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1 Notations and Assumptions

In this section we introduce some notations and formalize mathematically the class
of problems our algorithm is suitable for. We assume that the environment is fully
deterministic and can be modeled as a graph. That is, if we were to know the true value
of each variable that represents the missing information about the environment then
there would be no uncertainty in an outcome of any action. There are certain elements
of the environment, however, whose status we are uncertain about and which affect the
outcomes (and/or possible costs) of one or more actions. In the following we re-phrase
this mathematically.

Let X be a full state-vector (a belief state). We assume it can be split into two sets
of variables,S(X), H(X): X = [S(X); H(X)]. S(X) is the finite set of variables
whose values are always observed and the number of possible values is also finite.
H(X) is the set of (hidden) variables that initially represented the missing information
about the environment. The variablesA(X) are never moved t8'(X). Xgtart IS
used to denote the start state, all the values of the variablé$ Xy.,+) are unknown.

The goal of the planner is to construct a policy that reaches any Atatach that
S(X) = Sgoa1, WhereS,,, is given, while minimizing the expected cost of execution.

We assume perfect sensingFor the sake of easier notation let us introduce an
additional valueu for each variablé,; € H. The settingh;(X) = w at stateX will
represent the fact that the value/gfis unknown atX. If h;(X) # wu, then the true
value ofh; is known atX since sensing is perfect. We restrict that all the variables that
make upX can take only a finite number of distinct values.

We assume at most one hidden variable per actionLet A(S(X)) to denote
the finite set of actions available at any st&tavhoseS(Y) = S(X). Each action
a € A(S(X)) taken at stateX may have one or more outcomes. If the execution
of the action does not depend on any of the variablesshose values are not yet
known, then there is only one outcomewf Otherwise, there can be more than one
outcome. We assume that each such action can not be controlled by more than one
hidden variable. (The value of one hidden variable can affect more than one action
though.) We usé*(X)-@ to represent the hidden variable that controls the outcomes
and costs of action taken at state{. By h5(X)-¢ = null we denote the case when



there was never any uncertainty about the outcome of aatiaken at stateX. The

set of possible outcomes of actiortakenS(X) is notated byuce(S(X), a), whereas
¢(S(X),a,S(Y)) such thatS(Y) € suce(S(X),a) denotes the cost of the action and
the outcomeS(Y). The costs are assumed to be bounded from below by a (small)
positive constant. Sometimes, we will need to refer to the set of successors in the
belief state-space. In these cases we will use the notatiat{ X, a) to denote the set

of belief states” such thatS(Y) € suce(S(X),a) andH(Y) is the same adl (X)
except forh3(X)-¢ which also remains the same if it was known’atand is different
otherwise. The functio®x ,(succ(X, a)), the probability distribution of outcomes of

a executed atX, follows the probability distribution of,%(X)-2 P(p5(X).e) " Once
actiona was executed at stafé the actual value of>(X)¢ can be deduced since we
assumed the sensing is perfect and the environment is deterministic.

We assume independence of the hidden variableBor the sake of efficient plan-
ning we assume that the variablesfihcan be considered independent of each other
and therefore?(H) = HLZ'I P(h;).

We assume clear preferences on the values of the hidden variables are avail-
able. We require that for each variable € H we are given its preferred value, de-
noted byb (i.e., best). This value must satisfy the following property. Given any
state X and any actioru such thath>(X)@ is not known (that ish5(X)e(X) =
u), there exists a successor staX¢ such thathS(X)e(X’) = b and X' =
argming ¢ ... x,a)c(S(X), a, S(Y)) +v*(Y), wherev*(Y') is the expected cost of ex-
ecuting an optimal policy at staié (Def. 1). We will use the notatiorucc(X, a)® (i.e.,
the best successor) to denote the sftevhosehr*(X)¢(X’) = bif B¥X)e(X) =y
and whosé*(X)-¢(X") = p5(X).e( X)) otherwise.



A Appendix: The Proofs

The pseudocode below assumes the following:

1. Every stateX in the search state space initially is assumed to bg¥é) = g(X) = oo andbesta(X) = null;

procedure ComputePath X pivot )
Xsmrchgoal = GetStateinSearchGraph([S(Xpivot); H(Xpivot)]);

g(Xsearchgoal) = ’U(Xsearchgoal) = 00,
OPEN= 0;
for everyH whose every elemertt; satisfies:
[(hi = w\/ hi = b) \ hi(Xpivot) = u] OR[hi = hi(Xpivot) [\ hi(Xpivot) # ul
6 X = GetStateinSearchGraph([Sgoal; H));
7 v(X) = o0, g(X) = 0, besta(X) = null;
8 insertX into OPENwith g(X) + h(X);
9 while(g(Xsearchgoal) > minX,EopEN!J(X/) + h(X"))
10  removeX with the smallesy(X) + h(X) from OPEN,
11 () = g(X);
12 foreachactiom andX’ = [S(X'); H(X'); H* (Xpivot)] 8.t X = [S(suce(X’,a)?); H(suce(X', a)?)]
13 X’ = GetStateinSearchGraph([S(X'); H(X')]);
14 Qu= ZYGWC(X/,G) P(X',a,Y)-max(c(S(X'),a, S(Y))+w(Y),c(S(X"),a, S(Y))+v(X));

15 ifg(X') > Qa

a s wN PP

16 9(X') = Qu;
17 besta(X') = a;
18 insert/updateX’ in OPENwith the priority equal tay(X’) 4+ h(X");

Figure 1: ComputePath function

The pseudocode below assumes the following:
1. Every stateX initially has0 < w(X) < w®(X) andbesta(X) = null.

procedure UpdateMDP(X ,ivot )

X = Xpivot; X = GetStateinSearchGraph([S(Xpivot); H(Xpivot)]);

while (S(X) # Sgoal)
w(X) = g(X); w([S(X); H(X); H* (Xpivor)]) = 9(X); besta(X) = besta(X);
if (besta(X) = null) break;
X = suce(X, besta(X))b; X = GetStateinSearchGraph([S(X); H(X)]);

o O WN P

7 procedure Main()

8 Xpivot = Xstarts

9 while (Xpivot! = null)
10 ComputePatipivot);
11 UpdateMDPK ivot);
12 find stateX on the current policy that has

W(X) < Ex/cauce(X,besta(x)) (€(S(X), besta(X), S(X')) +w(X"));

13 iffound setXivot t0 X;
14 otherwise seKivo¢ t0 null;

Figure 2: Main function



Let us first define several variables that we will use during the proofs. H’et
be defined agf with eachh, equal tou replaced byb. X' is then defined as
[S(X); H(X); H*(X)]. Let H*(X) be H(X) but with eachh, = h replaced
by u. For every stateX we then defineX" state as the following stateX* =
[S(X); H(X); H'(X)).

