
PPCP: The Proofs

Maxim Likhachev
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104
maximl@seas.upenn.edu

Anthony Stentz
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
axs@rec.ri.cmu.edu

1 Notations and Assumptions

In this section we introduce some notations and formalize mathematically the class
of problems our algorithm is suitable for. We assume that the environment is fully
deterministic and can be modeled as a graph. That is, if we were to know the true value
of each variable that represents the missing information about the environment then
there would be no uncertainty in an outcome of any action. There are certain elements
of the environment, however, whose status we are uncertain about and which affect the
outcomes (and/or possible costs) of one or more actions. In the following we re-phrase
this mathematically.

Let X be a full state-vector (a belief state). We assume it can be split into two sets
of variables,S(X), H(X): X = [S(X);H(X)]. S(X) is the finite set of variables
whose values are always observed and the number of possible values is also finite.
H(X) is the set of (hidden) variables that initially represented the missing information
about the environment. The variables inH(X) are never moved toS(X). Xstart is
used to denote the start state, all the values of the variables inH(Xstart) are unknown.
The goal of the planner is to construct a policy that reaches any stateX such that
S(X) = Sgoal, whereSgoal is given, while minimizing the expected cost of execution.

We assume perfect sensing.For the sake of easier notation let us introduce an
additional valueu for each variablehi ∈ H. The settinghi(X) = u at stateX will
represent the fact that the value ofhi is unknown atX. If hi(X) 6= u, then the true
value ofhi is known atX since sensing is perfect. We restrict that all the variables that
make upX can take only a finite number of distinct values.

We assume at most one hidden variable per action.Let A(S(X)) to denote
the finite set of actions available at any stateY whoseS(Y) = S(X). Each action
a ∈ A(S(X)) taken at stateX may have one or more outcomes. If the execution
of the action does not depend on any of the variableshi whose values are not yet
known, then there is only one outcome ofa. Otherwise, there can be more than one
outcome. We assume that each such action can not be controlled by more than one
hidden variable. (The value of one hidden variable can affect more than one action
though.) We usehS(X),a to represent the hidden variable that controls the outcomes
and costs of actiona taken at stateX. By hS(X),a = null we denote the case when

1

there was never any uncertainty about the outcome of actiona taken at stateX. The
set of possible outcomes of actiona takenS(X) is notated bysucc(S(X), a), whereas
c(S(X), a, S(Y)) such thatS(Y) ∈ succ(S(X), a) denotes the cost of the action and
the outcomeS(Y). The costs are assumed to be bounded from below by a (small)
positive constant. Sometimes, we will need to refer to the set of successors in the
belief state-space. In these cases we will use the notationsucc(X, a) to denote the set
of belief statesY such thatS(Y) ∈ succ(S(X), a) andH(Y) is the same asH(X)
except forhS(X),a which also remains the same if it was known atX and is different
otherwise. The functionPX,a(succ(X, a)), the probability distribution of outcomes of
a executed atX, follows the probability distribution ofhS(X),a, P (hS(X),a). Once
actiona was executed at stateX the actual value ofhS(X),a can be deduced since we
assumed the sensing is perfect and the environment is deterministic.

We assume independence of the hidden variables.For the sake of efficient plan-
ning we assume that the variables inH can be considered independent of each other
and thereforeP (H) =

∏|H|
i=1 P (hi).

We assume clear preferences on the values of the hidden variables are avail-
able. We require that for each variableh ∈ H we are given its preferred value, de-
noted byb (i.e., best). This value must satisfy the following property. Given any
stateX and any actiona such thathS(X),a is not known (that is,hS(X),a(X) =
u), there exists a successor stateX ′ such thathS(X),a(X ′) = b and X ′ =
argminY ∈succ(X,a)c(S(X), a, S(Y))+v∗(Y), wherev∗(Y) is the expected cost of ex-
ecuting an optimal policy at stateY (Def. 1). We will use the notationsucc(X, a)b (i.e.,
the best successor) to denote the stateX ′ whosehS(X),a(X ′) = b if hS(X),a(X) = u
and whosehS(X),a(X ′) = hS(X),a(X) otherwise.

