
28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 346 FTCS-28: Maxion & Olszewski

Improving Software Robustness with Dependability Cases

Roy A. Maxion Robert T. Olszewski

School of Computer Science School of Computer Science
Carnegie Mellon University Carnegie Mellon University

5000 Forbes Avenue 5000 Forbes Avenue
Pittsburgh, PA 15213 USA Pittsburgh, PA 15213 USA

Tel: 1-412-268-7556 Tel: 1-412-268-3266
Internet: maxion@cs.cmu.edu Internet: bobski@cs.cmu.edu

Abstract

Programs fail mainly for two reasons: logic errors in the
code, and exception failures. Exception failures can account
for up to 2/3 of system crashes [6], hence are worthy of
serious attention. Traditional approaches to reducing excep-
tion failures, such as code reviews, walkthroughs and formal
testing, while very useful, are limited in their ability to ad-
dress a core problem: the programmer’s inadequate coverage
of exceptional conditions. The problem of coverage might be
rooted in cognitive factors that impede the mental generation
(or recollection) of exception cases that would pertain in a
particular situation, resulting in insufficient software robust-
ness. This paper describes a study to test the hypothesis that
robustness for exception failures can be improved through
the use of dependability cases. Dependability cases, derived
from safety cases, comprise a methodology based on struc-
tured taxonomies and memory aids for helping software
designers think about and improve exception-handling
coverage. A controlled experiment conducted with 59 sub-
jects revealed a statistically significant 43% increase in
exception-handling robustness. An ancillary experiment
conducted with 38 subjects provides convergent evidence
that the effect is authentic, and not due to programming
expertise alone.

KEYWORDS: Dependability, empirical methods, exception
handling, safety cases, software engineering/robustness.

1. Introduction
On 4 June 1996, maiden flight 501 of the European Space
Agency’s new Ariane 5 heavy-lift rocket ended in failure,
exploding roughly 40 seconds into the mission. As
reported by a board of inquiry [13], the problem was iden-
tified as a software exception in the inertial reference sys-
tem "caused during execution of a data conversion from
64-bit floating point to 16-bit signed integer value. The
floating point number which was converted had a value
greater than what could be represented by a 16-bit signed
integer. This resulted in an operand error. The data con-
version instructions were not protected from causing an
operand error ..." The operand error occurred due to an
unexpectedly high value of an internal function result. No
justification was found for not making the operand robust
against software exceptions. Thus was lost, due to a
simple exception failure, an uninsured scientific payload
valued at roughly 500 million dollars.

Exception failures occur when a program is prevented by
extant circumstances from providing its specified service
[6]; one such circumstance is the inadvertent use of zero
as a divisor. In general, an exception is any unexpected
condition or event, usually environment-driven or data-
driven, which would cause an otherwise operational
program to fail. Many different types of conditions can
cause exceptions. Some examples are: empty data file,
insufficient memory, type mismatch, wrong command-
line argument, protection violation and bad data returned
from another program. These kinds of conditions can be
guarded against, yet frequently they are not.

Reducing the occurrence of exception failures is benefi-
cial for several reasons. (1) Software would be more
robust; better software means higher availability and
lower operating cost. (2) Testing/assurance costs would
be reduced. Testing can often consume more than 50% of
a development effort [10]. The testing literature suggests
that it is less expensive to detect flaws at their source
through code inspection than it is to detect them through
testing (e.g., [3], [4]). Moreover, since testing tends to be
most thorough for portions of the code providing the ap-
plication functionality, and least thorough for the portions
providing exception handling [6], it’s not clear that testing
is particularly effective for eliminating exception failures;
better results might be achieved through avoidance - by
getting it right the first time. (3) Finally, a substantial
percentage of security vulnerabilities would be eradicated.
The computer security community has observed common
mechanisms (e.g., buffer overflow) that cause exceptions
and security vulnerabilities simultaneously; they claim
that eliminating exception failures would eradicate about
50% of security vulnerabilities [5].

Exception failures are a serious problem, not only in
mission-critical applications, but also in commercial,
shrink-wrapped software systems and laboratory code
where quick, accurate results are essential. Programs are
often logically correct, but nevertheless fail due to im-
properly handled exceptions. This paper asks why excep-
tions are often ignored, and describes a new approach -
dependability cases - that has reduced exception failures,
and raised robustness by 43%.

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 347 FTCS-28: Maxion & Olszewski

2. Problem, background and approach
This paper addresses the problem of reducing the number
of exception failures caused by inadequate exception han-
dling in code. The approach taken is to regard instances
of inadequate exception handling as errors in coding; such
errors are effectively design errors or, ultimately, human
errors. Cristian [6] would appear to support this position
when he says, citing Toy [17], that "approximately two
thirds of system failures are due to design faults in excep-
tion handling (or recovery) algorithms." His use of the
term "design fault" raises the following kinds of ques-
tions. What kinds of errors do programmers make when
they fail to cover exception conditions? Why do they
make these mistakes? What, if anything, can be done
about it?

Many papers in the exception-handling literature allude to
the seriousness of the exception-failure problem, but
reveal little data on the frequency and severity of excep-
tion failures; neither do they ask what can be done to
improve exception handling in code. Their main concern
is programming-language constructs for handling excep-
tions. Cristian [6], in a thorough survey of the literature,
suggests one reason for the poor state of exception han-
dling: "In operational computer software systems often
more than 2/3 of the code is devoted to detecting and
handling exceptions. Yet, since exceptions are expected
to occur rarely, the exception handling code of a system is
in general the least documented, tested and understood
part." Even so, this sidesteps elements of human error that
may contribute to the problem.