We now introduce optimistia@)-values. Every state-action pak anda €
A(S(X)) has aQy,.,(X,a) > 0 associated with it that is calculated from the ac-
tion costsc(S(X),a,S(Y)) for all statesY € succ(X,a), the non-negativef-
value for stateX’ = succ(X,a)® and the non-negative values(Y") for all states
Y € suce(X, a). Qfw(X,a) is defined as follows:

Qf (X, a) = Eygsucc(x’a) P(X,a,Y) - max(c(S(X), a, S(Y)) + w(¥), e(S(X), a, S(X')) + £(X)) W

We now define an optimistic path frof,, to X, whoseS(Xy) = Sgoa as fol-
lows: 7 = [{Xn,an, Xn-1},...,{X1,a1, Xo}], where every timea; is stochastic,
an outcomeX;_; = succ(Xy,ax)’. We define an optimistic cost of an optimistic
pathr = [{X,,, an, Xn-1},.-.,{X1,a1, Xo}] under a non-negative value functian
recursively as follows:

0 ifi =0
b (X4, Xo) = { Qp(X;_1)=bm(X;_1.X0)w(Xirag) fi>0 @

We call a path defined byesta pointers from X, to X, as follows:

Thest — [{Xn, Ap, Xn71}7 ey {Xh ai, Xo}}, Whereai = besta(Xi) and Xi—1 =
suce( Xy, a;)b.

We define a greedy path  Tereedy, £, (Xn, Xo) =
{Xn,an, Xn-1},...,{X1,a1,Xo}] with respect to functionsf and w that map
each stateX onto non-negative real-values. It is defined as a paftom X,, to X,
where for everyl < i < n a; = argmin,c 4 s(x,))@f.»(Xi,a) and the outcome
X1 = suce(X;, a;)°.

We also definav® values of states as costs of reaching a goal state under the as-
sumption that the values of the missing variables are all det to

if S(X) =S

b _ goal
wi(X) = { min, ¢ g(x)(e(S(X), a, suce(X, a)?) + wP(suce(X, a)?))  otherwise

®

A.1 ComputePath Function

In this section we will prove theorems that mainly concern the ComputePath function.
We will consider a single execution of ComputePath function. We will take the fol-
lowing convention: the search state-space at any particular execution of ComputePath
will be denoted byS, any state inS will be denoted by a letter withabove it. The
states in the original MDP will not usaign above it. Thus, ifX is a full state, then



X =[S(X ), H(X)]. We will also reserve the notatiak X +£" to denote a full state
[S(X); H(X): H" (Xpivar)]- _

Similarly  to  the  definiton of 7 in a full state-space,
an optimistic  path from X, to X, is defined as 7 =
[{X,iﬂ_E ,an,succ(XX a,)’}, {XX+H an_l,succ(Xf_'iE yan_1)’},

AXT ay, suce(X; S ,a1)’}], where for everyl < i < n
X1 = = [S(succ(X; X+H* ,a;)); H (suce(X; X+H" ,az)b)}.

Similarly to the definition ofr,.4;, a pathiy.s; from X, to Xo in a full state-space
is defined as from X,, to X, where for evenl <i<na; = besta(X ).

In addition, we define a greedy pat;ccqy, r,.» With respect to functiong andw
that map each stat¥ onto non-negative real-values. It is defined as a fidtiom X,
to X, where foreveryl <i <na; = argmin, ¢ 4 (s, Qr.w(X; X ,a).

We define goal distanceg;-values under a functlow recurswely as follows:

) 0 ) if S(X) = Sgoal
9" (X) = { minaEA(S()_())Qf(Y:s'ucc(X)_(+£u,a)b)=g*()7)Y,w xXFTH" 0y otherwise ()

Finally, we require that the heuristics are consistent in the following sense:

h(Xsearchgoal) = 0 and for every other stat&, a € A(S(X)) andY sit. Y =

suce(XXHE" q)b h(Y) < h(X) + ¢(S(X),a, S(Y)).

A.1.1 Low-level Correctness

Lemmal Given a non-negative functionv, for any state X, ¢ (X) =
B grecay. o w(Xn,XO) = min_ from x, to %, ¢,r(Xn, Xo) where X, is the only state

ON Tgreedy,g* ,w(XmXo) that hasS(Xo) = Sgoal. In addition, it holds thatH(Xo)
satisfies the equation on line 5.

Proof: Let us first prove thag* (X,,) = ¢z, .- .. (Xn, Xo). Letus write out the
formula for g, .., . . (X, Xo). 11 = 0, 67,00, o (X, Xo) = 0" (X0) = 0
sinceS(X,) = S(Xo) Seoal-

Suppose now, # 0. Then

S > _ . : } X+H"
d)”grcﬁdy,g*,w (X”7 XO) - aeAI(I.lgl(I}E'n)) Qf(Xn—l):¢1'rgreed'y,g* Jw (Xn-1,Xo0),w (Xn ’ CL)
According to the definition of an optimistic path X,,_; = succ(Xff’Lﬂu,an)b.

Itis thus the exact same formula as forvalues (equation 4).
Let us now prove thabz, ... . . (Xn,Xo) = min_ from x, tox qbﬁ(Xn,Xo)

Let us denote argmiffom x. t0X0¢7r(Xan0) by #*(X,,Xo) and
min; from %, to XO?W(Xm Xo) by ¢+ (X, Xo).

Since 7*(X,, Xo) is an optimal optimistic path,px
$x- (X, Xo). We therefore need to show thag
also.

Ngreedg,g*,w(Xna)gO) NZ
Xn’XO) < G (Xn7X0>

grecau,g®u



The proof is a simple proof by contradiction. Let us assume that
Bt vy oe (X X0) > 07+ (X,, Xo). This implies thatpz- (X, Xo) is finite and
therefore pathi*(X,,, Xo) is finite (sincegz-(X;, Xo) > ¢ (Xi—1, Xo) for all
n >4 > 0andgz« (XO,XU) =0).

Consider a pair of statesY; and X, ; on the path#*(X,,X,) such
that (ﬁwgmed?]:g*,“,(XZ,Xo) > (ﬁﬂ- (Xl,Xo) but (ﬁﬂqudyq ,A,(Xz 1,X0) <
¢#+(Xi—1,Xo). Such pair must exist since at least 85, ¢z ..., ... (X0, Xo) =
b (X0, Xo) = 0. Then we get the following contradiction.

N o
Prareeangru K X0) (X; ™ a)

IA

Qf(Xi—l):¢ (Xi-1,Xo0),w

7~rgre.edy‘g"‘ ,w

X+H"
Qf(X7 1) ¢7*(X@ 1X0) 11)(X 70’)
= ¢s- (X, X0)

We now show that it holds thai (X,) satisfies the equation on line 5. Consider
any h;. Until path 7 involves executing an action whose outcomes depend;pn
any stateX; on the path will have; (X ) = hy (Xpwot) Suppose now at statk;
an actiona is executed whose outcomes dependhgn Then, if h;(Xpivot) # u,
the action is deterministic an(X;_1) = hi(Xpivor), Which is consistent with the
equation on line Shi(Xi_l) remains to be such until the end of the path. On the other
hand, ifh; (Xpivet) = u, then actiors may have multiple outcomes, but an optimistic
path always chooses the preferred outcotg:; = succ(Xf{ﬁu, a)’. Therefore,
hi(f(i,l) = b and remains such until the end of the path. This is again consistent with
the equation on line 5. Finally, if path does not involve executing an action whose
outcomes depend dn, thenhi(f(o) = hi(f(pivot), which is also consistent with the
equation online 5.m

Lemma 2 Given a non-negative function and a pathfg,ccay,g+... from X, to any
stateX with §(Xo) = Sgoa it holds thatg*(X,,) > Y050 e(S(X;), a5, 5(X;-1)) +
g*(X;) forany0 <i<n

Proof: The following is the proof that the theorem holds for n — 1.