2

A Appendix: The Proofs

The pseudocode below assumes the following:

1. Every stateX̃ in the search state space initially is assumed to havev(X̃) = g(X̃) = ∞ andbesta(X̃) = null;

1 procedure ComputePath(Xpivot)

2 X̃searchgoal = GetStateinSearchGraph([S(Xpivot); H(Xpivot)]);

3 g(X̃searchgoal) = v(X̃searchgoal) = ∞;
4 OPEN= ∅;
5 for everyH whose every elementhi satisfies:

[(hi = u
∨

hi = b)
∧

hi(Xpivot) = u] OR [hi = hi(Xpivot)
∧

hi(Xpivot) 6= u]

6 X̃ = GetStateinSearchGraph([Sgoal; H]);

7 v(X̃) = ∞, g(X̃) = 0, besta(X̃) = null;

8 insertX̃ into OPENwith g(X̃) + h(X̃);

9 while(g(X̃searchgoal) > minX̃′∈OPENg(X̃′) + h(X̃′))

10 removeX̃ with the smallestg(X̃) + h(X̃) from OPEN;

11 v(X̃) = g(X̃);

12 for each actiona andX′ = [S(X′); H(X′); Hu(Xpivot)] s.t.X̃ = [S(succ(X′, a)b); H(succ(X′, a)b)]

13 X̃′ = GetStateinSearchGraph([S(X′); H(X′)]);

14 Qa =
∑

Y∈succ(X′,a)
P (X′, a, Y)·max(c(S(X′), a, S(Y))+w(Y), c(S(X′), a, S(Y))+v(X̃));

15 if g(X̃′) > Qa

16 g(X̃′) = Qa;

17 besta(X̃′) = a;

18 insert/updatẽX′ in OPENwith the priority equal tog(X̃′) + h(X̃′);

Figure 1: ComputePath function

The pseudocode below assumes the following:

1. Every stateX initially has0 ≤ w(X) ≤ wb(X) andbesta(X) = null.

1 procedure UpdateMDP(Xpivot)

2 X = Xpivot; X̃ = GetStateinSearchGraph([S(Xpivot); H(Xpivot)]);
3 while (S(X) 6= Sgoal)

4 w(X) = g(X̃); w([S(X); H(X); Hu(Xpivot)]) = g(X̃); besta(X) = besta(X̃);
5 if (besta(X) = null) break;

6 X = succ(X, besta(X))b; X̃ = GetStateinSearchGraph([S(X); H(X)]);

7 procedure Main()

8 Xpivot = Xstart;
9 while (Xpivot! = null)

10 ComputePath(Xpivot);
11 UpdateMDP(Xpivot);
12 find stateX on the current policy that has

w(X) < EX′∈succ(X,besta(X))(c(S(X), besta(X), S(X′)) + w(X′));
13 if found setXpivot to X;
14 otherwise setXpivot to null;

Figure 2: Main function

3

Let us first define several variables that we will use during the proofs. LetHb

be defined asH with eachhi equal tou replaced byb. Xb is then defined as
[S(X);H(X);Hb(X)]. Let Hu(X) be H(X) but with eachhi = hb

i replaced
by u. For every stateX we then defineXu state as the following state:Xu =
[S(X);H(X);Hu(X)].

We now introduce optimisticQ-values. Every state-action pairX and a ∈
A(S(X)) has aQf,w(X, a) > 0 associated with it that is calculated from the ac-
tion costsc(S(X), a, S(Y)) for all statesY ∈ succ(X, a), the non-negativef -
value for stateX ′ = succ(X, a)b and the non-negative valuesw(Y) for all states
Y ∈ succ(X, a). Qf,w(X, a) is defined as follows:

Qf,w(X, a) =
∑

Y∈succ(X,a)
P (X, a, Y) · max(c(S(X), a, S(Y)) + w(Y), c(S(X), a, S(X′)) + f(X′)) (1)

We now define an optimistic path fromXn to X0 whoseS(X0) = Sgoal as fol-
lows: π = [{Xn, an, Xn−1}, . . . , {X1, a1, X0}], where every timeai is stochastic,
an outcomeXk−1 = succ(Xk, ak)b. We define an optimistic cost of an optimistic
pathπ = [{Xn, an, Xn−1}, . . . , {X1, a1, X0}] under a non-negative value functionw
recursively as follows:

φπ(Xi, X0) =

{
0 if i = 0
Qf(Xi−1)=φπ(Xi−1,X0),w(Xi, ai) if i > 0 (2)

We call a path defined bybesta pointers from Xn to X0 as follows:
πbest = [{Xn, an, Xn−1}, . . . , {X1, a1, X0}], whereai = besta(Xi) andXi−1 =
succ(Xi, ai)b.

