
Real-Time Planning in

Dynamic and Partially

Known Domains

Maxim Likhachev
University of Pennsylvania
maximl@seas.upenn.edu

Sven Koenig
University of Southern California

skoenig@usc.edu

Warning!

Â We try to make everything easy to understand.

Â We often do not mention crucial details.

Â We use both 4- and 8-neighbor grids.

Â We invite you to ask questions!

Warning!

Â We use robotics to illustrate the planning techniques

because

Ã incomplete information and uncertainty are important in robotics

Ã domains from robotics are easy to understand, and

Ã the behavior of planning techniques is easy to visualize.

Â However, the planning techniques also apply to a variety

of other domains, including more ñsymbolicò ones.

Real-time Planning in Dynamic and

Partially-known Domains
ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Maxim

ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

planning in 8D (<x,y> for each foothold) using R*

Real-time Planning in Dynamic and

Partially-known Domains

Maxim

ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Ãsevere time constraints (e.g., tens of msecs to few seconds)

Real-time Planning in Dynamic and

Partially-known Domains

Maxim

ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Ãsevere time constraints (e.g., tens of msecs to few seconds)

Ã robustness to uncertainties in execution, sensing, environment

planning in 4D (<x,y,orientation,velocity>) using Anytime D*

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Real-time Planning in Dynamic and

Partially-known Domains

Maxim

ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Ãsevere time constraints (e.g., tens of msecs to few seconds)

Ã robustness to uncertainties in execution, sensing, environment

Ãgenerality of approaches

Ã theoretical guarantees

Ãsimplicity

Real-time Planning in Dynamic and

Partially-known Domains

Maxim

ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Ãsevere time constraints (e.g., tens of msecs to few seconds)

Ã robustness to uncertainties in execution, sensing, environment

Ãgenerality of approaches

Ã theoretical guarantees

Ãsimplicity

usually satisfied by

graph searches such as A*

ability to find some solution fast

ability to improve the solution before and during execution

ability to re-use search results
ability to plan under uncertainty

This talk!

Real-time Planning in Dynamic and

Partially-known Domains

Maxim

Common theme in this talk:

ÃPlanning with a series of (efficient) graph searches

ÃPlanning with variants of A* searches

Real-time Planning in Dynamic and

Partially-known Domains

Maxim

Table of Contents

Â Modeling Planning Domains

Â Graphs, MDPs

Â Planning Problems and Strategies

Â Localization, Mapping, Navigation in Unknown Terrain

Â Agent-Centered Search, Assumptive Planning

Â Efficient Implementations of Planning Strategies

Â Incremental Heuristic Search

15 Minute Break

Â Real-Time Heuristic Search

Â Planning with Preferences on Uncertainty

Â Planning with Varying Abstractions

Sven

Work vs Configuration Space

work space configuration space

[from Stuart Russell and Peter Norvig]

Sven

Work vs Configuration Space

Â Configuration spaces are often

Ãcontinuous and

Ãhigh-dimensional.

Sven

Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs

Sven

Â Skeletonization methods

Discretizing Configuration Space

visibility graph

Sven

Discretizing Configuration Space

roadmap using random points [Kavraki et al, 1994]

Â Skeletonization methods:

randomized and probability complete

Sven

Â Skeletonization methods:

randomized and probability complete

Discretizing Configuration Space

roadmaps using RRTs [LaValle, 1998]

[from Steve LaValle]

start

goal

Sven

Â Skeletonization methods:

randomized and probability complete

Discretizing Configuration Space

roadmaps using RRTs [LaValle, 1998]

[from Steve LaValle]

start

goal

Sven

Â Skeletonization methods:

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start

Sven

Â Skeletonization methods:

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start

Sven

Â Skeletonization methods:

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start

Sven

Â Skeletonization methods:

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start

Sven

Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs

Sven

Discretizing Configuration Space

vertical strips grid

Â Cell decomposition methods:

systematic and resolution complete

[from Stuart Russell and Peter Norvig]

Sven

Discretizing Configuration Space

8-neighbor grid 4-neighbor grid

Sven

Discretizing Configuration Space

(x,y,theta)

start

Â Lattice-based methods combine road-map and cell based

methods: The configurations are the centers of cells.