= X+HY
P (Xn) = min Q Fa (x; T a
a€A(S(Xn)) f(Y=suce(X, '— ,a)b)=g*(¥)w
X H’H,
= @ P ot e
f(Y=3ucc(Xn - ,an,)b) g*(Y),w
P
= E P(X n+ Lan,Y) -
YEbuLc(XX+Hu an)
max(e(S(R), an, S(¥)) + w(¥), e(S(R), an, S(suce(Xo T an)®)) + g% (suce(Xo T an)®))
- X+H HY
(S(X), an, S(suce(XX T 4 3)) 1 g% (suce(x XY a,)b)

v

e(S(X), an, S(Xp_1) + 9" (Xp_1)



The proof for0 < i < n — 1 holds by induction or. =

Lemma 3 At any point in time, for any stat¥ it holds thatv(X) > g(X).

Proof: The theorem clearly holds before line 9 was executed for the first time since
for each stateX v(X) = oc. Afterwards, the-values can only decrease (lines 15-16).
For any stateX, on the other hand;(X) only changes on line 11 when it is set to
g(X). Thus, itis always true that( X) > g(X). m

Lemma 4 Assuming functiom is non-negative, at line 9, the following holds:

e g(X) =0, besta(X) = null for every stateX whoseS(X) = Sgou and H(X)
satisfies the equation on line 5

¢ 9(X) = Quyymuiyw (X besta(X))  and  besta(X)
argmin, ., ) @ (v)—o(i).w (X~ 2L, a), for every other stat&l

o if g(X) = o0, thenbesta(X) = null

Proof: The theorem holds the first time line 9 is executed. This is so because
every stateX € S hasv(X) = oco. As a result, the right-hand side of the equation 1
evaluated under functiofi = oo is equal tooco, independently of action. This is
correct, since after the initialization every stafewith S(X) # S, OF whoseH (X)
does not satisfy the equation on line 5 hdX ) = oo, besta(X) = null and every
stateX with S(X) = Sy0. and H (X) satisfying the equation on line 5 ha&X) = 0,
besta(X) = null.

The only place wherg- andv-values are changed afterwards is on lines 11 and
16. If v(s) is changed in line 11, then it is decreased according to Lemma 3. Thus,
it may only decrease thgvalues of its successors. The test on line 15 checks this
and updates the-values andesta pointers as necessary. Since all costs are positive
and never changervalue of a stateX with S(X) = Sy and H(X) satisfying the
equation on line 5 can never be changed: it will never pass the test on line 15, and thus
is always 0. Also, sincg-values do not increase, it continues to hold that i) = oo,
thenbesta(X) = null.

u

Lemma 5 At line 9, OPEN contains all and only stat&swhosev(X) # g(X).

Proof: The first time line 9 is executed the theorem holds since after the initializa-
tion the only states iI@PEN are the state& with v(X) = oo # 0 = g(X). The rest
of the states have infinite values.

During the following execution whenever we decregé&) (line 16), and as a
result makey(X) < v(X) (Lemma 3), we insert it int@PEN, whenever we remove
X from OPEN (line 10) we set(X) = ¢(X) (line 11) making the state consistent.
We never modifys(X) or g(X) elsewhere. m



Lemma 6 Assuming functiom is non-negative, suppos?é is selected for expansion
on line 10. Then the next time line 9 is executéd ) = ¢(X), whereg(X) before
and after the expansion df is the same.

Proof: SupposeX is selected for expansion. Then on line 40X) = g(X),
and it is the only place whereavalue changes. We, thus, only need to show that
g(X) does not change. It could only changeXif = X andg(X’) > Q, at one of
the executions of line 15. The former condition means that there existeh that
X = [S(succ(XX+H" a)®); H(suce(XX+H" q)b)]. The later condition means that

g()N() > Qf(Y)fv(Y)A,w(X +ﬂ“,a). ) )

Since X = [S(suce(XXHEL" a)b); H(suce(XXHL" a)b)),
flsuce(XXHE" a)t) = o(X) = g(X). Hence, ¢(X) >
Q(anee(x T+ =gy (X T ). This means that g(X) >
c(S(X),a,S(X)) 4+ g(X) which is impossible since costs are positiva.

Lemma 7 Assuming functionw is non-negative, at line 9, for any stalié,Nan opti-

mistic cost of a path defined lbysta pointers, s, from X to a stateX, whose

S(Xo) = Sgoar is NO larger thang(X), that is, b3y, (X, Xo) < g(X). In addition,
v(X) > g(X) > g"(X).

Proof: v( X) > g(f() holds according to Lemma 3. We thus need to show that
by, (X, X0) < g(X), andg(X) > ¢g*(X). The statement follows if(X) = oo.
We thus can restrict our proof to a finigevalue.

Cpnsider a pathyes from X = X, to a state Xo! fpest =
X7)f+ amsuch X+H" s Ay, XX+H , A1, SUCC Xxfﬂ Jan—1)bY,

n—1
.,{X1 = ,al,succ(X X+H )}} where a; = besta(X;) and X;_; =

[S(succ(XiX"_ﬂu,ai)b),H(succ(XX+ﬂ ,a;))].

We now show thatps, (X, X,) < g(X) by contradiction. Suppose it
does not hold. Let us then pick a stafé, on the path that is closest to
Xo and for which ¢z, (Xx, Xo) > g(Xp). S(Xi) # Seoa because oth-
erwise ¢z, ,(Xi, Xo) = 0 from the definition of ¢-values. Consequently,

_ — . X+H" i
qb,rbe_ﬁ(XhXo) = Qf(succ(x“ﬂ“ )= %bm(hil%)’w(Xk ,ak). According

to Lemma 49(Xk) = Q (y)—y(¥) 0 (XXJ“H %), wherea, = besta(X}). From
Lemma 3 it then also follows thaf(X) > Q (v )=g(V)w (XX+H ,ax). Hence,

9(Xx) > Q e ) =g(fa )l XX o),
Finally, because of the way we picked stabe;, (;S;Tbest(X;f_l,Xg) <
g(X_1). As a result,g(X;) > Qf(succ(X;_H—ﬁu,ak)b):g(Xk71)7u,(X;(+ﬂu’ak) >
(X ay) = sy, (Xi, Xo). Thisis a

f(succ(X;_H—ﬁu,ak)b):qﬁ;rbgst (Xk-1,X0)w ~ B ~
contradiction to the assumption that,_, (X%, Xo) > g(Xk).



Sincegs,.., (X, Xo) < g(X) the proof thayy(X) > g*(X) follows directly from
Lemmal =

A.1.2 Main theorems

Theorem 1 Assuming functionv is non-negative, at line 9, for any staf€ with
(h(X) < oo A g(X) + MX) < g(U) + h(U) YU € OPEN), it holds that
9(X) = g"(X).

Proof: We prove by contradiction. Suppose there exiktsuch thath(X) <
0o A g(X) + h(X) < g(U) + h(U) YU € OPEN butg(X) # g*(X). According to
Lemma 7 it then follows thag(X) > ¢*(X). This also implies thag*(X) < co. We
also assume that(X) # Sgoa OF H(X) does not satisfy the equation on line 5 since
otherwiseg(X) = 0 = g*(X) from Lemma 4.