We define a greedy path πgreedy,f,w(Xn, X0) =
[{Xn, an, Xn−1}, . . . , {X1, a1, X0}] with respect to functionsf and w that map
each stateX onto non-negative real-values. It is defined as a pathπ from Xn to X0

where for every1 ≤ i ≤ n ai = argmina∈A(S(Xi))
Qf,w(Xi, a) and the outcome

Xi−1 = succ(Xi, ai)b.
We also definewb values of states as costs of reaching a goal state under the as-

sumption that the values of the missing variables are all set tob:

w
b(X) =

{
0 if S(X) = Sgoal
mina∈S(X)(c(S(X), a, succ(X, a)b) + wb(succ(X, a)b)) otherwise

(3)

A.1 ComputePath Function

In this section we will prove theorems that mainly concern the ComputePath function.
We will consider a single execution of ComputePath function. We will take the fol-
lowing convention: the search state-space at any particular execution of ComputePath
will be denoted byS̃, any state inS̃ will be denoted by a letter with̃above it. The
states in the original MDP will not usẽsign above it. Thus, ifX is a full state, then

4

X̃ = [S(X),H(X)]. We will also reserve the notationXX̃+Hu

to denote a full state
[S(X̃);H(X̃);Hu(Xpivot)].

Similarly to the definition of π in a full state-space,
an optimistic path from X̃n to X̃0 is defined as π̃ =
[{XX̃+Hu

n , an, succ(XX̃+Hu

n , an)b}, {XX̃+Hu

n−1 , an−1, succ(XX̃+Hu

n−1 , an−1)b},
. . . , {XX̃+Hu

1 , a1, succ(XX̃+Hu

1 , a1)b}], where for every 1 ≤ i ≤ n

X̃i−1 = [S(succ(XX̃+Hu

i , ai)b);H(succ(XX̃+Hu

i , ai)b)].
Similarly to the definition ofπbest, a pathπ̃best from X̃n to X̃0 in a full state-space

is defined as̃π from X̃n to X̃0 where for every1 ≤ i ≤ n ai = besta(X̃i).
In addition, we define a greedy pathπ̃greedy,f,w with respect to functionsf andw

that map each statẽX onto non-negative real-values. It is defined as a pathπ̃ from X̃n

to X̃0 where for every1 ≤ i ≤ n ai = argmina∈A(S(X̃i))
Qf,w(XX̃+Hu

i , a).
We define goal distances,g∗-values under a functionw recursively as follows:

g
∗(X̃) =

{
0 if S(X̃) = Sgoal

min
a∈A(S(X̃)) Q

f(Y =succ(X
X̃+Hu

,a)b)=g∗(Ỹ),w
(X

X̃+Hu
, a) otherwise (4)

Finally, we require that the heuristics are consistent in the following sense:
h(X̃searchgoal) = 0 and for every other statẽX, a ∈ A(S(X̃)) and Ỹ s.t. Y =
succ(XX̃+Hu

, a)b, h(Ỹ) ≤ h(X̃) + c(S(X̃), a, S(Ỹ)).

A.1.1 Low-level Correctness

Lemma 1 Given a non-negative functionw, for any state X̃n g∗(X̃n) =
φπ̃greedy,g∗,w

(X̃n, X̃0) = minπ̃ from X̃n to X̃0
φπ̃(X̃n, X̃0) whereX̃0 is the only state

on π̃greedy,g∗,w(X̃n, X̃0) that hasS(X̃0) = Sgoal. In addition, it holds thatH(X̃0)
satisfies the equation on line 5.

Proof: Let us first prove thatg∗(X̃n) = φπ̃greedy,g∗,w
(X̃n, X̃0). Let us write out the

formula forφπ̃greedy,g∗,w
(X̃n, X̃0). If n = 0, φπ̃greedy,g∗,w

(X̃n, X̃0) = g∗(X̃n) = 0
sinceS(X̃n) = S(X̃0) = Sgoal.