Is the pervasiveness of exception failures in programs due
to some underlying peculiarity or frailty of the human
cognitive system? Is there something that makes it hard
for programmers to remember all the exception conditions
that pertain to a given situation? Cognitive scientists
began studying human error over a hundred years ago [9].
Reason [14], in a comprehensive review of what is known
about human error, offers a number of possibilities. He
states that "simple omissions constitute the single largest
category of human performance problems ... Mental task
analysis shows a close association between omissions and
the planning and recall of procedures." In nuclear power
plants, for example, omissions accounted for 42.5% of all
incidents. As a percentage of different kinds of tasks, e.g.,
monitoring, inspecting, controlling, testing, modifying,
etc., 74% of omissions occurred in tasks involving testing
and modifying. For tasks that involved mental activities
such as planning, recall, observation, detection, etc.,
90.6% of omissions were in planning and recall. Eliminat-
ing exception vulnerabilities from a program requires
tasks similar to planning, testing, modifying and recall.
Hence, it’s no surprise that programmers experience
omission errors, too, and thereby fail in achieving better
exception coverage.

Why do programmers make omission errors? Why aren’t
they better at remembering the kinds of exception cases
that need to be covered? What prevents people from
generating a comprehensive mental checklist of exception
types? Human memory has many natural limitations [19].
Most people aren’t good at keeping long lists in memory.
Long lists are hard to recall, especially when the list has

no salient structure. If there were a way to initiate recall
of a structured list, there might be easy ways to extend
what is remembered, thus eventually regenerating a very
long list from memory. People often use tricks, like
mnemonics, to remember lists. One well-known
mnemonic, "Roy G. Biv," helps us remember the colors
of the visible spectrum (red, orange, yellow, green, blue,
indigo and violet). Mnemonics work because they have a
salient structure, and because they collapse long sequen-
ces into short chunks that are more easily remembered. If
programmers had a mnemonic for recalling basic
categories of exception failures, the recall of these
categories might be easily extended to think about types
of exceptions within the categories. For example, if a
category is named "null pointer and memory," then
programmers, having had the context of memory
problems instantiated, would be able to think of many
memory problems (e.g., buffer overflow, invalid pointer,
etc.).

From a theoretical perspective, a mnemonic would be ef-
fective, because the mnemonic would facilitate the initial
recall of the categories, and then each category would
provide a context for semantically extending the elements
of the category to include all or most of the category
members (a process that cognitive scientists call priming
[19]). If the mnemonic was linked to a physically salient
graphic structure, memory would be even further en-
hanced. An example of such a mnemonic is children.
"Everyone knows exceptional children." The letters of the
word children can be used to remember the list of excep-
tion categories shown in Table 2-1. The associated
graphic is shown in Figure 3-2.

C omputational problem
H ardware problem
I /O and file problems
L ibrary function problem
D ata input problem
R eturn-value problem: function or procedure call
E xternal user/client problem
N ull pointer and memory problems

Table 2-1: The exceptional children mnemonic.

Such mnemonic devices could address the matter of ex-
ception coverage; the issue of correctly handling excep-
tions is a separate matter. The framework proposed for
remembering exception cases in an organized fashion is
the dependability case, which will be described in the next
section.

3. Dependability cases
It is hypothesized that exceptional conditions in code are
left unguarded because programmers do not think of
them. Dependability cases, developed in this section,
comprise an organizing framework and a methodology for
thinking about exceptions and the conditions under which
they occur. They also improve mental recall of exception
conditions.

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 348 FTCS-28: Maxion & Olszewski

Dependability cases derive from an evolving body of
work on safety cases [15], emanating mainly from the
United Kingdom and Europe. A safety case is "essen-
tially a clear, defensible, comprehensive and convincing
argument ... aimed at identifying the risks inherent in
operating a system, demonstrating that the operating risks
are fully understood, that they have been reduced to an
acceptable level and are properly managed [16]." Bishop
and Bloomfield [2], in their definition of a safety case,
add that the system should be "adequately safe for a given
application in a given environment." They also note that
implementing a safety case requires: "(a) making an ex-
plicit set of claims about the system; (b) providing a sys-
tematic structure for marshalling the evidence supporting
those claims; (c) providing a set of arguments linking the
claims to the evidence; (d) making clear the assumptions
and judgments underlying those arguments; and (e)
provide for different viewpoints and levels of detail."

At this writing, dependability cases are still in the early
stages of definition and development, and are currently
intended to address only exception conditions in code.
They presently mirror some aspects of safety cases: they
provide a systematic structure for elucidating exception
hazards, a mechanism for establishing causal paths lead-
ing to exceptions, and a written defense justifying that
every identified exception is handled. Dependability
cases, as do safety cases, include methodologies and con-
structs for systematic identification of the potential
hazards in a system. One example is hazard analysis [11].
As described by Leveson [12], hazard analysis encourages
creative thinking about all the possible ways in which
hazards or operating problems might arise. The technique
is able to elicit hazards in new designs, as well as hazards
that have not been considered previously (i.e., not in-
cluded on checklists and standards developed from earlier
systems). Basically, hazard analysis explores deviations
from expected conditions - essentially, exceptions.
Hazard analysis does not provide quantitative results; its
strength is that it systematizes a qualitative,
brainstorming-type approach.

Another construct employed in both dependability and
safety cases is fault tree analysis [18]. Fault trees are
widely used, in conjunction with hazard analysis, to set
down, in a logical way, the events leading to a hazardous
occurrence (e.g., exception). Fault trees are a means for
analyzing causes of hazards, not for identifying the
hazards themselves. A fault tree is a graphical device that
helps organize relational and temporal information about
faults and the causes that lead to them. Using logic sym-
bols, fault trees represent a "top event," the causal events
that lead to it, and the logical relations among those
causes.