Consider a patht,,ccdy - from X = X,, to a stateX, whoseS(Xo) = Sgoal-
According to Lemma 1, the cost of this pathyig X ) and H (X)) satisfies the equation
on line 5. Such path must exist singé(f() < oo and from equation 4 it is clear that
g*(X;) > g*(X;_1) for eachl < i < n on the path.

Our assumption that(X) > ¢*(X) means that there exists at least ofigon the
Path7 y cedy. g« w, NAMeElYX,, 1, whosev(X;) > g*(X;). Otherwise,

9(X) =g(X,) = (Lemma4)
aeAI(Ig&n))Qf(Y)Z”(?)vw(XX+E7 ) <
Qf(y):v(?)w(XXJ”ﬁu,ai) = (def. of7)
Qs )=o X ¥ 0 <
Qf(Y)=g*(f(n,1),w(XX+ﬁu7ai) = (def. ofg*)
g (Xn) = g"(X)

Let us now consideX; on the path with the smallest indéx> 0 (that is, closest
to Xy) such that(X;) > ¢*(X;). We will first show thatg*(X;) > g(X;). Itis
clearly so when = 0 according to Lemma 4 which says thgtX;) = 0 whenever
S(X;) = Sgon and H(X;) satisfies the equation on line 5. For- 0 we use the fact
thatv(X;_;) < ¢g*(X;_,) from the wayX; was chosen,

g(X;) = (Lemma4)
i X+H"
min o (XY gy <
acA(S(X,)) Qf(y)_“(y),w( )
X+HY )
Qpiyymoiyw(Xi @) = (def. of#)
X+H"
Qf(y):v(j(ifﬂ,w(Xi - ,ai) <
X+HY .
Qi iy)—g (% Xi T ai) = (def. ofg")



g (Xi)

We thus have (X;) > ¢*(X;) > g(X;), which implies thatX; € OPENaccording
to Lemma 5.

We will now show thaty(X) + h(X) > g( X;) + ( i), and finally arrive at a
contradiction. According to our assumptigX) > ¢*(X) andh(X) < oo, therefore

p=§

(o

+ \/
=

(o

I

g(Xn) +h(X,) >
g*(X,) +h(X,) > (Lemma2)
i+1
> e(S(X;),a5,8(X;-1)) + g"(Xi) + h(X,) > (property ofh)
1+1
D elS(Xy) a5, 8(X5-1)) + g7 (Xo) + h(Xn) >
g (X)) + h(X;) >
g ~z)+h( NZ)

This inequality, however, implies tpaffi ¢ OPENSsince according to the condi-
tions of the theoreng(X) + h(X) < g(U) + h(U) VU € OPEN But this contradicts
to what we have proven earliem

A.1.3 Correctness

The corollaries in this section show how the theorems in the previous section lead quite
trivially to the correctness of ComputePath. We also show that each state is expanded
at most once, similar to the guarantee that A* makes for deterministic graphs whenever
heuristics are consistent.

Corollary 1 When the ComputePath function exits the following holds for any &tate
With h(X) < 0o A g(X)+h(X) <ming, coppy(9(X')+h(X")): an optimistic cost
of a path defined biesta pointers, iy, from X to a stateX, whoseS(Xg) = Sgoal

is equal tog*(X), that is, ¢z,. ., (X, Xo) = g*(X).

Proof: According to Theorem 1 the condmdr(X) < oo A g(X)+h(X) <
ming, coppy(9(X’) + A(X')) implies thatg(X) = g *(X). From Lemma 7 it then
follows thatgs,. , (X, Xo) < ¢g*(X). Sinceg*(X) is an optimistic cost of a least-cost
path fromX to X, according to Lemma kz,. (X, Xo) = g*(X). =

Corollary 2 When the ComputePath function exits the following holds: an opti-
mistic cost of a path defined bysta pointers, 7., from Xsearchgoal to a stateX
WhoseS(XO) — WMgoal is equal tOg (Xsearchgoal) that i IS, ¢7Tbest( searchgoalaXO) -

g*(Xsearchgoal). The length of this path is finite.

10



Proof: According to the termination condition of the ComputePath function, upon
its eXitg(Xsearchgoal) S mlnX’eOPEl\Kg(X/) + h(X/)) Sinceh(XsearChgoal) =0
the proof that the cost of the path is equagtoé)?semhgoal) then follows directly from
Corollary 1

To prove that the path defined Ibysta pointers is always finite, first consider
the case of( Xeearchgoal) = 00. According to lemma 4 therbesta(Xeearchgoal) =
null and the path defined byesta pointers is therefore empty. Suppose now
g(Xsearchgoal) 7& oo. Since g(Xsearchgoal) < mlnX/EOPE[\Kg + h(X ))
and h(f(searchgoal) = 0, theorem 1 applies and therefose > g(Xsearchgoal) =
g*(Xscarchgoal). As a result, the optimistic cost of the path definedbbyta point-
ers is also finite according to lemma 7. Considering that the costs are bounded from
below by a positive constant, it shows that the path is of finite lenmth.

Corollary 3 When the ComputePath function exits the following holds for each state
X on the patmbest( searchgoal XO) (X) =g (X)

Proof: At the time ComputePath terminatesy (Xeearchgonl) <

min g, opeN9(X’) + A(X")). and h(Xsearchgont) = 0. Thus, according to
theorem 1g(Xsearchgoal) =g (Xsearchgoal)-
We now prove that the theorem holds for the rest of the states on the path defined
by besta pointers. The case Whefi X carengoal) = 00 iS trivially proven by noting that
in this casebesta()?semhgoal) = null according to lemma 4. We therefore consider
the case wheg(Xsearchgoal) #+ oo. We prove the theorem for this case by induction.
Supposey(X;) = g*(Xi), 9(Xi) + h(X;) < ming, .opeN9(X') + h(X')) and
h(X ) < 0. ThIS is true at least for the first state on the path, nan?égyarchgoal We
will show thatg(X;_1) = ¢*(X;_1), g(Xi_1) + h(Xi_1) < min g, opeN9(X
h(X'))andh(X;_;) < oo. Thisinduction step will prove the statement of the theorem.
The~propertyz()~(i_1) < o0 folloyvs from the consistency of heuristics and the fact
thath(X;) < co. By consistencyy(X;_1) < h(X;)+c(S(X;), besta(X;), S(X;-1)).
h(X;) is finite according to our mductlon assumpt|on whereas the costs are finite be-
causexo > g(XsearChgoal) g (Xsearchgoal) ThUS h( ) < 0.
To prove thay(X;_1) +h(X;_1) < InlnX,EopEN(g )+ h(X")) we will show
thatg(f(i_l) + h,(Xz_l) < g(X ) + h(X ) as follows:

g(X;_1)+h(X;_1) < consistency of heuristics
g(X;—1) + h(X;) + c(S(X;), besta(X;), S(X;_1)) < lemma3
U(}?i_l)+c(S(Xi),besta(Xi),S(J?i_l))+h()?i) <
E P(xf“'ﬁu, besta(X;),Y)-
yesucc(xix+ﬁu Jbesta(X,;))
max(e(S(X;), besta(X;), S(Y)) + w(Y), e(S(X), besta(X;), S(X;_1)) + v(X;_1)) + h(X;) = eql
X+HY - -
Qf(Y):v(f’),w(Xi ,besta(X;)) + h(X;) = lemma 4
g().(i) + }L(Xi) < inductive assumption

_min  (g(X) + h(X))
X’ €0PEN
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Finally, the fact thay(X;_;) = ¢*(X;_1) now comes directly from theorem 1m

Theorem 2 No state is expanded more than once during the execution of the Com-
putePath function.