Suppose now,n 6= 0. Then

φπ̃greedy,g∗,w
(X̃n, X̃0) = min

a∈A(S(X̃n))
Qf(Xn−1)=φπ̃greedy,g∗,w

(X̃n−1,X̃0),w
(XX̃+Hu

n , a)

According to the definition of an optimistic path̃π, Xn−1 = succ(XX̃+Hu

n , an)b.
It is thus the exact same formula as forg∗-values (equation 4).

Let us now prove thatφπ̃greedy,g∗,w
(X̃n, X̃0) = minπ̃ from X̃n to X̃0

φπ̃(X̃n, X̃0).
Let us denote argmiñπ from X̃n to X̃0

φπ̃(X̃n, X̃0) by π̃∗(X̃n, X̃0) and

minπ̃ from X̃n to X̃0
φπ̃(X̃n, X̃0) by φπ̃∗(X̃n, X̃0).

Since π̃∗(X̃n, X̃0) is an optimal optimistic path,φπ̃greedy,g∗,w
(X̃n, X̃0) ≥

φπ̃∗(X̃n, X̃0). We therefore need to show thatφπ̃greedy,g∗,w
(X̃n, X̃0) ≤ φπ̃∗(X̃n, X̃0)

also.

5

The proof is a simple proof by contradiction. Let us assume that
φπ̃greedy,g∗,w

(X̃n, X̃0) > φπ̃∗(X̃n, X̃0). This implies thatφπ̃∗(X̃n, X̃0) is finite and

therefore path̃π∗(X̃n, X̃0) is finite (sinceφπ̃∗(X̃i, X̃0) > φπ̃∗(X̃i−1, X̃0) for all
n ≥ i > 0 andφπ̃∗(X̃0, X̃0) = 0).

Consider a pair of statesX̃i and X̃i−1 on the path π̃∗(X̃n, X̃0) such
that φπ̃greedy,g∗,w

(X̃i, X̃0) > φπ̃∗(X̃i, X̃0) but φπ̃greedy,g∗,w
(X̃i−1, X̃0) ≤

φπ̃∗(X̃i−1, X̃0). Such pair must exist since at least forX0, φπ̃greedy,g∗,w
(X̃0, X̃0) =

φπ̃∗(X̃0, X̃0) = 0. Then we get the following contradiction.

φπ̃greedy,g∗,w
(X̃i, X̃0) ≤ Qf(Xi−1)=φπ̃greedy,g∗,w

(X̃i−1,X̃0),w
(XX̃+Hu

i , a)

≤ Qf(Xi−1)=φπ̃∗ (X̃i−1,X̃0),w
(XX̃+Hu

i , a)

= φπ̃∗(X̃i, X̃0)

We now show that it holds thatH(X̃0) satisfies the equation on line 5. Consider
any hi. Until path π̃ involves executing an action whose outcomes depend onhi,
any stateX̃i on the path will havehi(X̃i) = hi(X̃pivot). Suppose now at statẽXi

an actiona is executed whose outcomes depend onhi. Then, if hi(Xpivot) 6= u,
the action is deterministic andhi(X̃i−1) = hi(X̃pivot), which is consistent with the
equation on line 5.hi(X̃i−1) remains to be such until the end of the path. On the other
hand, ifhi(Xpivot) = u, then actiona may have multiple outcomes, but an optimistic

path always chooses the preferred outcome:Xi−1 = succ(XX̃+Hu

i−1 , a)b. Therefore,
hi(X̃i−1) = b and remains such until the end of the path. This is again consistent with
the equation on line 5. Finally, if path̃π does not involve executing an action whose
outcomes depend onhi, thenhi(X̃0) = hi(X̃pivot), which is also consistent with the
equation on line 5.

