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Warning!

Â We try to make everything easy to understand.

Â We often do not mention crucial details.

Â We use both 4- and 8-neighbor grids.

Â We invite you to ask questions!



Warning!

Â We use robotics to illustrate the planning techniques 

because

Ã incomplete information and uncertainty are important in robotics

Ã domains from robotics are easy to understand, and

Ã the behavior of planning techniques is easy to visualize.

Â However, the planning techniques also apply to a variety 

of other domains, including more ñsymbolicò ones.



Real-time Planning in Dynamic and 
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ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)
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ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

planning in 8D (<x,y> for each foothold) using R*
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ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Ãsevere time constraints (e.g., tens of msecs to few seconds)
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ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Ãsevere time constraints (e.g., tens of msecs to few seconds)

Ã robustness to uncertainties in execution, sensing, environment

planning in 4D (<x,y,orientation,velocity>) using Anytime D*

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Real-time Planning in Dynamic and 

Partially-known Domains
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ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Ãsevere time constraints (e.g., tens of msecs to few seconds)

Ã robustness to uncertainties in execution, sensing, environment

Ãgenerality of approaches

Ã theoretical guarantees

Ãsimplicity
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ÂChallenges

Ãcomplexity/size (high-dim., expensive to compute costs, etc.)

Ãsevere time constraints (e.g., tens of msecs to few seconds)

Ã robustness to uncertainties in execution, sensing, environment

Ãgenerality of approaches

Ã theoretical guarantees

Ãsimplicity

usually satisfied by 

graph searches such as A*

ability to find some solution fast

ability to improve the solution before and during execution

ability to re-use search results 
ability to plan under uncertainty

This talk!

Real-time Planning in Dynamic and 

Partially-known Domains
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Common theme in this talk:

ÃPlanning with a series of (efficient) graph searches

ÃPlanning with variants of A* searches

Real-time Planning in Dynamic and 

Partially-known Domains
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Work vs Configuration Space

work space configuration space

[from Stuart Russell and Peter Norvig]
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Work vs Configuration Space

Â Configuration spaces are often

Ãcontinuous and

Ãhigh-dimensional.

Sven



Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs
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Â Skeletonization methods

Discretizing Configuration Space

visibility graph
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Discretizing Configuration Space

roadmap using random points [Kavraki et al, 1994] 

Â Skeletonization methods: 

randomized and probability complete 

Sven



Â Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using RRTs [LaValle, 1998]

[from Steve LaValle]

start
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Â Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using RRTs [LaValle, 1998]

[from Steve LaValle]

start

goal
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Â Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start
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Â Skeletonization methods: 

randomized and probability complete

Discretizing Configuration Space

roadmaps using dynamically-feasible trajectories

start
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Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs
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Discretizing Configuration Space

vertical strips grid

Â Cell decomposition methods: 

systematic and resolution complete

[from Stuart Russell and Peter Norvig]         

Sven



Discretizing Configuration Space

8-neighbor grid 4-neighbor grid

Sven



Discretizing Configuration Space

(x,y,theta)

start

Â Lattice-based methods combine road-map and cell based 

methods: The configurations are the centers of cells.

Sven



Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs
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A*

Â A* [Hart, Nilsson and Raphael, 1968] uses user-supplied h-

values to focus its search.

Â The h-values approximate the goal distances.

Â We always assume that the h-values are consistent!

Â The h-values h(s) are consistent 

iff they satisfy the triangle inequality:

h(s) = 0 if s is the goal and

h(s) Ò c(s,a) + h(succ(s,a)) otherwise.

Â Consistent h-values are admissible.

Â The h-values h(s) are admissible

iff they do not overestimate the goal distances.

s goal 

succ(s,a)

c(s,a)

h(s)

h(succ(s,a))

Sven



A*

(Forward) A*

1. Create a search tree that contains only the start.

2. Pick a generated but not yet expanded state s 

with the smallest f-value.

3. If state s is the goal then stop.

4. Expand state s.

5. Go to 2.

Sven



A*

Â Search problem with uniform cost

1

goal1start

4-neighbor grid

Sven



A*

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

Â Possible consistent h-values

5 4 3 2 2 2

5 4 3 2 1 1

5 4 3

5 4 3 1

2

2

01

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0

0

0

00

0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4-neighbor grid
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2

A*

Â First iteration of A*

0

cost of the shortest path
in the search tree from the 

start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4-neighbor grid

order of expansions

Sven
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A*

Â Second iteration of A*

01

1

1

4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state
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A*

Â Third iteration of A*

01

2

1

1

4

6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state
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A*

Â Fourth iteration of A*

02

2

1

2

1

1

6

6

4

6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state
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A*

Â Fifth iteration of A*

02

2

1

2

2

1

1

2

6

6

4

6

6

4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state
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A*