The abbreviated fault tree shown in Figure 3-1 depicts a
chain of events leading to failure in a simple copy
machine. This figure was included in the materials for the
experiment described in Section 4. The top event is "copy
failure." Among the causal contributors to copy failure,
some may cause failure all by themselves, and some may
cause failure only when they co-occur with others. These
situations are represented in the fault tree by OR and
AND gates, respectively. Neither fault 3 (indicated by the

Copy Fai lure

Ruined original
Crooked
copies

Excessive curl
Inadequate

vacuum
Paper path
misal igned

Paper fault

Wrong s ize
Wrong

orientation

1 2

3 4 5 6

7 8

Key:

Logical OR

Logical AND

. . .

Figure 3-1: Fault tree for copier.

number in the lower right corner of the box labeled exces-
sive curl) nor fault 4 alone will cause copy failure, but
both faults occurring together will cause failure; these two
faults are connected by an AND gate. Fault 2 is con-
nected to faults 5 and 6 with an OR gate; either of these
faults alone will cause copies to be crooked. Similarly, a
paper fault can be caused either by paper being the wrong
size for the feeder tray (7) or by paper being oriented the
wrong way in the tray (8). Notice that for the numbered
conditions in the fault tree, a written addendum, num-
bered in correspondence with the conditions, would in-
dicate how the faults are guarded against.

Together, hazard analyses and fault trees can be used to
obtain a reasonably clear picture of a system’s exception
vulnerabilities. A hazard analysis produces a list of
hazards to guard against, either by fault avoidance or by
fault tolerance. A fault tree takes that list of hazards and
helps to elucidate the causal events or conditions that lead
to a given hazard. Hazard analyses rely to some extent on
the imagination and experience of the analyst in generat-
ing a list of hazards; it helps to have prior knowledge of
what kinds or classes of vulnerabilities to look for. In
such cases, a checklist or taxonomy of exception types
would be useful. In checking a system design, however,
long lists of hazards or events are apt to go unused; they
are hard to remember, and are seldom immediately avail-
able in printed form when needed. Moreover, such lists
are difficult to reproduce from memory, even if they are
organized taxonomically or hierarchically. One needs an
anchor from which to start.

One way to make lists easier to remember is to encode
them as graphical structures that are perceptually salient.
Bertin [1] provides guidance on the perception of graphi-
cal structures. One graphical technique that facilitates
recall and provides relational structure is the so-called
fishbone diagram, also known as a cause-and-effect
diagram or an Ishikawa diagram, after its founder, Kaoru
Ishikawa [8]. Fishbone diagrams are widely used in

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 349 FTCS-28: Maxion & Olszewski

quality control. Figure 3-2 shows an example, roughly in
the shape of a fish, that depicts exceptions that could be
encountered in a software system. At the "head" of the
fishbone is the phenomenon to be avoided: exception
failures. The ribs are labeled with categories of events
that cause exception failures, and the events within each
rib are examples of specific causes. For instance, the rib
labeled "computational problem" lists divide-by-zero as
an exemplar. The fishbone in the figure, although pos-
sibly incomplete, is an attempt to lay out a fairly com-
prehensive set of exception causes covering most
programs. The exemplars were obtained via hazard
analysis. Notice that the first letters of the rib labels spell
the word children, the mnemonic discussed in Section 2:
Everyone knows exceptional children.

Exception
Failure

Hardware
problem

Data-input
problem

Computational
problem

I/O and file
problems

Return-value problem:
function/procedure call

External user/
client problem

Null pointer and
memory problems

Incorrect
command line
arguments

Erroneous
response to
prompt

Late response
to prompt

No response to
prompt

Insufficient
disk space

Power outage

Crash

Disconnected/
dismounted

Timeout

Spurious
interrupts

Corrupt
memory

Transient errors

File does not
exist

File permissions
incorrect

File corrupted

File moved
Invalid
filename

Output file
already exists

File locked by
another program

Standard libraries
not available

Standard libraries
modified

Incorrect return code
from external function

Incorrect parameters
passed to external
function

Empty data file
Incorrect
delimiters

Non-numerics in
numeric field

Extraneous data

Missing data

Data values
outside of range

Missing end of
file

Insufficient memory

Memory allocation error

Non-allocated
memory accessed

Invalid pointer dereferenced

Illegal access

Corrupt memory

Array boundary violation

Divide by zero

Uninitialized
variable

Square root of a
negative number

Buffer overflow

Type mismatch

Insufficient
precision

Overflow/
underflow

Failure to
handle error
return code

Values of
arguments
invalid

Wrong number
of arguments

Wrong type of
arguments

Library-function
problem

Non-ascii

Figure 3-2: Fishbone diagram showing exception
types and exemplars. The first letters of the rib labels
spell the mnemonic children.

An ideal dependability case might be little different from
a safety case, although it’s unclear that all of the elements
of a safety case are necessary if one’s goal is simply to
improve coverage of software exceptions. The term
"safety case" is suggestive of safety-critical software, and
may not be taken seriously by programmers working on
such projects as spreadsheets which, at first blush, do not
appear to be safety critical; so, the term "dependability
case" is introduced here in an effort to broaden the appeal
to all programmers. The present work defines a depen-
dability case in terms of the steps shown in Table 3-1.
The written defense in the last bullet may be constructed
in the abbreviated form suggested in the text accompany-
ing Figure 3-1; this will focus attention on omissions of-
ten exposed by the writing process.

The hypothesis set forth in this paper is that if program-
mers were given a structure for organizing exception-
failure concepts, as well as a memory aid for priming

1. Generate a LIST of hazards/exceptions to be
guarded against.

Use hazard analysis to elucidate possible
exceptions.

Use the exception fishbone as a reminder
of exception types.

2. Establish the CAUSAL PATHS leading to each
exception possibility.

Select fault-tree top events, using the
aforementioned exception list as a guide.

Perform a fault-tree analysis to guide causal
path discovery for each top event/exception.

3. Write dependability DEFENSE for each top event.

Defend the statement: this code is completely
robust against exception failures. Use the
fault-tree structure to guide the defense.