Sven

Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs

Sven

A*

Â A* [Hart, Nilsson and Raphael, 1968] uses user-supplied h-

values to focus its search.

Â The h-values approximate the goal distances.

Â We always assume that the h-values are consistent!

Â The h-values h(s) are consistent

iff they satisfy the triangle inequality:

h(s) = 0 if s is the goal and

h(s) Ò c(s,a) + h(succ(s,a)) otherwise.

Â Consistent h-values are admissible.

Â The h-values h(s) are admissible

iff they do not overestimate the goal distances.

s goal

succ(s,a)

c(s,a)

h(s)

h(succ(s,a))

Sven

A*

(Forward) A*

1. Create a search tree that contains only the start.

2. Pick a generated but not yet expanded state s

with the smallest f-value.

3. If state s is the goal then stop.

4. Expand state s.

5. Go to 2.

Sven

A*

Â Search problem with uniform cost

1

goal1start

4-neighbor grid

Sven

A*

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

Â Possible consistent h-values

5 4 3 2 2 2

5 4 3 2 1 1

5 4 3

5 4 3 1

2

2

01

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0

0

0

00

0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4-neighbor grid

Sven

1

2

A*

Â First iteration of A*

0

cost of the shortest path
in the search tree from the

start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4-neighbor grid

order of expansions

Sven

2

A*

Â Second iteration of A*

01

1

1

4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start to the given state

Sven

2

A*

Â Third iteration of A*

01

2

1

1

4

6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start to the given state

Sven

2

A*

Â Fourth iteration of A*

02

2

1

2

1

1

6

6

4

6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start to the given state

Sven

2

A*

Â Fifth iteration of A*

02

2

1

2

2

1

1

2

6

6

4

6

6

4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start to the given state

Sven

2

A*

Â Sixth iteration of A*

02

2

1

2

2

1

1

3

2 3

6

6

4

6

6

4

4

6

4 4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start to the given state

Sven

2

A*

Â Seventh and last iteration of A*

02

2

1

2

2

1

1

3

2

4

3

4 6

6

4

6

6

4

4

6

4

6

4

(4)

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3

1

11

2

(7)

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the

start to the given state

Sven

A*
7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

5 4 3 2 2 2

5 4 3 2 1 1

5 4 3

5 4 3 1

2

2

01

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0

0

0

00

0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4 5 6

3

1

11

2

(7)

6

3 4 7

5

1

11

2

(8)

Uniform-cost search

Breadth-first search

4-neighbor grid

Sven

Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs

Sven

Weighted A*

w = 2.5

13 expansions

11 movements

(w = 1.0)

20 expansions

10 movements

8-neighbor grid

A*

f(s) = g(s) + h(s)

Weighted A* [Pohl, 1970]

f(s) = g(s) + w h(s)

Sven

Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs

Maxim

Modeling Uncertainty

ÅSo far, we assumed no uncertainty in the model
- execution is perfect

- localization is perfect

- environment is fully known

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph

for a least-cost

path

from sstart to sgoal

Maxim

Modeling Uncertainty

ÅUncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

S1 S2 S3

S4 S5

S6

S2 S3

S5

convert into an MDP
S4

Markov Decision Processes (MDP)

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost

Maxim

Modeling Uncertainty

ÅUncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

S1 S2 S3

S4 S5

S6

S2 S3

S5

convert into an MDP
S4

Markov Decision Processes (MDP)

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost
example: s3, s4, s5ɭ succ(s2, aSE),

P(s5|ase,s2) = 0.9, c(s2,ase,s5) = 1.4

P(s3|ase,s2) = 0.05, c(s2,ase,s3) = 1.0

P(s4|ase,s2) = 0.05, c(s2,ase,s4) = 1.0

Maxim

Modeling Uncertainty

ÅUncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

Moving-target search example

- State: <R,T>

- Uncertainty in the target moves

R

T

Maxim

Modeling Uncertainty
- execution is perfect

- localization is still assumed to be perfect

- environment is partially-known

S1 S2 S3

S4 S5

S6

convert into ???