Lemma 2 Given a non-negative functionw and a pathπ̃greedy,g∗,w from X̃n to any
stateX̃0 with S(X̃0) = Sgoal it holds thatg∗(X̃n) ≥

∑i+1
j=n c(S(X̃j), aj , S(X̃j−1))+

g∗(X̃i) for any0 ≤ i ≤ n

Proof: The following is the proof that the theorem holds fori = n− 1.

g
∗(X̃n) = min

a∈A(S(X̃n))
Q

f(Y =succ(X
X̃+Hu

n ,a)b)=g∗(Ỹ),w

(X
X̃+Hu

n , a)

= Q

f(Y =succ(X
X̃+Hu

n ,an)b)=g∗(Ỹ),w

(X
X̃+Hu

n , an)

=

∑
Y∈succ(X

X̃+Hu

n ,an)

P (X
X̃+Hu

n , an, Y) ·

max(c(S(X̃), an, S(Ỹ)) + w(Y), c(S(X̃), an, S(succ(X
X̃+Hu

n , an)b)) + g
∗(succ(X

X̃+Hu

n , an)b))

≥ c(S(X̃), an, S(succ(X
X̃+Hu

n , an)b)) + g
∗(succ(X

X̃+Hu

n , an)b)

= c(S(X̃), an, S(X̃n−1)) + g
∗(X̃n−1)

6

The proof for0 ≤ i ≤ n− 1 holds by induction oni.

Lemma 3 At any point in time, for any statẽX it holds thatv(X̃) ≥ g(X̃).

Proof: The theorem clearly holds before line 9 was executed for the first time since
for each statẽX v(X̃) = ∞. Afterwards, theg-values can only decrease (lines 15-16).
For any stateX̃, on the other hand,v(X̃) only changes on line 11 when it is set to
g(X̃). Thus, it is always true thatv(X̃) ≥ g(X̃).

Lemma 4 Assuming functionw is non-negative, at line 9, the following holds:

• g(X̃) = 0, besta(X̃) = null for every stateX̃ whoseS(X̃) = Sgoal andH(X̃)
satisfies the equation on line 5

• g(X̃) = Qf(Y)=v(Ỹ),w(XX̃+Hu

, besta(X̃)) and besta(X̃) =

argmina∈A(S(X̃))Qf(Y)=v(Ỹ),w(XX̃+Hu

, a), for every other statẽX

• if g(X̃) = ∞, thenbesta(X̃) = null

Proof: The theorem holds the first time line 9 is executed. This is so because
every stateX̃ ∈ S̃ hasv(X̃) = ∞. As a result, the right-hand side of the equation 1
evaluated under functionf = ∞ is equal to∞, independently of actiona. This is
correct, since after the initialization every stateX̃ with S(X̃) 6= Sgoal or whoseH(X̃)
does not satisfy the equation on line 5 hasg(X̃) = ∞, besta(X̃) = null and every
stateX̃ with S(X̃) = Sgoal andH(X̃) satisfying the equation on line 5 hasg(X̃) = 0,
besta(X̃) = null.

The only place whereg- andv-values are changed afterwards is on lines 11 and
16. If v(s) is changed in line 11, then it is decreased according to Lemma 3. Thus,
it may only decrease theg-values of its successors. The test on line 15 checks this
and updates theg-values andbesta pointers as necessary. Since all costs are positive
and never change,g-value of a statẽX with S(X̃) = Sgoal andH(X̃) satisfying the
equation on line 5 can never be changed: it will never pass the test on line 15, and thus
is always 0. Also, sinceg-values do not increase, it continues to hold that ifg(X̃) = ∞,
thenbesta(X̃) = null.

Lemma 5 At line 9, OPEN contains all and only states̃X whosev(X̃) 6= g(X̃).

Proof: The first time line 9 is executed the theorem holds since after the initializa-
tion the only states inOPENare the states̃X with v(X̃) = ∞ 6= 0 = g(X̃). The rest
of the states have infinite values.

During the following execution whenever we decreaseg(X̃) (line 16), and as a
result makeg(X̃) < v(X̃) (Lemma 3), we insert it intoOPEN; whenever we remove
X̃ from OPEN (line 10) we setv(X̃) = g(X̃) (line 11) making the state consistent.
We never modifyv(X̃) or g(X̃) elsewhere.

7

Lemma 6 Assuming functionw is non-negative, supposẽX is selected for expansion
on line 10. Then the next time line 9 is executedv(X̃) = g(X̃), whereg(X̃) before
and after the expansion of̃X is the same.