Table 3-1: Outline of dependability-case steps: list
exceptions, establish causal paths, write defense.

those concepts, they would write more robust code; their
code would be more resistant to exception failures. The
following sections describe experiments to test this
hypothesis.

4. Experimental method
This section describes the experimental work conducted
to test the hypothesis that robustness to exception failure
improves when programmers use dependability cases.
Two experiments were conducted. The first experiment
involved no programming. It tested only the idea that
using dependability cases improves coverage of exception
conditions; increased coverage was indicated by generat-
ing larger numbers of potential exception conditions. The
success of this experiment led to a second experiment that
was the same as the first, but required programming.

4.1. Experimental design
A two-by-two design was used, with nonprogramming vs.
programming groups, and control vs. treatment groups.

Non-programming condition. In the first of two experi-
ments, programmers were recruited to generate a list of
exception conditions, testing only their ability to think of
exceptions, not to write code to protect against them. Par-
ticipants were asked to write a list of all the exception
conditions they could think of, within the context of the
given task. The participants were divided into control and
treatment groups. Controls had no special instructions;
treatments had special instructions for writing an accom-
panying dependability case justifying the claim that the
resulting program would be completely robust against ex-
ception failures. The objective was to see if the treatment
group could think of more exceptions than the control
group could. Details are given in the sections below.

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 350 FTCS-28: Maxion & Olszewski

Programming condition. The second experiment
resembled the first one, except that the participants were
required to write C code to implement a simple program-
ming task (described in Section 4.3). The programmers
were divided into two groups: control and treatment. The
control group performed the programming task without
any special instructions; the treatment group performed
the same task with special instructions for writing an ac-
companying dependability case, justifying the claim that
the resulting program would be completely robust against
exception failures. The objective was to see if the treat-
ment group’s programs would be more robust against a
test set of exception-generating data files than those of the
control group.

4.2. Selection of participants
Four groups of university student subjects were selected
from undergraduate and graduate university courses at
two American universities. Groups A and B were from
one university; groups C and D were from the other.
Group A contained 27 graduate and undergraduate stu-
dents enrolled either in a masters-level course in dis-
tributed operating systems, or in a course in computer
systems administration. Some of these students had in-
dustrial programming experience. Group B was com-
posed of 14 students enrolled in a third-semester under-
graduate course in data structures. Group C consisted of
18 graduate students enrolled in a masters course in
software engineering. Group D comprised 38 under-
graduate students enrolled in a fourth-semester data struc-
tures course. Groups A, B and C participated in the pro-
gramming portion of this experiment; Group D par-
ticipated only in the nonprogramming portion. The ob-
vious nonhomogeneity of the groups was intentional,
representing a range of experience levels found in popula-
tions of programmers.

Subjects in each letter group were assigned to control and
treatment subgroups. Subjects in Groups A, B and C
were sorted by grade-point average, and then assigned to
control and treatment subgroups on an alternating basis;
thus the distribution of high-grade-point and low-grade-
point subjects in each group was approximately equal.
Subjects in Group D were assigned randomly to control
and treatment subgroups.

4.3. Instructions to participants
All participants, both control and treatment, were given
specifications for a simple C program (standard C for a
Unix-based platform) that would compute the mean and
standard deviation of numbers provided in an input file to
be read by the program. The formulae for computing a
mean and standard deviation were given. All participants
were told to consider that they had been asked to write
one of many software modules that would be embedded
in a medical device for radiation therapy. The module
will accept data from a certain place (a file specified on
the command line), will compute a result based on those
data, and will return a result to standard output. They
were told that the safe, dependable operation of the entire
device may depend on the integrity of this one module.

The instructions advised that a correctly-formatted input

file should contain an arbitrary number of rows such that
each row is delimited from the next by a newline charac-
ter. Each row should contain an arbitrary number of
floating-point values such that each value is delimited
from the next by white space (one or more spaces and/or
tabs). The input file will be terminated with an end-of-file
character. Computed results were to be printed to stan-
dard output in row form such that each row contained the
mean and standard deviation, respectively, of its cor-
responding column; i.e., row 1 contains the results from
column 1, and so on. Table 4-1 shows the input- and
output-data examples given in the instructions.

1.2 2.7 3.8
1.1 2.3 3.4
1.1 2.2 3.0
1.9 2.1 3.3
1.4 2.6 3.2
1.2 2.2 3.3 1.40 0.29
1.2 2.7 3.4 2.36 0.26
1.8 2.2 3.0 3.32 0.25

Table 4-1: Example input data (left) and output data
(right) shown in instructions (e.g., mean of input
column 1 is 1.40, standard deviation is 0.29).

Participants were admonished that their programs must
perform dependably, returning either a computed result or
a message constituting graceful termination in the event
of an exception. The program should indicate success if it
is able to compute the mean and standard deviation for
each column. The program should indicate failure if it is
unable to compute the mean and standard deviation for
any column for any reason; any ambiguity should resolve
to a dependably safe outcome. In ambiguous cases, nei-
ther the mean nor standard deviation were to be computed
or printed for any column; rather, a clear and informative
error message (i.e., suggestive of how the user/operator
should isolate/correct the problem) was to be printed to
standard output, and the program should indicate error by
returning 1 from main(). Otherwise, success should be
indicated by returning 0 from main().

General instructions. All nonprogramming participants,
both control and treatment, were instructed to imagine
writing the code specified in the instructions, and then to
produce a list of all the exceptions that they would need to
guard against in the code. Participants were given 30
minutes to complete the task. Results were scored as
described in Section 5.

All programming participants, both control and treatment,
were instructed to write the code specified in the instruc-
tions, covering all exception conditions. Treatment par-
ticipants were asked, additionally, to construct an accom-
panying dependability case defending the code’s robust-
ness, as described below. No collaboration was per-
mitted. Finished programs were submitted via email
within one week. Programs received by email were com-
piled, tested and scored automatically, as described in
Section 5.