Â Sixth iteration of A*
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6

4

6

6

4

4

6

4 4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3

01

2

4 5 6

3 1

2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state
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A*

Â Seventh and last iteration of A*
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(4)

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2

6 5 4 3 2 1
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6 5 4 1

2
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4 5 6
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(7)

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state
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A*
7 6 5 4 3 2

6 5 4 3 2 1

5 4 3

6 5 4 1

2

3
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5 4 3 2 2 2
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5 4 3
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0

0

0
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0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4 5 6

3

1

11

2

(7)

6

3 4 7

5

1

11

2

(8)

Uniform-cost search

Breadth-first search

4-neighbor grid
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Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs
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Weighted A*

w = 2.5

13 expansions

11 movements

(w = 1.0)

20 expansions

10 movements

8-neighbor grid

A*

f(s) = g(s) + h(s)

Weighted A* [Pohl, 1970] 

f(s) = g(s) + w h(s)

Sven



Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs

Maxim



Modeling Uncertainty

ÅSo far, we assumed no uncertainty in the model
- execution is perfect

- localization is perfect

- environment is fully known

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost 

path 

from sstart to sgoal
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Modeling Uncertainty

ÅUncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

S1 S2 S3

S4 S5

S6

S2 S3

S5

convert into an MDP
S4

Markov Decision Processes (MDP)

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost 
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Modeling Uncertainty

ÅUncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

S1 S2 S3

S4 S5

S6

S2 S3

S5

convert into an MDP
S4

Markov Decision Processes (MDP)

- at least one action in the graph has more than one outcome

- each outcome is associated with probability and cost 
example: s3, s4, s5ɭ succ(s2, aSE),

P(s5|ase,s2) = 0.9,   c(s2,ase,s5) = 1.4

P(s3|ase,s2) = 0.05, c(s2,ase,s3) = 1.0

P(s4|ase,s2) = 0.05, c(s2,ase,s4) = 1.0

Maxim



Modeling Uncertainty

ÅUncertainty in execution
- execution is imperfect

- localization is still assumed to be perfect

- environment is still assumed to be fully known

Moving-target search example

- State: <R,T>

- Uncertainty in the target moves

R

T

Maxim



Modeling Uncertainty
- execution is perfect

- localization is still assumed to be perfect

- environment is partially-known

S1 S2 S3

S4 S5

S6

convert into ???

- the costs and connectivity of the graph is not fully known

Incomplete Information State

Maxim



Modeling Uncertainty

Information state (e.g., knowledge about the environment) is

not fully known

Robot navigation in a partially-known environment

S ïagentôs state    

<x,y> position

H ïa vector of hidden variables

status of cells B5 and E4

Maxim



Modeling Uncertainty

Information state (e.g., knowledge about the environment) is

not fully known

Robot navigation in a partially-known environment

S ïagentôs state    

<x,y> position

H ïa vector of hidden variables

status of cells B5 and E4

fully observable state variables 

(always known)

not known at the time of planning

but probability distribution P(H) is given

Maxim



Modeling Uncertainty

Robot navigation in a partially-known environment

S ïagentôs state    

<x,y> position

H ïa vector of hidden variables

status of cells B5 and E4

X=[S(X);H(X)] - belief state

current belief of the robot about 

hidden variables (i.e., P(H))

current (observable) state of the robot

Maxim



Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

ÅAn actioncanaffect both the observablestateof the robot (e.g.,
moveaction)aswell asits knowledgeabouttheenvironment(e.g.,
sensingaction):

X=[S(X);H(X)] - belief state

Xk

X2

X X1

a

...

X1=[S1(X);H1(X)]

X=[S(X);H(X)]
X2=[S2(X);H2(X)]

Xk=[ Sk(X);Hk(X)]

Maxim



X

Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

Assumingperfectsensing:

X=[S(X);H(X)] - belief state

Ra=East

X1

X2

R=D4;
E4=u
B5=u

P(E4=free)=0.5

P(E4=obstacle)=0.5

R=E4;
E4=free
B5=u

R=D4;
E4=obstacle
B5=u

X2=[S(X2);H(X2)] - belief state

Maxim



X

Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

Assumingperfectsensing:

X=[S(X);H(X)] - belief state

Ra=East

X1

X2

R=D4;
E4=u
B5=u

P(E4=free)=0.5

P(E4=obstacle)=0.5

R=E4;
E4=free
B5=u

R=D4;
E4=obstacle
B5=u

X2=[S(X2);H(X2)] - belief state

H(X): P(E4=free) = 0.5; P(B5=free) = 0.5;

H(X1): P(E4=free) = 1; P(B5=free) = 0.5;

Maxim



Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

Assumingperfectsensing:

X=[S(X);H(X)] - belief state

Xg
Xs

X3

R=A4;
E4=u
B5=u

R=B5;
E4=u
B5=free

East X1

R=B4;
E4=u
B5=u

X2

R=C4;
E4=u
B5=u

East

...