Proof: SupposeX̃ is selected for expansion. Then on line 11v(X̃) = g(X̃),
and it is the only place where av-value changes. We, thus, only need to show that
g(X̃) does not change. It could only change ifX̃ ′ = X̃ andg(X̃ ′) > Qa at one of
the executions of line 15. The former condition means that there existsa such that
X̃ = [S(succ(XX̃+Hu

, a)b);H(succ(XX̃+Hu

, a)b)]. The later condition means that
g(X̃) > Qf(Y)=v(Ỹ),w(XX̃+Hu

, a).

Since X̃ = [S(succ(XX̃+Hu

, a)b);H(succ(XX̃+Hu

, a)b)],
f(succ(XX̃+Hu

, a)b) = v(X̃) = g(X̃). Hence, g(X̃) >

Q
f(succ(XX̃+Hu

,a)b)=g(X̃),w
(XX̃+Hu

, a). This means that g(X̃) >

c(S(X̃), a, S(X̃)) + g(X̃) which is impossible since costs are positive.

Lemma 7 Assuming functionw is non-negative, at line 9, for any statẽX, an opti-
mistic cost of a path defined bybesta pointers,π̃best, from X̃ to a stateX̃0 whose
S(X̃0) = Sgoal is no larger thang(X̃), that is,φπ̃best

(X̃, X̃0) ≤ g(X̃). In addition,
v(X̃) ≥ g(X̃) ≥ g∗(X̃).

Proof: v(X̃) ≥ g(X̃) holds according to Lemma 3. We thus need to show that
φπ̃best

(X̃, X̃0) ≤ g(X̃), andg(X̃) ≥ g∗(X̃). The statement follows ifg(X̃) = ∞.
We thus can restrict our proof to a finiteg-value.

Consider a path π̃best from X̃ = X̃n to a state X̃0: π̃best =
[{XX̃+Hu

n , an, succ(XX̃+Hu

n , an)b}, {XX̃+Hu

n−1 , an−1, succ(XX̃+Hu

n−1 , an−1)b},
. . . , {XX̃+Hu

1 , a1, succ(XX̃+Hu

1 , a1)b}], where ai = besta(X̃i) and X̃i−1 =

[S(succ(XX̃+Hu

i , ai)b);H(succ(XX̃+Hu

i , ai)b)].
We now show thatφπ̃best

(X̃, X̃0) ≤ g(X̃) by contradiction. Suppose it
does not hold. Let us then pick a statẽXk on the path that is closest to
X̃0 and for which φπ̃best

(X̃k, X̃0) > g(X̃k). S(Xk) 6= Sgoal because oth-
erwise φπ̃best

(X̃k, X̃0) = 0 from the definition of φ-values. Consequently,

φπ̃best
(X̃k, X̃0) = Q

f(succ(X
X̃+Hu

k
,ak)b)=φπ̃best

(X̃k−1,X̃0),w
(XX̃+Hu

k , ak). According

to Lemma 4g(X̃k) = Qf(Y)=v(Ỹ),w(XX̃+Hu

k , ak), whereak = besta(X̃k). From

Lemma 3 it then also follows thatg(X̃k) ≥ Qf(Y)=g(Ỹ),w(XX̃+Hu

k , ak). Hence,

g(X̃k) ≥ Q
f(succ(X

X̃+Hu

k
,ak)b)=g(X̃k−1),w

(XX̃+Hu

k , ak).

Finally, because of the way we picked statẽXk, φπ̃best
(X̃k−1, X̃0) ≤

g(X̃k−1). As a result,g(X̃k) ≥ Q
f(succ(X

X̃+Hu

k
,ak)b)=g(X̃k−1),w

(XX̃+Hu

k , ak) ≥

Q
f(succ(X

X̃+Hu

k
,ak)b)=φπ̃best

(X̃k−1,X̃0),w
(XX̃+Hu

k , ak) = φπ̃best
(X̃k, X̃0). This is a

contradiction to the assumption thatφπ̃best
(X̃k, X̃0) > g(X̃k).

8

Sinceφπ̃best
(X̃, X̃0) ≤ g(X̃) the proof thatg(X̃) ≥ g∗(X̃) follows directly from

Lemma 1.

A.1.2 Main theorems

Theorem 1 Assuming functionw is non-negative, at line 9, for any statẽX with
(h(X̃) < ∞ ∧ g(X̃) + h(X̃) ≤ g(Ũ) + h(Ũ) ∀Ũ ∈ OPEN), it holds that
g(X̃) = g∗(X̃).