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 351 FTCS-28: Maxion & Olszewski

Special instructions. Participants in the control group,
both programming and nonprogramming, were given no
special instructions. They received only the general in-
structions described above.

Participants in the treatment group, both programming
and nonprogramming, received special instructions for
writing a dependability case to accompany their
programs. These instructions included the dependability-
case steps shown in Table 3-1. In addition, they were
given a short (3 single-sided pages) tutorial on the use of
fault trees and fishbone diagrams. The tutorial included
two paragraphs that discussed the consequences of failure
in mission-critical systems.

Included in the tutorial were two examples and illustra-
tions. One was the fault tree for a copy machine (already
shown in Figure 3-1), and the other was a fishbone
diagram, also for a copier, shown in Figure 4-1. The
intention of using a copier as an example was to
demonstrate how these graphic and organizing tools are
used, without introducing bias in the programming
domain.

Copier
problems

MechanicalElectricalQual i ty

Med iumUser Interface Resource

Copy too dark

Copy too l ight

Wrinkled copy

Random reboot

State errors

Original
stil l on
glass

Lid is up

Jammed feeder

Dirty drum
Toner not fused

to medium

Labels worn off keys

Auditron key bounce

Out of toner

Out of paper

Out of fuser

Slides instead of paper

Curl oriented wrong

Damaged paper

Figure 4-1: Copier fishbone for treatment groups.

The treatment groups were also provided with a skeleton
fishbone diagram for exception conditions in computer
programs. This diagram, shown in Figure 4-2, provided
examples of categories of exceptions as shown in the
labeled boxes at the ends of the fishbone ribs. These
categories, such as problems with input data, memory,
computations, functions or procedure calls, clients or
users, hardware, file I/O, and library-functions, served as
semantic anchors for generating exception-condition ex-
emplars within each category. One category, computa-
tional problems, included two exemplars as illustrative
examples. Participants were free to invent categories of
their own.

Participants were encouraged to create a fault tree, as an
option, covering only the conditions in their particular
program. Participants were encouraged, but not required,
to (i) draw a fault tree, (ii) number the boxes as ex-
emplified in Figure 3-1, and (iii) provide a numbered list
of protections corresponding with the numbered con-
ditions in the fault tree.

Exception
Failure

Library-function
problem

Computat ional
problem

Null pointer and
memory problems

External user/
cl ient problem

Return-value problem:
function or procedure call

Hardware
problem

I/O and fi le
problems

. . .

Data-input
problem

. . .

Divide by zero

Uninitialized
variable

Figure 4-2: Blank fishbone for treatment groups.

4.4. Procedure
Separate instruction packets were distributed to par-
ticipants, depending on their group: control vs. treatment
and programming vs. nonprogramming. Programming
participants were given a week to complete the task;
source code was to be sent via electronic mail to a
specified Internet address. Nonprogramming participants
were given 30 minutes to write their results; papers were
handed in to experimenters at the end of the session.

Each of the 59 programs was run against the set of 25 test
cases shown in Table 4-2. Entries in the table marked by
"-" were expected to generate exceptions; other entries
were for general tests of functionality. Entry number 16
was ambiguous; this condition could have been guarded
by protection from divide by zero, or by a restriction
against having only one data row; computing the standard
deviation of a single data point isn’t sensible. Each
program was stripped from email, compiled, tested and
scored for quantitative pass/fail automatically. Qualita-
tive scoring (for quality of error messages) was done by a
panel of judges. Scoring is discussed in Section 4.5.

4.5. Scoring criteria for programs
This section shows how programming and nonprogram-
ming results were scored. Results for the nonprogram-
ming group were reported in terms of the number of ex-
ception conditions listed by each participant. Results for
the programming groups were reported in terms of the
number of test cases handled by a given program.

Scoring: Nonprogramming condition. Scoring was
done on the basis of the number of valid exceptions iden-
tified. To guard against the possibility that any excep-
tions listed by participants were not valid (e.g., Pentium
divide error, forgot a semicolon, etc.), such entries were
eliminated by agreement of a panel of judges before scor-
ing. All other entries were credited as being valid excep-
tions.

Scoring: Programming condition. Two types of test
cases were used: normal and fault. A normal case was not
expected to generate an exception when processed. An
example of a normal case is number 7 in Table 4-2
(col_3.dat) which contained three columns of good data;

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 352 FTCS-28: Maxion & Olszewski

1- First line is blank
2- Blank lines interspersed throughout data
3- Characters intermixed with numbers
4. One column of data
5. Many columns of data
6. Two columns of data
7. Three columns of data
8- Data file does not exist
9- Empty file
10- Extra values interspersed throughout data
11- Extra value in first row
12- Large values (overflow)
13- Missing values throughout data
14- Missing values in first row
15- Data file not provided on command line
16. One row of data
17. Many rows of data
18. Two rows of data
19. Three rows of data
20. All values the same in each column
21- Characters exclusively (no numbers)
22. Separating row values by >= 1 space
23. Separating row values by >= 1 space and/or tab
24. Separating row values by more than one tab
25. Negative numbers

Table 4-2: Test cases. Entries marked by "-" are ex-
ception cases, expected to generate exceptions; others
are general cases, intended to test general
functionality.

nothing about this test case would be expected to generate
an exception. Fault cases were intentionally seeded with
errors that, when processed by a program, would be ex-
pected to generate exceptions. An example of a fault case
is number 3 (char.dat) which included alphabetic charac-
ters interspersed in numeric data. The character data
would generate an exception during a computation.
These characterizations of normal and fault are useful
when computing the scores for programs submitted to the
experiment, as discussed in subsequent sections.