Xg

R=F4;
E4=u
B5=u

Xg

R=F4;
E4=free
B5=u

R=F4;
E4=obs
B5=u

Xg

R=F4;
E4=free
B5=free

...X4
R=B4;
E4=u
B5=obs

...

Maxim



Modeling Uncertainty: Incomplete Info State

ÅBelief State-Space:

Assumingperfectsensing:

X=[S(X);H(X)] - belief state

Xg
Xs

X3

R=A4;
E4=u
B5=u

R=B5;
E4=u
B5=free

East X1

R=B4;
E4=u
B5=u

X2

R=C4;
E4=u
B5=u

East

...

Xg

R=F4;
E4=u
B5=u

Xg

R=F4;
E4=free
B5=u

R=F4;
E4=obs
B5=u

Xg

R=F4;
E4=free
B5=free

...X4
R=B4;
E4=u
B5=obs

...

MDP in which optimal policy 
is a tree (acyclic)

Maxim



Modeling Uncertainty

ÅUncertainty in localization/execution/environment
- execution is imperfect

- localization is imperfect

- environment is partially-known

Partially-Observable MDPs (POMDPs)

Maxim



Modeling Uncertainty: POMDPs

ÅMDP + robot is uncertain about its state (and/or about
some of the action costs)

ÅCan always be converted into a belief state-space MDP

(where each state is a probability distribution over original states)

Åoptimal policy: mapping from a belief state onto action

Åoptimal policy can be found by solving belief MDP

Åoptimal policy can now be cyclic

This tutorial will NOT talk about how to solve general POMDPs

Maxim



Modeling Planning Domains

Â Deterministic Models ïGraphs

Ã Skeletonization Methods (Roadmaps)

Ã Cell Decomposition Methods

Â Searching Graphs

Ã A*

Ã Weighted A*

Â Nondeterministic Models ïMDPs

Â Searching MDPs
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Probabilistic Planning

ÅWhatplanto compute?
- Planthatminimizestheworst-casescenario(minimaxplan)
- Planthatminimizestheexpectedcost

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅWithout uncertainty,planis asinglepath:
asequenceof states(asequenceof actions)

ÅIn MDPs,planis apolicy :́
mappingfrom astateontoanaction

Maxim



Minimax Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalpolicy *́ :
minimizestheworstcost-to-goal
*́ = argmiń maxoutcomesof {́cost-to-goal}

Åworstcost-to-goalfor 1́=(sstart,s2,s4,s3,sgoal) is:
1+1+3+1 = 6

Åworstcost-to-goalfor 2́=(try to go throughs1) is:
1+2+2+2+2+2+2 +é =Ð

Maxim



Minimax Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalpolicy *́ :
minimizestheworstcost-to-goal
*́ = argmiń maxoutcomesof {́cost-to-goal}

ÅOptimalminimaxpolicy *́ = 1́=(sstart,s2,s4,s3,sgoal)

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;
reduces to usual backward A* if 

no uncertainty in outcomes

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = Ð
h=3

g = Ð
h=2

g = Ð
h=2

g = Ð
h=1

g = Ð
h=0

CLOSED = {}
OPEN = {sgoal}
next state to expand: sgoal

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = Ð
h=2

g = Ð
h=2

g = Ð
h=1

g = Ð
h=0

CLOSED = {sgoal}
OPEN = {s3}
next state to expand: s3

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = Ð
h=2

g = Ð
h=1

g = Ð
h=0

CLOSED = {sgoal,s3}
OPEN = {s4}
next state to expand: s4
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Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = Ð
h=2

g = 5
h=1

g = Ð
h=0

CLOSED = {sgoal,s3,s4}
OPEN = {s2}
next state to expand: s2

Maxim



Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2}
OPEN = {sstart,s1}
next state to expand: sstart
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Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!
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Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!

in this example, the computed policy is a path, 
but in general it is a tree
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Computing Minimax Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅMinimax backwardA* :
g(sgoal) = 0; all otherg-valuesareinfinite; OPEN= {sgoal};
while(sstart notexpanded)

removeswith thesmallest[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every sôs.tsɭsucc(sô, a)for some a and sô  not in CLOSED

if g(sô) > maxuɭsucc(sô, a)c(sô,u) + g(u)

g(sô) = maxuɭsucc(sô, a)c(sô,u) + g(u);

insert sôinto OPEN;

g = 0
h=3

g = 1
h=3

g = 4
h=2

g = 7
h=2

g = 5
h=1

g = 6
h=0

CLOSED = {sgoal,s3,s4,s2,sstart}
OPEN = {s1}

DONE!