Proof: Suppose a statd is selected for expansion for the first time during the
execution of the ComputePath function. Then, it is removed f@REN set on line
10. According to theorem 1 itg-value at this point is equal tg*(X). On line 11
the state is made consistent by settingitglue to itsg-value. The only way howk
can be chosen for expansion again is if it is inserted @REN but this only happens
if its g-value is decreased. This however is impossible syljéé) is already equal to
g*(X) = min_ from %, 10 %, 07 (Xy, Xo) where Xy hasS(Xo) = Sgoa (according
to Lemma 1) ang/(X ) must always remain an upper bounddy, _, (X, X,) (accord-
ingtoLemma7). m

A.2 Main Function

In this section we present the theorems about the main function of the algorithm. All
references to line numbers are for the figure 2 unless explicitly specified otherwise.

By w*(X) we denote a minimum expected cost of a policy for reaching a goal state
from stateX. We also introducev*-values defined recursively as follows:

if S(X) =0
w'(X) = { ming e A(5(X)) Quit,wu (X%,a) otherwise ®)

We also define goal distances for full staggsvalues under a functiow recur-
sively as follows:

ifS(X) =8

*(x) = 0 " goal
g = ming e A(5(X)) Qf(Y:succ(Xu,a)b):g*(Y),'UJ(X ,a)  otherwise

(6)
Lemma 8 For eachX, w*(X) = w*(X%)
Proof: According to equation 5, ifS(X) = S(X%) = Sga then

w“(X) = w“(X“) = 0. Othel’\Nise,w“(X) = minaeA(S(X)) Qwum,u(X“,a) =
minge 4(s(x)) Quewe (X)), a) = w"(X"). =

Lemma 9 For eachX, ¢*(X) = ¢*(X“)
Proof: According to the definitionX™ = [S(X); H(X); H*(X)], and there-

fore S(X) = S(X™). Suppose firs5(X) = Sgea1. Then, according to equation 6,
g*(X)=0andg*(X*) = 0.

12



Now supposeS(X) = S(X") # Sga. Then, according to equa-
tion 6, g(X) = mingeca(s(x)) Qf(v=suce(X®,a)t)=g*(v),w(X" a) and g(X*) =
MingeA(s(xu)) Q (v =suce((X),a)) =g (v),w ((X*)"; @).

(X")* = X" because{"(X) does not contain ang,; elements equal tb and
thereforeH"(X") = H"(X). Also, S(X) = S(X™). Consequentlyg(X“) =
MiNge A(5(X)) @ F (¥ =suce(X*,a)b)=g* (¥),w(X ", a) = g(X). =

Lemmal0 For each X and a € A(S(X)), h3X)%(succe(X,a)?) =
R34 (suce(X™, a)®) andg* (suce(X ™, a)?) = g* (succ(X, a)?)

Proof: We consider all possible cases fofX)¢(X). Suppose firsh>(X):¢(X) =
null. That is, actior: is (and always was) deterministic. TheA(X)¢(X*) = null
also and thereforé>(X):¢(succ(X,a)®) = h5X)¢(suce(X™, a)?) = null. Also,
suce(X* a)® = (suce(X,a)®)* becauser-values are not affected by actienand
thereforeg* (succ(X*, a)®) = g*(succ(X, a)?) according to lemma 9.

Suppose now:(X):4(X) #£ b, Then againh®X)e(X*) = p5(X)e(X) and
thereforehS(X)-¢(suce(X,a)?) = A5 (suce(X™, a)?). Also, succ(X®, a)b =
(succ(X,a)?)* becauseh-values are not affected by actiom and therefore
g*(succ(X*, a)?) = g*(succ(X,a)®) according to lemma 9.

Now supposeh®(X)-e(X) = b. If K5 ¢ H, then h5(X)e(X¥) = b,
whereas ifh5(X)e ¢ H, then h5(X)e(X%) = w. In either case, however,
R (suce(X,a)?) = RS (suce(X®,a)b) = b. Also, g*(succ(X,a)?) =
g* ((succ(X,a)®)*) and g*(succ(X*,a)?) = g¢*((succ(X¥, a)®)*) according to
lemma 9. But(succ(X,a)®)* = (succ(X",a)®)* and thereforgy* (succ(X, a)®) =
g* (succ(X*,a)?) as stated in the theorenm

Theorem 3 Suppose that before line 10 is executed for every sfdteit is
true that 0 < w(X) < w(X"). Then after line 11 is executed for
each stateX on ms from X, to a goal state it holds thatv(X) >
Ex/esuce(x pesta(x))(c(S(X), besta(X), S(X)) + w(X')) if S(X) # Sgoa and
w(X) = 0 otherwise.

Proof: We first prove that after line 11 is executed for each skten ., from
Xpivor = X, to @ goal stateX) it is true thatX; = [S(X;); H(X;)], whereX; is the
ith state onfyes; from X0 = X, t0 @ goal stateX,. We prove this by induction.
It certainly holds fori = n sinceX,, = [S(Xpivot); H(Xpivot)] = [S(Xy); H(X,)]-
We now prove that it continues to hold for 1.

On line 6 we pickX;_; to be equal tosucc(X;,a;)?, wherea; = besta(X;) =
besta(X;). We thus need to show thé§(succ(X;, a;)?); H(suce(X;,a;)?)] is the
i — 1th state onm,.,;. According to the definition ofty.,; the: — 1th state on it is

defined as:X;_; = [S(succ(XiXJrﬁu,ai)b);H(succ(XiX+Eu,ai)b)]. We thus need

to show th?.tS(succ(Xi,ai)b) = S(Succ(XlX+£u7ai)b) and H (suce(X;, a;)b) =
H(suce(X;" ™" a,)?), where X; = [S(X;); H(X,); H(X;)] and X;* 2" =

[S(Xi)§ H(Xi)§ ﬂu(Xpivot)]-
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Since according to the definition ofpes Xi = suce(Xiy1,ai11)° =
succ(suce(Xiya, aiva)’, aip1)? and so onf® X% (X;) can only be different from

RS X0 XFH" i S x XHEYy ) andp (X0 x,) = b. Consequently,

the same preferred outcome of actionexists for bothX; ande+ﬂu, namely the

one that hag* X% = b. In other words[S(succ(X;, a;)?); H (suce(X, a;)’)] =
[S(suce(X; T a))): H(suce(XX ™" a;)b)). That is, [S(Xi_1); H(X;_1)] =