Proof: We prove by contradiction. Suppose there existsX̃ such thath(X̃) <
∞ ∧ g(X̃) + h(X̃) ≤ g(Ũ) + h(Ũ) ∀Ũ ∈ OPEN, butg(X̃) 6= g∗(X̃). According to
Lemma 7 it then follows thatg(X̃) > g∗(X̃). This also implies thatg∗(X̃) < ∞. We
also assume thatS(X̃) 6= Sgoal or H(X̃) does not satisfy the equation on line 5 since
otherwiseg(X̃) = 0 = g∗(X̃) from Lemma 4.

Consider a path̃πgreedy,g∗,w from X̃ = X̃n to a stateX̃0 whoseS(X̃0) = Sgoal.
According to Lemma 1, the cost of this path isg∗(X̃) andH(X̃0) satisfies the equation
on line 5. Such path must exist sinceg∗(X̃) < ∞ and from equation 4 it is clear that
g∗(X̃i) > g∗(˜Xi−1) for each1 ≤ i ≤ n on the path.

Our assumption thatg(X̃) > g∗(X̃) means that there exists at least oneX̃i on the
pathπ̃greedy,g∗,w, namelyX̃n−1, whosev(X̃i) > g∗(X̃i). Otherwise,

g(X̃) = g(X̃n) = (Lemma 4)

min
a∈A(S(X̃n))

Qf(Y)=v(Ỹ),w(XX̃+Hu

, a) ≤

Qf(Y)=v(Ỹ),w(XX̃+Hu

, ai) = (def. of π̃)

Qf(Y)=v(X̃n−1),w
(XX̃+Hu

, ai) ≤

Qf(Y)=g∗(X̃n−1),w
(XX̃+Hu

, ai) = (def. ofg∗)

g∗(X̃n) = g∗(X̃)

Let us now consider̃Xi on the path with the smallest indexi ≥ 0 (that is, closest
to X̃0) such thatv(X̃i) > g∗(X̃i). We will first show thatg∗(X̃i) ≥ g(X̃i). It is
clearly so wheni = 0 according to Lemma 4 which says thatg(X̃i) = 0 whenever
S(X̃i) = Sgoal andH(X̃i) satisfies the equation on line 5. Fori > 0 we use the fact
thatv(X̃i−1) ≤ g∗(X̃i−1) from the wayX̃i was chosen,

g(X̃i) = (Lemma 4)

min
a∈A(S(X̃i))

Qf(Y)=v(Ỹ),w(XX̃+Hu

i , a) ≤

Qf(Y)=v(Ỹ),w(XX̃+Hu

i , ai) = (def. of π̃)

Qf(Y)=v(X̃i−1),w
(XX̃+Hu

i , ai) ≤

Qf(Y)=g∗(X̃i−1),w
(XX̃+Hu

i , ai) = (def. ofg∗)

9

g∗(X̃i)

We thus havev(X̃i) > g∗(X̃i) ≥ g(X̃i), which implies thatX̃i ∈ OPENaccording
to Lemma 5.

We will now show thatg(X̃) + h(X̃) > g(X̃i) + h(X̃i), and finally arrive at a
contradiction. According to our assumptiong(X̃) > g∗(X̃) andh(X̃) < ∞, therefore

g(X̃) + h(X̃) =
g(X̃n) + h(X̃n) >

g∗(X̃n) + h(X̃n) ≥ (Lemma 2)
i+1∑
j=n

c(S(X̃j), aj , S(X̃j−1)) + g∗(X̃i) + h(X̃n) ≥ (property ofh)

i+1∑
j=n−1

c(S(X̃j), aj , S(X̃j−1)) + g∗(X̃i) + h(X̃n−1) ≥

. . .

g∗(X̃i) + h(X̃i) ≥
g(X̃i) + h(X̃i)

This inequality, however, implies that̃Xi /∈ OPENsince according to the condi-
tions of the theoremg(X̃) + h(X̃) ≤ g(Ũ) + h(Ũ) ∀Ũ ∈ OPEN. But this contradicts
to what we have proven earlier.

A.1.3 Correctness

The corollaries in this section show how the theorems in the previous section lead quite
trivially to the correctness of ComputePath. We also show that each state is expanded
at most once, similar to the guarantee that A* makes for deterministic graphs whenever
heuristics are consistent.