Table 4-3 details criteria for the two levels of scoring
used: general and exception. Both of these were in-
tegrated into an automated scoring algorithm. General
scoring was the strictest, demanding that everything be
absolutely correct and in exact accordance with the
specifications issued to the participants. For example,
according to the table, mean and standard deviation
needed to be correct and in the right format, and error
messages were required to be informative and to identify
a problem precisely. On the other hand, exception scor-
ing recognizes that the fundamental goal of the experi-
ment was neither to test adherence to specifications nor to
test general coding abilities, but rather to test exception-
handling coverage. The table shows, for example, how a
program would pass exception-level scoring for fault test
cases: it would accept any return code (don’t care); it
would accept any error message; and output formatting
would not be an issue (not applicable), since the fault test
case would prevent a result from being computed anyway.
The only criterion for an exception-level pass was that the

exception itself be handled correctly, and that the program
not crash. Although these criteria seem lax, they are all
that’s needed to determine whether or not an exceptional
condition has been properly handled.

Normal Test General Exception
Cases Scoring Scoring

------------------- ------------ ------------

Return Code 0 Don’t care *

Computed Values Mean & sdev Mean & sdev
correct correct

Output Formatting Two columns Don’t care
Two decimals
No extraneous
text

Fault Test General Exception
Cases Scoring Scoring

------------------- ------------ ------------

Return Code 1 Don’t care *

Error Message Exception Any error
precisely message **
identified

Output Formatting Not applicable Not applicable

* except signals raised by operating system during program
execution, e.g., segmentation fault or floating exception.

** except errors due to artificial limitations introduced by the
programmer, such as hard-coding the maximum number of columns
or rows that may appear in a data file.

Table 4-3: Scoring criteria for programs: general-
level and exception-level scoring for normal and fault
test cases.

Error-message adequacy. Judging the adequacy of error
messages was based on the length of time it would take an
operator to locate a problem when presented with the
given error message. These rules were used only in cases
in which it was expected that the program should generate
an error message (fault test cases). The error-message
rules, ordered from least to most strict in Table 4-4, were
incorporated into the automated scoring algorithm. A
general-pass required that the error message be at level 5
or 6; an exception-pass required at least level 3; all others
failed. These rules were used only in the programming
experiment, not the nonprogramming experiment.

5. Results
This section presents the results of two experiments con-
ducted to test the hypothesis that code written by
programmers using dependability cases will be more
robust against exception failures than code written by
programmers not using dependability cases. Note that the
test set for the programming experiment included two
kinds of cases: normal (for testing general functionality)
and fault (for testing exception handling). The results will
be discussed in terms of these two kinds of cases.

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 353 FTCS-28: Maxion & Olszewski

1 - No Error Message Generated
No message; or erroneous display of numerical output
instead of identifying the exception.

2 - Internal Exception Reported
"You can only have ten columns."

3 - Misidentification of Exception
Correctly stated that something was wrong, but identified
wrong thing; misleading. Would have taken more time to
fix the problem based on this error message than if the
message had correctly identified the problem; would
possibly take more time, having been mislead, than if
there were no error message at all.

4 - Error Message Vague or Unspecific
"There is bogus data."

5 - Exception Correctly Identified
"Found character ’a’ in the data."

6 - Exception Correctly Identified and Located
"Found character ’a’ in line 3 of the data."

Table 4-4: Rules (and examples) for judging error-
message adequacy: ordered least to most strict.

The programming experiment required participants to
write and submit program code to the experimenters. This
experiment tested not only the extent to which program-
mers could cover all exception conditions, but also their
ability to write code that correctly handled each excep-
tion. The nonprogramming experiment required only that
participants generate lists of exception conditions that
they thought would be raised if the program were to be
written; it was a thought experiment, not a coding experi-
ment. It was conducted to provide convergent evidence
showing that programmers in the treatment group were
influenced mentally to generate or consider more excep-
tion conditions than their peers in the control group.

5.1. Results: Nonprogramming-experiment
The nonprogramming experiment included 38 program-
mers (group D), divided into 23 control cases and 15
treatment cases, all of whom were given the same
materials as the programmers in the programming experi-
ment. These nonprogramming participants were instructed
to write down all the exception failures they could think
of, without writing any code.

The statistical results of the nonprogramming experiment
are displayed in Table 5-1. One-tailed and two-tailed
t-tests were used, because these are the simplest effective
statistical analyses for determining the significance of the
difference between two groups of scores. Note that there
are no special scoring levels employed here, because only
the number of exceptions listed is being analyzed. The
single-tailed t-test is significant at the .001 level, and the
stronger 2-tailed t-test is significant at .002; both tests
indicate a substantial effect of treatment over control.
Significance at the .001 level means that these results
could have been obtained by chance with a probability of
only .001.

The 79.1% improvement of treatment over control con-
ditions, from a mean score of 4.65 to a mean score of
8.33, is remarkable. This very strong result indicates that
using dependability cases to help think about exceptions
is almost certainly useful in expanding exception
coverage. Note, however, that being aware of exceptions

Treatment Control T-test
Mean Std Mean Std p-value
------------ ------------ -------
8.33 4.34 4.65 2.33 0.001*

Table 5-1: Nonprogramming results: 15 treatment
cases, 23 control cases, 1-tailed t-test; * indicates
statistical significance at the .001 level.

that need to be handled in a program does not particularly
mean that they will in fact be handled correctly. The
programming-experiment results address this latter issue.

5.2. Results: Programming-experiment
The programming experiment included 59 programmers,
all of whom wrote code according to the same specifica-
tion; 33 of these programmers were in the control group,
and had no special instructions other than to be sure that
their programs worked; 26 of the programmers were in
the treatment group, and used dependability cases to in-
crease their awareness of exception failures. The results
displayed in this section are pooled so as to reduce uncer-
tainty in estimating the standard deviation used in the test
statistic.

