they’re focusing on. They also show that if you're willing
to make small sacrafices on optimality guarantees, performance improves signicantly.

3 Discussion

e What are the strengths of using a POCL problem formulation? What sorts of problems
can it handle?

e [s this work useful to the robotics community? Are there issues that are ignored that
should be addressed in robot work (instead of agent work)?

e Could work in the robotics community have been applied to this problem?

e What are some advantages of using the distributed algorithm rather than the central-
ized algorithm and vice versa?

e How dependent is system performance on problem modeling? Is this a limitation
of constraint optimization problem formulations in general? How can we compare
different approaches if problem formulation makes a big difference?