Minimax A* guarantees 
to find an optimal (minimax) policy,

and never expands a state more than once, 
provided heuristics are consistent (just like A*)

Maxim



Computing Minimax Plans

ÅMinimax backwardA*
- searches backwards which sometimes can be
hard/computationallyvery expensive(considermoving-target
search,whatis a goal?)

Maxim



Computing Minimax Plans

ÅPros/consof minimaxplans
- robustto uncertainty
- overlypessimistic
- harderto computethannormalpaths

- especiallyif backwardsminimaxA* doesnotapply
- even if backwardsminimax A* does apply, still more
expensivethancomputinga singlepathwith A* (heuristics
arenotguidingwell)

Maxim



Expected Cost Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalpolicy *́ :
minimizestheexpectedcost-to-goal
*́ = argmiń E{cost-to-goal}

Åexpectedcost-to-goalfor 1́=(sstart,s2,s4,s3,sgoal) is
1+1+3+1=6

Åcost-to-goalfor 2́=(try to go throughs1) is:
0.9*(1+2+2) + 0.9*0.1*(1+2+2+2+2) + 0.9*0.1*0.1*(1+2+2+2+2+2+2) + é=5.444

expectation over outcomes
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Expected Cost Formulation

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalpolicy *́ :
minimizestheexpectedcost-to-goal
*́ = argmiń E{cost-to-goal}

ÅOptimalexpectedcostpolicy *́ = 2́=(go throughs1)

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅOptimalexpectedcost-to-goalvaluesv* satisfy:
v*(sgoal)=0
v*(s) = minaE{c(s,a,sô)+v*(sô)}for all sÍsgoal
(expectationoveroutcomessôof actiona executedat states)

Bellman optimality equation

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

Bellman update equation 
(or backup)
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=0

v=0v=0

v=0

v=0

Bellman update equation 
(or backup)
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=0v=0

v=0

v=0

after backing up s1
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=0v=0

v=1

v=0

after backing up s2

Maxim



Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=1v=0

v=1

v=0

after backing up s3
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=1v=4

v=1

v=0

after backing up s4
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2

v=1v=4

v=1

v=2

after backing up sstart

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.1

v=1v=4

v=1

v=2

after backing up s1

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.1

v=1v=4

v=4.1

v=2

after backing up s2

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.1

v=1v=4

v=4.1

v=2

backing up s3 and s4 has no 
effect since their Bellman 
errors are zero

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.1

v=1v=4

v=4.1

v=5.1

after backing up sstart

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.41

v=1v=4

v=4.1

v=5.1

after backing up s1

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.41

v=1v=4

v=4.41

v=5.1

after backing up s2

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.41

v=1v=4

v=4.41

v=5.41

after backing up sstart

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.441

v=1v=4

v=4.41

v=5.41

after backing up s1

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.441

v=1v=4

v=4.441

v=5.41

after backing up s2

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.441

v=1v=4

v=4.441

v=5.441

after backing up sstart

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.44444é

v=1v=4

v=4.44444é

v=5.44444é

every iteration computes 
one more decimal point 

At convergenceé

Usual convergence condition: Bellman error over all states < æ
Bellman error: |v(s) - minaE{c(s,a,sô)+v(sô)}| for any s Í sgoal
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Computing Expected Cost Minimal Plans

S2 S1

Sgoal

2

c(s1,a1,sgoal) = 2

S4 S3

3

1

Sstart

1

1

a1 P(sgoal|s1,a1)=0.9

P(sgoal|s1,a1)=0.1
c(s1,a1,s2) = 2

ÅValueIteration(VI) :
Initialize v-valuesof all statesto finite values;
Iterateoverall s in MDP andre-computeuntil convergence:

v(sgoal) = 0
v(s)= minaE{c(s,a,sô)+v(sô)}for anysÍsgoal

v=0

v=2.44444é

v=1v=4

v=4.44444é

v=5.44444é

every iteration computes 
one more decimal point 

At convergenceé
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v*(sstart)cmin/(cmin-æ)

where cmin is minimum edge cost
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Computing Expected Cost Minimal Plans
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RTDP focusses its backups on what is 
relevant to the optimal plan rather than computing

ALL state values (like VI)
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Planning Problems and Strategies

Â Greedy Agent-Centered Search

Â Three Robot-Navigation Problems and Approaches
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Greedy Agent-Centered Search

Â Greedy agent-centered search starts at some state. It 
marks the robot state (and perhaps other states as well) 
as uninteresting and then moves to the closest 
interesting state. It repeats the process until all states 
are marked uninteresting. 
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Greedy Agent-Centered Search

number of movements = 0
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Greedy Agent-Centered Search
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Greedy Agent-Centered Search

number of movements = 1

Sven
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Greedy Agent-Centered Search

number of  movements = 2
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