An analysis of variance (two-way ANOVA with inter-
action) was performed on the pooled data for all 59 par-
ticipants. The analysis found no significant interaction
between treatment and group (p = 0.6883), meaning that
the three groups of programmers (groups A, B and C) did
not perform differently from one another due to any effect
of the treatment. An ANOVA without interaction,
however, shows statistically significant differences in
group effects (F = 4.24, p = 0.0194) and in treatment
effects (F = 5.97, p = 0.0178), meaning that there were
real differences among the three groups, and that the treat-
ment was, with 98.22% confidence, effective in changing
the overall behavior of the treatment groups with respect
to the control groups. On the whole, the treatment groups
performed 43% better than the control groups in terms of
covering exception failures. Details are given below.

Figure 5-1 shows the total number of test cases that were
handled correctly under the two different scoring levels.
The graph clearly demonstrates that there are positive dif-
ferences between the control and treatment groups in both
scoring conditions, but the largest difference (and the best
overall performance) is in the exception scoring con-
dition. Exception scoring is the condition that most em-
phatically illustrates exception-handling adequacy. In this
condition 43.2% of all test cases (normal plus fault) were
handled correctly by control-group programs, and 59.2%
were handled correctly by treatment-group programs.

The data in Table 5-2 show the means and standard devia-
tions for control and treatment programs under both scor-
ing levels, as well as the single-tailed t-test p-value for
each scoring level. Although both scoring levels show an
improvement of the treatment group over the control
group, only the exception score shows strong statistical

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 354 FTCS-28: Maxion & Olszewski

General
Scoring

Exception
Scoring

M
ea

n
pe

rc
en

t o
f t

es
t c

as
es

30

40

50

60

70

20

Treatment group
Control group

Total test cases correctly handled

Figure 5-1: Percent of all 25 test cases handled cor-
rectly under different scoring levels. Exception scor-
ing shows 37.3% improvement of treatment over con-
trol.

significance, as indicated by the asterisk. The estimated
magnitude of the treatment effect is a 37.3% improvement
over the control condition. This effect is statistically sig-
nificant at the .017 level.

Scoring Treatment Control T-test
Level Mean Std Mean Std p-value

----------- ------------ ------------ -------
General 6.73 6.74 6.03 6.62 0.346
Exception 14.81 6.26 10.79 7.65 0.017*

Table 5-2: All 25 test sets, pooled results: 26 treat-
ment cases, 33 control cases, 1-tailed t-test; * indicates
statistical significance at the .017 level.

Evaluating the programs against all test cases means that
programs are being tested for two things: their ability to
function correctly on normal cases that would not be ex-
pected to generate exceptions, and their ability to handle
exceptions generated by fault cases. The focus of this
paper is on exceptions, however, not normal conditions,
so it seems reasonable to isolate the results of testing with
fault cases from the results of testing with normal cases.
This will reveal control and treatment differences on fault
cases alone, and hence show results that are closer to the
heart of the study. Of the 25 total test cases, 12 were fault
(expected to generate exceptions) and 13 were normal.
Figure 5-2 shows the numbers of strictly fault cases cor-
rectly handled by control and treatment groups. The
figure demonstrates a trend similar to that shown in
Figure 5-1 where performance is indicated over all 25 test
cases, but the trend is now more pronounced. Again, ex-
ception scoring most emphatically illustrates exception-
handling adequacy. In this condition, 44.4% of all fault
cases were handled correctly by control-group programs,
and 63.5% of all fault cases were handled correctly by
treatment-group programs.

General
Scoring

Exception
Scoring

M
ea

n
pe

rc
en

t o
f t

es
t c

as
es

30

40

50

60

70

20

Treatment group
Control group

Fault test cases correctly handled

Figure 5-2: Percent of fault test cases handled cor-
rectly under different scoring levels. Exception scor-
ing shows 43% improvement of treatment over con-
trol.

The data in Table 5-3 show the means and standard devia-
tions for control and treatment programs for both scoring
levels, including the t-test p-values. The estimated mag-
nitude of the treatment effect is a 43% improvement over
the control condition. This effect is statistically sig-
nificant at the .01 level.

Scoring Treatment Control T-test
Level Mean Std Mean Std p-value

----------- ------------ ------------ -------
General 3.69 3.51 3.21 3.25 0.294
Exception 7.62 3.50 5.33 3.81 0.011*

Table 5-3: Fault test sets only: pooled results, 26
treatment cases, 33 control cases, 1-tailed t-test; * in-
dicates statistical significance at the .01 level.

6. Summary and conclusion
Programmers do not always cover all the exception con-
ditions encountered by programs. This paper asked: What
is the reason for this, and what can be done about it? It
was hypothesized that programmers ignore some excep-
tion cases because they forget. It was further
hypothesized that if programmers were provided with a
structure that made it easier to remember or to generate
exception categories and exemplars, then they would
achieve better coverage in programs. This prospective ap-
proach would have advantages over retrospective approa-
ches such as testing, because avoiding problems in the
first place is almost always better than detecting and
fixing problems later.

Two experiments were conducted to validate the
hypotheses above. A nonprogramming experiment
demonstrated that, with the structuring methods
prescribed in dependability cases, programmers con-

28th International Symposium on Fault-Tolerant Computing: Munich, Germany. 23-25 June 1998.

0731-3071/98 $10.00  1998 IEEE 355 FTCS-28: Maxion & Olszewski

sidered 79.1% more exception cases than they did without
them. This result was statistically significant at the .001
level. A programming experiment demonstrated that,
using the same structuring methods, programmers cover
43% more exception conditions than they do without
using the method. This result was statistically significant
at the .01 level. At the same time as exception coverage
improved, programmers also improved by 37.3% their
coverage of purely functional aspects of programs. The
structure of the dependability case did not appear to im-
prove adherence to directives specifying output formats,
error-message usefulness or return-code correctness.