~ T (3
Xi1
We now prove the statement of the theorem itself. Consider an arbik¥agn
Tpest T1OM Xpivor = X, 10 @ goal stateX,. Because of the statement we have just
proven and the execution of line 4,(X;) = g(X;), whereX; = [S(X;); H(X;)] is

the ith state ofity.; from X,iv0r = X, to a goal stateX,.
If i = 0 thenw(X;) = g(X;) = 0 according to Lemma 4.
Suppose nowi > 0. According to Lemma 4 thenv(X;) = ¢(X;) =

Qf(y):v(y)ywm(Xf*E, a;), wherew,4 is w-function before the execution of the

ComputePath function. In addition, thevalue of eachX’ € succ(X;, a;) such that
X' # X,;_, remains the same as that before the ComputePath function was called.
This is so because UpdateMDP does not updatelues of states with at least one

h;-value that is neither equal Lq(XfJ”ﬂu) nor equal td. Moreover, from Lemma 3
v(Xio1) > g(X;_1) = w(X,;_1). Hencew(X;) > Qf(Y):w(Xi—l)a’LU(Xi)(+E"7ai)'

Thus,

X+HY
Y€succ(Xi TH ,a;)

+ + +

n]ax(c(S(Xf Eu), a;, S(Y)) + w(Y), c(S(Xj( ﬁu), a;, s(succ(xix ﬂu, a;)?) + w(X;_1))

We distinguish two cases. First, suppos€*)“i(X;) is different from
pSXai (x XTH  This is only possible ifpS(Xi(x = v and

XTI
pSXi)ai (X;) = b. The latter implies that there is only one outcomeoic(X;, a;),
namely,X;_,. Hence,

w(X;) =

Z PO vy s 0y, sGuce T L0t b wix; 1)) =
YEsucC(Xf+£u )

(s Y Ly s(oueex XY 0Pt w1 =

c(S(X3), a4, S(X;-1)) +w(X;_1)) =
e(S(X;), besta(X;), S(X;_1)) + w(X;-1)) =

Ex/csuce(X; besta(X;)) (C(5(Xi), besta(X), S(X)) + w(x"))

N Nas o X+H™

Now SupPOS@S(Xl),al(Xi) _ QS(Xl)»az ()(Z +H )
X+H"
X; +H

. Then the probability distribu-

tion is the same fosucc( ,a;) andsucc(X;, a;). Hence,
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w(X;) >
X+HY X+HY X+HY X+HY
P(X] T L agsuce(X] T La)?)  (e(S(X] T ) ag, S(suce(X]) T L a)?)) + w(X_ 1))+
X+HY X4+HY
POX] T Lan Y) - (e(S(X; T ) ia SO Hw(Y) =
% u e u
YES1L{:(:(X5(+£ ,a,i)s.t.Y¢suCc(Xj(+£ ,ag)b

P(Xy,a;, Xi_1) (e(S(X;), a4, S(X;_1)) + w(X;_1))+
E PO ap v (e(8(X0), g, S(V) + w(V))

X4HuU

Hu
YEsucc(Xi +

X
,ai)s.t,Y;ésucc(Xi - ,ai)b

Consider nowy” € suce(X;* ™" a;) such thaty’ # succ(X;' ™" 4;)b. Con-
sider alsaZ € succ(X;, a;) such thaty® X (y) = p5&Xdai(7) (that is,Y and Z
are corresponding outcomes). THeén= [S(Z); H(Z); H*(Z)] = Z*. Consequently,
w(Y) = wea(Y) > wea(Z) = w(Z) according to the assumptions of the theorem.
As aresult,

w(X;)

[\

E (P(Xj,a4,Y) - (e(S(X4), a3, S(Y)) + w(Y)))

Yesuce(X;,a;)

BX/ csuce(X; besta(x;)) (((S(Xq), besta(X), S(X) + w(X"))

Theorem 4 For each stateX,, it holds thatw®(X) < g*(X).

Proof:

The case ofy*(X) = oo is trivial. We therefore assume thgt(X) is finite and
prove by induction. Suppose there exiétsuch thatw®(X) > ¢*(X). It could not
have been a state whoSé€X ) = S, since according to the definitionsof (X) and
g*(X), they are both equal to 0. We therefore assumeSiiat) # Syo.1. Then

wb(X) = min (C(S(X),a,succ(X.a)b)+wb(succ(X,a)b))
a€S(X)
and,
* = min “a
9 (xX) = aeA(S(X))Qf(Y:succ(X“,a)b):g*(Y),w(x 2
= min E P(X",a,Y) max(c(S(X"),a, S(Y)) + w(Y),
a€A(S(X))

Y Esuce(XU,a)

c(S(X™), a, S(suce(X%, a)?)) + g™ (suce(X ¥, a)?))

> min c(S(Xu),a,S(succ(X“’,a)b))+g*(succ(Xu,a)b)
a€A(S(X))
> min  ¢(S(X), a, S(suce(X, a)?)) + ¢* (suce(X, a)?)

a€A(S(X))
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The last line is due to the fact th&(X) = S(X%), S(succ(X%, a)’) =
S(succ(X,a)’) and g* (succ(X*,a)?) = g*(succ(X,a)®) according to lemma 10.
Let us consider a path = [{X,,an, Xn-1},...,{X1,a1, X0}], whereX,, = X,
S(Xo) = Sgoa and for every tuple{X;,a;, X;—1}, Xi—1 = succe(X;,a;)® and
a; = mingea(s(x,)) c(S(X3), a, suce(X;,a)’) + g*(suce(X;,a)®). Sinceg*(X) is
finite and all costs are bounded from below by a positive constant, therpatiinite.

Becausew®(X,) > ¢*(X,) andw®(X,) = ¢*(Xo) = 0, there must be a tuple
{X;,a;, X;_1} € 7w such thatw®(X;) > ¢*(X;) whereaaw’(X;_;) < g*(X;_1). But
then we get the following contradiction

g (X;) e(S(X;), ag, suce(Xy, a)?) + g™ (suce(X;, a;)?)

e(S(X;), ay, suce(Xy, a;)?) + w® (suce(X;, a;)?)

vV vl

min c(S(X;), a, suce(Xy, u)b) + wb(succ(Xi, a)b)
a€A(S(X;))

w®(x;)

Theorem 5 After each execution of the UpdateMDP function, for each stateholds
that wea(X) < w(X) < ¢g%4,(X) < ¢*(X), wherew,4-values arew-values before
the execution of UpdateMDEF;, ,(X) are g*-values undetv,;4-values andy*(X) are
g*-values undeiv-values.

Proof:

First, let us show that before the first execution of UpdateMDP for evériy
holds thatw(X) < ¢*(X). It holds because according to the assumptions about state
initialization before the main function is executed,X ) < w”(X). On the other hand,
according to theorem 4,°(X) < ¢*(X).

We now prove by induction. Suppose,;(X) < g*,,(X) before the call to Up-
dateMDP. We need to show that after UpdateMDP function returns, for eachXstate
we havew,q(X) < w(X) < g*(X).