- the costs and connectivity of the graph is not fully known

Incomplete Information State

Maxim

Modeling Uncertainty

Information state (e.g., knowledge about the environment) is

not fully known

Robot navigation in a partially-known environment

S ïagentôs state

<x,y> position

H ïa vector of hidden variables

status of cells B5 and E4

Maxim

Modeling Uncertainty

Information state (e.g., knowledge about the environment) is

not fully known

Robot navigation in a partially-known environment

S ïagentôs state

<x,y> position

H ïa vector of hidden variables

status of cells B5 and E4

fully observable state variables

(always known)

not known at the time of planning

but probability distribution P(H) is given

Maxim

Modeling Uncertainty

Robot navigation in a partially-known environment

S ïagentôs state

<x,y> position

H ïa vector of hidden variables

status of cells B5 and E4

X=[S(X);H(X)] - belief state

current belief of the robot about

hidden variables (i.e., P(H))

current (observable) state of the robot

Maxim

Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

ÅAn actioncanaffect both the observablestateof the robot (e.g.,
moveaction)aswell asits knowledgeabouttheenvironment(e.g.,
sensingaction):

X=[S(X);H(X)] - belief state

Xk

X2

X X1

a

...

X1=[S1(X);H1(X)]

X=[S(X);H(X)]
X2=[S2(X);H2(X)]

Xk=[Sk(X);Hk(X)]

Maxim

X

Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

Assumingperfectsensing:

X=[S(X);H(X)] - belief state

Ra=East

X1

X2

R=D4;
E4=u
B5=u

P(E4=free)=0.5

P(E4=obstacle)=0.5

R=E4;
E4=free
B5=u

R=D4;
E4=obstacle
B5=u

X2=[S(X2);H(X2)] - belief state

Maxim

X

Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

Assumingperfectsensing:

X=[S(X);H(X)] - belief state

Ra=East

X1

X2

R=D4;
E4=u
B5=u

P(E4=free)=0.5

P(E4=obstacle)=0.5

R=E4;
E4=free
B5=u

R=D4;
E4=obstacle
B5=u

X2=[S(X2);H(X2)] - belief state

H(X): P(E4=free) = 0.5; P(B5=free) = 0.5;

H(X1): P(E4=free) = 1; P(B5=free) = 0.5;

Maxim

Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

Assumingperfectsensing:

X=[S(X);H(X)] - belief state

Xg
Xs

X3

R=A4;
E4=u
B5=u

R=B5;
E4=u
B5=free

East X1

R=B4;
E4=u
B5=u

X2

R=C4;
E4=u
B5=u

East

...

Xg

R=F4;
E4=u
B5=u

Xg

R=F4;
E4=free
B5=u

R=F4;
E4=obs
B5=u

Xg

R=F4;
E4=free
B5=free

...X4
R=B4;
E4=u
B5=obs

...

Maxim

Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

Assumingperfectsensing:

X=[S(X);H(X)] - belief state

Xg
Xs

X3

R=A4;
E4=u
B5=u

R=B5;
E4=u
B5=free

East X1

R=B4;
E4=u
B5=u

X2

R=C4;
E4=u
B5=u

East

...

Xg

R=F4;
E4=u
B5=u

Xg

R=F4;
E4=free
B5=u

R=F4;
E4=obs
B5=u

Xg

R=F4;
E4=free
B5=free

...X4
R=B4;
E4=u
B5=obs

...

MDP in which optimal policy
is a tree (acyclic)

Maxim

Modeling Uncertainty

ÅUncertainty in localization/execution/environment
- execution is imperfect

- localization is imperfect

- environment is partially-known

Partially-Observable MDPs (POMDPs)

Maxim

Modeling Uncertainty: POMDPs

ÅMDP + robot is uncertain about its state (and/or about
some of the action costs)

ÅCan always be converted into a belief state-space MDP

(where each state is a probability distribution over original states)

Åoptimal policy: mapping from a belief state onto action

Åoptimal policy can be found by solving belief MDP

Åoptimal policy can now be cyclic

This tutorial will NOT talk about how to solve general POMDPs

Maxim

Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs

Maxim

Probabilistic Planning

ÅWhatplanto compute?
- Planthatminimizestheworst-casescenario(minimaxplan)
- Planthatminimizestheexpectedcost

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅWithout uncertainty,planis asinglepath:
asequenceof states(asequenceof actions)