It seems clear that dependability cases, by mere virtue of
being constructed, can expose problems and can prompt
system designers to think about how to avoid them. A
very positive contribution that dependability cases make
to system robustness is to provide a framework for think-
ing about what can go wrong, and how to avoid or handle
failures. The structural elements provided by some of the
methodologies intrinsic to safety cases, dependability
cases and quality control (e.g., hazard analyses, fault trees
and Ishikawa diagrams) appear to be ideal for helping
programmers recall or generate lists of exception con-
ditions that need to be covered in a given program. The
investment in learning and employing the dependability-
case methodology is minimal (about 20 minutes in the
simple experiments conducted here).

Given the effectiveness and simplicity of dependability
cases, it is suggested that even such a small thing as
teaching the mnemonic "Everyone loves exceptional
children" to beginning programmers might be an effica-
cious way to improve exception-handling coverage in the
long term. According to skilled-memory theory, the
problem of remembering information learned and stored
in long-term memory can be solved by associating the
stored information with a retrieval cue or structure [7].
The structure inherent in dependability cases ac-
complishes just that. Being able to recall or regenerate a
comprehensive list of cases to guard against must cer-
tainly be an improvement over forgetting.

7. Future
The present study begs for replication, and this is planned
on a broader scale in the next academic year. A wider
range of programming tasks should be used, as well as a
more complete set of test cases. More work is needed to
tease apart the individual effects of the hazard analysis,
the fault tree and the fishbone diagram. It is possible that
one of these structures carries more of the effect found in
the present experiments, and it would be useful to dis-
cover which one it is.

8. Acknowledgements
It is a pleasure to acknowledge the contributions of David
Banks, Kobey DeVale, Fred Harris, Phil Koopman (for
the children mnemonic), Patty McMillan, Gary Powers,
Dan Siewiorek, Mark Stehlik, James Tomayko, Ed
Wishart, and all the students from the Fall 1997 graduate
course in Dependable System Design at Carnegie Mellon
University.

References
[1] Bertin, Jacques, Semiology of Graphics, University of Wisconsin
Press,, Madison, Wisconsin, 1983.

[2] Bishop, P.G. and Bloomfield, Robin E., ‘‘The SHIP Safety Case
Approach’’, In SafeComp-95: 14th International Conference on Com-
puter Safety, Reliability and Security, Gerhard Rabe (Ed.). European
Workshop on Industrial Computer Systems Technical Committee 7 -
Reliability, Safety, and Security. Berlin: Springer-Verlag, 11-13 October
1995, pp. 437-451, Belgirate, Italy.

[3] Boehm, Barry W., Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

[4] Bush, Marilyn, ‘‘Improving Software Quality: The Use of Formal
Inspections at the Jet Propulsion Laboratory’’, In 12th International
Conference on Software Engineering. Los Alamitos, California: IEEE
Computer Society Press, 26-30 March 1990, pp. 196-199, Nice, France.

[5] Computer Emergency Response Team (CERT), Personal com-
munication. CMU Software Engineering Institute, Pittsburgh, Pennsyl-
vania: October 1997.

[6] Cristian, Flaviu, Exception Handling and Tolerance of Software
Faults, In Software Fault Tolerance, Michael R. Lyu (Ed.). Chichester:
Wiley, 1995. pp. 81-107, Ch. 4.

[7] Ericsson, K. Anders and Pennington, Nancy, The Structure of
Memory Performance in Experts: Implications for Memory in Everyday
Life, In Memory in Everyday Life, Graham M. Davies and Robert
H. Logie (Eds.). Amsterdam: Elsevier North-Holland, 1993. pp.
241-282, Ch. 6.

[8] Ishikawa, Kaoru, Guide to Quality Control, Asian Productivity
Organization, Tokyo, 1982.

[9] James, William, The Principles of Psychology, Henry Holt and
Company, New York, 1890.

[10] Kit, Edward, Software Testing in the Real World: Improving the
Process, Addison-Wesley, Harlow, England, 1995.

[11] Kletz, Trevor, Hazop and Hazan: Identifying and Assessing
Process Industry Hazards, Institution of Chemical Engineers, Rugby,
Warwickshire, England, 1992.

[12] Leveson, Nancy G., Safeware: System Safety and Computers,
Addison-Wesley, Reading, Massachusetts, 1995.

[13] Lions, Jacques-Louis, ARIANE 5 Flight 501 Failure: Report by
the Inquiry Board, World-Wide Web, http://www.esrin.esa.it
/htdocs/tidc/Press/Press96/ariane5rep.html, 1996, (Hardcopy available
from Maxion & Olszewski, authors of this paper.)

[14] Reason, James, Human Error, Cambridge University Press,
Cambridge, England, 1990.

[15] Shaw, Roger, editor, Safety and Reliability of Software Based
Systems, Springer Verlag, Berlin, 1997.

[16] Shaw, Roger, ‘‘Safety Cases - How Did We Get Here?’’, In Safety
and Reliability of Software Based Systems, Roger Shaw (Ed.). Berlin:
Springer-Verlag, (CSR Workshop held 12-15 September 1995). 1997,
pp. 43-95, Brugge (Bruges), Belgium.

[17] Toy, Wing N., Fault-tolerant Design of Local ESS Processors, In
The Theory and Practice of Reliable System Design, Daniel P. Siewiorek
and Robert S. Swarz (Eds.). Bedford, Massachusetts: Digital Press,
1982. pp. 461-496, Ch. 12.

[18] Vesely, W.E.; Goldberg, F.F.; Roberts, N.H. and Haasl, D.F.,
Fault Tree Handbook, U.S. Nuclear Regulatory Commission,
Washington, D.C., 1981, Technical Report NUREG-0492.

[19] Wickelgren, Wayne A., Learning and Memory, Prentice Hall,
Englewood Cliffs, New Jersey, 1977.