Let us first prove thatv,;4(X) < w(X). We only need to consider the states up-
dated by UpdateMDP function sinaevalues of all other states remain unchanged. We
first prove by induction on the execution of line 4 that for each skatgdated by Up-
dateMDP it holds thak * = X *+1" Consider the first time, line 4 is executed. Then
X = Xpivor- Therefore X" = [S(X); H(X); H*(Xpivor)] = XX TH", UpdateMDP
also updates directlyS(X); H(X); H*(Xpivor)] = XX 2", Now consider the ith
execution of line 4, whereas on all previous executions it heldXHae= XX 2" At
ith execution, staté& is a state which is equal to somecc(Y, besta(Y))?, whereY is
a state that was updated during (i-1)th execution of line 4. THt$X) = H*(Y) and
thereforeX* = [S(X); H(X); H*(Xpivot)] = XXT£". Once again, UpdateMDP
also update$S(X); H(X); H*(Xpivot)] = XX TH".

Thus, for each state updated by UpdateMDP, it holds th&t =
[S(X); H(X); H*(Xpivot)]- As aresult, ifS(X) = Sgoal, then according to the de-
finition of g-values,g*,,(X) = g%,(X) = 0. On the other hand, i§(X) # Seoal,
then
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95a(X) =  min (XXHE" )

a€A(5(X)) @ (v msuce(X FH* ay)=g* (V) wots

- aejr(lg(lX))Qf(y:succ(xuva)h)zg*(Y)awozd (X", a)

Becausg*(Y) = g*(Y) = 0if S(Y) = sg0al, it then holds that

(X)) = i - u - X
gold( ) aE/Ilr(lér(lX)) Qf(Y_succ(X ,a))=g (Y),wold( 7a)

QZld(X>

Thus, for each stat& updated by UpdateMDP, it holds tha ,(X) = g7,,(X).
Also, according to corollary 3¢g(X) = g¢%,(X) and from induction assumption

word(X) < g}4(X). Thus when UpdateMDP executeg X) = g(X) on line 4,
then

w(X) = g(X) = g514(X) = gha(X) = wora(X)
Suppose now UpdateMDP execute§S(X); H(X); H*(Xpivot)]) = g(X) on
line 4. According to lemma 97,,(X) = g5,(X") = g5,(X*2") and since
Wora (XX TE") < g, (X XHH") it follows that:

w(XXJrﬂu) =g(X) = Qﬁzd(j() = g:ld(X) = Q:ld(XXJrﬂu) > wold(XX+ﬂu)

We now prove that for every stafé w(X) < g¥,(X) < g*(X). We first note that
since as we have just proved noneusf/alues decreased, it holds that for every state
X g"(X) = g5a(X).

SupposeX was not updated by UpdateMDP, that is(X) = w,q4(X). Then
w(X) = wora(X) < g2y(X) < g*(X).

Now supposeuv(X) was updated by UpdateMDP. Once again suppose the update
isw(X) = g(X)online 4. Then

w(X) = g(X) = g1a(X) = g21a(X) < g"(X)

Now suppose the update is([S(X); H(X); H*(Xpivor)]) = g(X) on line 4.
Then

U’(XXJFEH) = Q(X) = QZZd(X) = Goia(X) = QZM(XXJFEU) < 9*(XX+EL)
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Theorem 6 For a non-negative functiom < w*, the following holds: for each state
X, g*(X) is bounded from above hy"(X).

Proof:

This certainly holds forX’ whoseS(X) = Sgoa1. Now supposes(X) # Sgoal
We prove by contradiction and assume that there exists one or more statbose
g*(X) > w*(X), which implies thatw"(X) is finite. Let us consider a path
Tareedy,wv,we (Xn, Xo) WhereX,, = X andS(Xy) = sgoa1. According to its defini-
tion, for every pair of stateX;, X; ; on this path it holds thaX’; _; = succ(X;, a;)®,
wherea; = argming ca(s(x,)) Qu=,w=(X{*,a’). Since all costs are positive and
w"(X) is finite, w*(X;) > w*(X;-1). Also, since the costs are bounded from be-
low by a positive constanty®(X,) = 0 andw"(X) is finite, it holds that the path
Tareedy,wv,we (Xn, Xo) IS finite.

This means that there must exist suc¢hon the path thag* (X;) > w"(X;), while
g*(X;_1) < w*(X;_1) whereX;_; = succ(X;, a;)’ Then we arrive at the following
contradiction

g (x;) <

Qp(Xy=suce(X¥,a;)0)=g* (X;_)w Ki %) S
Qf(xi—1:S1wC(X,}‘wai)h):g*(xqz_l):w“(x;g’ai) -

E P(X[', a;,Y) max(c(S(X;), a;, S(Y)) + w(Y), e(S(X;), a3, S(X;-1)) + 97 (X;-1)) <

Yesuce(X ¥ a;)

E P(XP, a;, Y) - max(e(S(X;), a;, S(Y)) + w™(Y), e(S(X;), a5, S(X;-1) + w(X;-1)) =
YEsucc(Xl?‘,ai)
Quu yu (X{a;) =

min Q. pu ,u_,u(X;.u,a/) -
a’ €A(S(X;)) ! .

w" (X)

Theorem 7 For each stateX, w(X) is bounded from above hy“(X).

Proof:

Before the first execution of UpdateMDP, according to the initialization assump-
tions, for every stateX, 0 < w(X) < w’(X). Also, according to theorem 4, for
each stateX, w®(X) < g*(X) and according to theorem 6%(X) < w*(X). Thus,

0 < w(X) <w*(X).

We now prove the theorem by induction. Suppose before the ith execution of Up-
dateMDP, it holds thatt < w¢(X) < w*(X), wherew,;4-values arev-values right
before the ith execution of UpdateMDP function. We need to show that after the ith
execution of UpdateMDP function, the inequalit< w(X) < w*(X) holds.

According to theorem 6, for every stalg, g*,,(X) < w*(X). At the same time,
according to theorem @y(X) < g%,(X). Thus,w(X) < w*(X).

18



The inequality0 < w(X) follows from the fact thad < w,;4(X) and theorem 6,
according to whichwe¢(X) < w(X). =

Theorem 8 PPCP terminates, and at that timey Xstart) < w*(Xstare) and the ex-
pected cost of the policy of always taking actienta(X) at any stateX starting at
Xgoa1 Until stateXy whoseS(Xy) = Sgoal is reached is no more than( Xyt ).

Proof:

We will first show that the algorithm terminates.

For this let us first show that the set of all possible policiéX...:) ever con-
sidered by PPCP is guaranteed to be finite. To prove this we need to show that any
policy considered by PPCP is acyclic. Then, the fact that the set of all such policies
is finite will be due to the belief state-space itself being finite. Any policy PPCP has
at any point of time is acyclic because after each stochastic agtadrany stateX,
the corresponding®(*)-¢ is set to a value not equal toin the outcome states and
remains such in all of their descendants, whereas all the ancestarsanél X itself
hadh®(X)-¢ = 4. The deterministic paths in between any two stochastic actions on the
policy or in betweenXg;., and the first stochastic action on the policy, on the other
hand, are all segments of the paths returned by ComputePath function and these paths
are finite according to corollary 2.

Thus, the set of all possible policies considered by PPCP is finite. The termination
criterion for the algorithm is that all states on its current policy are hawx@lues at
least as large as the expectation over the action costphedues of the successors of
their action defined byesta pointer, except for the goal states, whes&alues are 0
because they are bounded b¥-values according to theorem 7 and these are zeroes
for goal states. In other words, for evekyon the current policy S.tS(X) # Sgoa it
holds that

w(X) >

> Ex/csuce(X,besta(x)) (((S(X), besta(X), S(X) + w(X") ™

At each iteration, PPCP fixes at least one sfaten the policy to satisfy this equa-
tion. While fixing the equation, PPCP may charigeta action for stateX and/or
changew-value of X. There is a finite number of possible subtrees belfévthat
PPCP can consider since the set of all possible policies considered by PPCP is finite.