ÅIn MDPs,planis apolicy :́
mappingfrom astateontoanaction

Maxim

Minimax Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalpolicy *́ :
minimizestheworstcost-to-goal
*́ = argmiń maxoutcomesof {́cost-to-goal}

Åworstcost-to-goalfor 1́=(sstart,s2,s4,s3,sgoal) is:
1+1+3+1 = 6

Åworstcost-to-goalfor 2́=(try to go throughs1) is:
1+2+2+2+2+2+2 +é =Ð

Maxim

Minimax Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalpolicy *́ :
minimizestheworstcost-to-goal
*́ = argmiń maxoutcomesof {́cost-to-goal}

ÅOptimalminimaxpolicy *́ = 1́=(sstart,s2,s4,s3,sgoal)

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;
reduces to usual backward A* if

no uncertainty in outcomes

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = Ð
h=3

g = Ð
h=2

g = Ð
h=2

g = Ð
h=1

g = Ð
h=0

CLOSED = {}
OPEN = {sgoal}
next state to expand: sgoal

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = Ð
h=2

g = Ð
h=2

g = Ð
h=1

g = Ð
h=0

CLOSED = {sgoal}
OPEN = {s3}
next state to expand: s3

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = Ð
h=2

g = Ð
h=1

g = Ð
h=0

CLOSED = {sgoal,s3}
OPEN = {s4}
next state to expand: s4

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = Ð
h=2

g = 5
h=1

g = Ð
h=0

CLOSED = {sgoal,s3,s4}
OPEN = {s2}
next state to expand: s2

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2}
OPEN = {sstart,s1}
next state to expand: sstart

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!

in this example, the computed policy is a path,
but in general it is a tree

Maxim

Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!

Minimax A* guarantees
to find an optimal (minimax) policy,

and never expands a state more than once,
provided heuristics are consistent (just like A*)

Maxim

Computing Minimax Plans

ÅMinimax backwardA*
- searches backwards which sometimes can be
hard/computationallyvery expensive(considermoving-target
search,whatis a goal?)

Maxim

Computing Minimax Plans

ÅPros/consof minimaxplans
- robustto uncertainty
- overlypessimistic
- harderto computethannormalpaths

- especiallyif backwardsminimaxA* doesnotapply
- even if backwardsminimax A* does apply, still more
expensivethancomputinga singlepathwith A* (heuristics
arenotguidingwell)

Maxim

Expected Cost Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalpolicy *́ :
minimizestheexpectedcost-to-goal
*́ = argmiń E{cost-to-goal}

Åexpectedcost-to-goalfor 1́=(sstart,s2,s4,s3,sgoal) is
1+1+3+1=6

Åcost-to-goalfor 2́=(try to go throughs1) is:
0.9*(1+2+2) + 0.9*0.1*(1+2+2+2+2) + 0.9*0.1*0.1*(1+2+2+2+2+2+2) + é=5.444

expectation over outcomes

Maxim

Expected Cost Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalpolicy *́ :
minimizestheexpectedcost-to-goal
*́ = argmiń E{cost-to-goal}

ÅOptimalexpectedcostpolicy *́ = 2́=(go throughs1)

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalexpectedcost-to-goalvaluesv* satisfy:
v*(sgoal)=0
v*(s) = minaE{c(s,a,sô)+v*(sô)}for all sÍsgoal
(expectationoveroutcomessôof actiona executedat states)

Bellman optimality equation

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

Bellman update equation
(or backup)

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=0

v=0v=0

v=0

v=0

Bellman update equation
(or backup)