The change in thes-value of X may potentially affect other states, but since the
policy is acyclic it can not affect the states that are descendants dthe number of
ancestors of, on the other hand, is finite since the policy is acyclic and the belief
state-space is finite. Therefore, PPCP is bound to arrive in a finite number of iterations
at a policy for which all of the states that belong to it satisfy the equation 7. Each iter-
ation is also guaranteed to be finite for the following reasons. First, the ComputePath
function is guaranteed to return because each state is expanded no more than once
per search according to theorem 2. Second, the UpdateMDP function is guaranteed to
return, because the path it processes is guaranteed to be of finite length according to
corollary 2.

We now show that after PPCP terminate Xstart) < w"(Xstart) and the ex-
pected cost of the policy of always taking actirsta(X) at any stateX starting at
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Xgoal UNtil stateY” whoseS(Y') = Sgoal iS reached is no more than(Xgiart). The
first part comes directly from theorem 7. The second part can be proved as follows.

Consider the following potential function that we maintain while executing the
policy defined bybesta actions starting withX.,1: F(t) = costsofar(t) + w(Xy),
wheret is the current time-step. So, initialy(t = 0) = 0 + w(Xstars) = w(Xstart)-
We execute the policy until we reach a statesuch thatS(Y) = Sgoa. Suppose it
happens at timestep= k. Thatis,Y = X;. ThenF (¢t = k) = costsofar(k) + 0 =
costsofar(k). We need to show that the expected valu&'¢f = k) is bounded above
by w(Xstart)-

Initially, E{F(t = 0)} = w(Xy), whereXy = Xq.rt. NOow consider the expecta-
tion at the ith step:

E{F(t=1} = FE{costsofar(i)+w(X;)}
E{costsofar(i — 1) + cost(i) + w(X;)}
= FE{costsofar(i—1)} + E{cost(i) + w(X;)}

Since all states on the policy (except for the goal states) satisfy the equation 7, we
havew(X,;_1) > E{cost(i) +w(X;)}. After taking an additional expectation we have
E{w(X;_1) — cost(i)} > E{w(X;)}. Hence,

BE{F(t =)}

E{costsofar(i — 1)} + E{cost(i) + w(X;)}
E{costsofar(i — 1)} + E{cost(i) + (w(X;—1) — cost(i))}
= E{costsofar(i—1) +w(X;_1)}

= E{Ft=i-1)}

IN

By induction thenE{F(t = k)} < E{F(t =0)} = w(Xstart). W

Theorem 9 Suppose there exists a minimum expected cost pdlityat satisfies the
following condition: for every pair of state¥; € p* and X, € p* such thatX, can

be reached with a non-zero probability fraky when following policy* it holds that
eitherpS(X1):p"(X1) + hS(X2),p"(X2) gr p5(X1),p"(X1) — | S(X2),p"(X2) — pull. Then
the policy defined byesta pointers at the time PPCP terminates is also a minimum
expected cost policy.

Proof: Let us assume that there exists a minimum expected cost politat
satisfies the conditions of the theorem. That is, for every pair of stdfes p*
and X, € p* such thatX, can be reached with a non-zero probability frot
when following policy p* it holds that eitherh®(X1).»"(X1) £ pS(X2).p"(X2) or
RS(X1).p7(X0) — pS(X2).p"(X2) — pull. Sincep* is an optimal policy, its expected
cost iSw*(XStart).

We will show thatw (Xstart) < w*(Xstart). This will prove the theorem since the
expected cost of the policy returned by PPCP is bounded from abové ¥ ;..+).
The expected cost the policy will then be exactly equal t0X .,¢) Sincep* is already
an optimal policy.
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Let us prove by contradiction and assume th&i{ Xgart) > w*(Xstart). This
also means that* (X, ) is finite and therefore all branches on the policyend up
at statesX whoseS(X) = Sgoa since an optimal policy when sensing is perfect is
acyclic.

Let us now pick a stat& € p* such thatv"(X) > w*(X), but all the successor
statesY” of action p*(X) executed at stat& havew“(Y) < w*(Y). Such stateX
must exist because at least f&r = X, it holds thatw“(X) > w*(X) and all
branches of the policy end up at staliésvhoseS(Y) = Se.a1 and for these states
w"(Y) = w*(Y) = 0 according to the definition af* andw* values.

By definition,

“(X = i o W Xu)
w(X) ae}xr(lér(lx))Ql e (XY a)

< Que e (X", p*(X))

= S P(X*a,2) max(e(S(X),a,5(2)) + w*(Z),
Zesuce(X¥,p* (X))

c(S(X),a,8(2)) + w* (suce(X*, p*(X))"))

Let us now considerhS(X)r"(X)(X), It must be the case that either
RS2 (X) (X)) =y or h5(X)»"(X)(X) = null since, according to the assumptions
of the theorem, no action whose outcome dependa¥rf)»"(X) could have been
executed before. Thug®(X)»"(X)(xv) = pS(X).r"(X) (X)),

This property has an important implication that we will use. For any pair of states
Y € suce(X,p* (X)) and Z € suce(X™, p*(X)) such thathS(X).»"(X)(zv) =
RS2 (X)(y®) (in other words,Y and Z are corresponding outcomes of ac-
tion p*(X) executed atX and X" respectively), it holds thaP(X, p*(X),Y) =
P(X", p*(X), Z) andY* = Z.

Using this fact and lemma 8 we can derive the following.

w*(X)

IN

S P(X"a,2) max(c(S(X),a,5(2)) +w"(Z),
Zesuce(X®,p* (X))

c(S(X),a,5(2)) + w* (suce(X", p*(X))"))

= Z P(X“ a,7Z) -max(c(S(X),a,S(Z)) +w"(Z%),
Zesuce(X¥,p* (X))

c(S(X),a,8(2)) + w*((suce(X*", p*(X))")"))

= > P(X,a,Y) -max(c(S(X),a,S(Y)) +w(Y"),
Y esuce(X,p* (X))

c(S(X),a,S(Y)) +w"((suce(X, p*(X))")"))

=Y P(X0,Y) max(e(S(X), 4, S(YV)) + w(Y),
Y €suce(X,p* (X))
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c(S(X),a,8(Y)) + w"(succ(X, p*(X))?))

According to the way we pickedX, w*(Y) < w*(Y) for everyY €
suce(X, p*(X)). Moreover, from the definition of clear preferences it follows that
c(S(X),a,S(Y)) + w'(suce(X, p*(X))?) < ¢(S(X),a,S(Y)) + w*(Y) for all
Y € suce(X, p*(X)). Hence, we obtain the following contradiction

w(X) < > P(X,a,Y) - max(c(S(X),a,S(Y)) +w*(Y),
Y esuce(X,p* (X))
c(S(X),a,S(Y)) + w*(suce(X, p*(X))?))
= > P(X,a,Y) - (¢(S(X),a,S8(Y)) +w*(Y))
Y esuce(X,p* (X))
= w'(X)
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