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=0v=0

v=0

v=0

after backing up s1

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=0v=0

v=1

v=0

after backing up s2

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=1v=0

v=1

v=0

after backing up s3

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=1v=4

v=1

v=0

after backing up s4

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=1v=4

v=1

v=2

after backing up sstart

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.1

v=1v=4

v=1

v=2

after backing up s1

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.1

v=1v=4

v=4.1

v=2

after backing up s2

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.1

v=1v=4

v=4.1

v=2

backing up s3 and s4 has no
effect since their Bellman
errors are zero

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.1

v=1v=4

v=4.1

v=5.1

after backing up sstart

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.41

v=1v=4

v=4.1

v=5.1

after backing up s1

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.41

v=1v=4

v=4.41

v=5.1

after backing up s2

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.41

v=1v=4

v=4.41

v=5.41

after backing up sstart

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.441

v=1v=4

v=4.41

v=5.41

after backing up s1

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.441

v=1v=4

v=4.441

v=5.41

after backing up s2

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.441

v=1v=4

v=4.441

v=5.441

after backing up sstart

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.44444é

v=1v=4

v=4.44444é

v=5.44444é

every iteration computes
one more decimal point

At convergenceé

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.44444é

v=1v=4

v=4.44444é

v=5.44444é

every iteration computes
one more decimal point

At convergenceé

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal

optimal policy is given by greedy policy:
always select an action that minimizes

E{c(s,a,sô)+v(sô)}

expected cost of executing greedy policy is at most:
v*(sstart)cmin/(cmin-æ)

where cmin is minimum edge cost

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅRTDP [Barto, Bradtke and Singh, 1993] (usually much much
moreefficient):

Initialize v-valuesof all statesto admissiblevalues;

1. Follow greedypolicypickingoutcomesat randomuntil goal is reached;
2. Backupall statesvisitedon theway;
3. Resetto sstart and repeat1-3 until all stateson the current greedypolicy
haveBellmanerrors< æ;

v=0

v=2.44444é

v=1v=4

v=4.44444é

v=5.44444é

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅRTDP [Barto, Bradtke and Singh, 1993] (usually much much
moreefficient):

Initialize v-valuesof all statesto admissiblevalues;

1. Follow greedypolicypickingoutcomesat randomuntil goal is reached;
2. Backupall statesvisitedon theway;
3. Resetto sstart and repeat1-3 until all stateson the current greedypolicy
haveBellmanerrors< æ;

v=0

v=2.44444é

v=1v=4

v=4.44444é

v=5.44444é

RTDP focusses its backups on what is
relevant to the optimal plan rather than computing

ALL state values (like VI)

Maxim

Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅRTDP [Barto, Bradtke and Singh, 1993] (usually much much
moreefficient):

Initialize v-valuesof all statesto admissiblevalues;

1. Follow greedypolicypickingoutcomesat randomuntil goal is reached;
2. Backupall statesvisitedon theway;
3. Resetto sstart and repeat1-3 until all stateson the current greedypolicy
haveBellmanerrors< æ;

v=0

v=2.44444é

v=1v=4

v=4.44444é

v=5.44444é

expected cost of executing greedy policy is at most:
v*(sstart)cmin/(cmin-æ)

where cmin is minimum edge cost

Maxim

Table of Contents

Â Modeling Planning Domains
Â Graphs, MDPs

Â Planning Problems and Strategies
Â Localization, Mapping, Navigation in Unknown Terrain

Â Agent-Centered Search, Assumptive Planning

Â Efficient Implementations of Planning Strategies
Â Incremental Heuristic Search

15 Minute Break
Â Real-Time Heuristic Search

Â Planning with Preferences on Uncertainty

Â Planning with Varying Abstractions

Sven

Planning Problems and Strategies

Â Greedy Agent-Centered Search

Â Three Robot-Navigation Problems and Approaches
Â Localization using Agent-Centered Search:

Greedy Localization

Â Mapping using Agent-Centered Search:
Greedy Mapping

Â Stationary Target Search in Unknown Terrain
using Assumption-Based Planning:
Planning with the Freespace Assumption

Â Summary
Â Agent-Centered Search

Â Planning with the Freespace Assumption

Â Real-Time Search

Sven

Greedy Agent-Centered Search

Â Greedy agent-centered search starts at some state. It
marks the robot state (and perhaps other states as well)
as uninteresting and then moves to the closest
interesting state. It repeats the process until all states
are marked uninteresting.

Sven

Greedy Agent-Centered Search

number of movements = 0

Sven

Greedy Agent-Centered Search

number of movements = 0

Sven

Greedy Agent-Centered Search

number of movements = 0

Sven

Greedy Agent-Centered Search

number of movements = 1

Sven

Greedy Agent-Centered Search

number of movements = 1

Sven

Greedy Agent-Centered Search

number of movements = 1

Sven

Greedy Agent-Centered Search

number of movements = 2

Sven