Corollary 1 When the ComputePath function exits the following holds for any stateX̃
with h(X̃) < ∞∧ g(X̃)+h(X̃) ≤ minX̃′∈OPEN (g(X̃ ′)+h(X̃ ′)): an optimistic cost

of a path defined bybesta pointers,π̃best, fromX̃ to a stateX̃0 whoseS(X̃0) = Sgoal

is equal tog∗(X̃), that is,φπ̃best
(X̃, X̃0) = g∗(X̃).

Proof: According to Theorem 1 the conditionh(X̃) < ∞ ∧ g(X̃) + h(X̃) ≤
minX̃′∈OPEN (g(X̃ ′) + h(X̃ ′)) implies thatg(X̃) = g∗(X̃). From Lemma 7 it then
follows thatφπ̃best

(X̃, X̃0) ≤ g∗(X̃). Sinceg∗(X̃) is an optimistic cost of a least-cost
path fromX̃ to X̃0 according to Lemma 1,φπ̃best

(X̃, X̃0) = g∗(X̃).

Corollary 2 When the ComputePath function exits the following holds: an opti-
mistic cost of a path defined bybesta pointers,π̃best, from X̃searchgoal to a stateX̃0

whoseS(X̃0) = Sgoal is equal tog∗(X̃searchgoal), that is,φπ̃best
(X̃searchgoal, X̃0) =

g∗(X̃searchgoal). The length of this path is finite.

10

Proof: According to the termination condition of the ComputePath function, upon
its exit g(X̃searchgoal) ≤ minX̃′∈OPEN(g(X̃ ′) + h(X̃ ′)). Sinceh(X̃searchgoal) = 0
the proof that the cost of the path is equal tog∗(X̃searchgoal) then follows directly from
Corollary 1

To prove that the path defined bybesta pointers is always finite, first consider
the case ofg(X̃searchgoal) = ∞. According to lemma 4 then,besta(X̃searchgoal) =
null and the path defined bybesta pointers is therefore empty. Suppose now
g(X̃searchgoal) 6= ∞. Since g(X̃searchgoal) ≤ minX̃′∈OPEN(g(X̃ ′) + h(X̃ ′))
and h(X̃searchgoal) = 0, theorem 1 applies and therefore∞ > g(X̃searchgoal) =
g∗(X̃searchgoal). As a result, the optimistic cost of the path defined bybesta point-
ers is also finite according to lemma 7. Considering that the costs are bounded from
below by a positive constant, it shows that the path is of finite length.

Corollary 3 When the ComputePath function exits the following holds for each state
X̃ on the path̃πbest(X̃searchgoal, X̃0): g(X̃) = g∗(X̃).

Proof: At the time ComputePath terminatesg(X̃searchgoal) ≤
minX̃′∈OPEN(g(X̃ ′) + h(X̃ ′)). and h(X̃searchgoal) = 0. Thus, according to

theorem 1,g(˜Xsearchgoal) = g∗(X̃searchgoal).
We now prove that the theorem holds for the rest of the states on the path defined

by besta pointers. The case wheng(X̃searchgoal) = ∞ is trivially proven by noting that
in this casebesta(X̃searchgoal) = null according to lemma 4. We therefore consider
the case wheng(X̃searchgoal) 6= ∞. We prove the theorem for this case by induction.
Supposeg(X̃i) = g∗(X̃i), g(X̃i) + h(X̃i) ≤ minX̃′∈OPEN(g(X̃ ′) + h(X̃ ′)) and

h(X̃i) < ∞. This is true at least for the first state on the path, namely,X̃searchgoal. We
will show thatg(X̃i−1) = g∗(X̃i−1), g(X̃i−1) + h(X̃i−1) ≤ minX̃′∈OPEN(g(X̃ ′) +
h(X̃ ′)) andh(X̃i−1) < ∞. This induction step will prove the statement of the theorem.

The propertyh(X̃i−1) < ∞ follows from the consistency of heuristics and the fact
thath(X̃i) < ∞. By consistencyh(X̃i−1) ≤ h(X̃i)+c(S(X̃i), besta(X̃i), S(X̃i−1)).
h(X̃i) is finite according to our induction assumption, whereas the costs are finite be-
cause∞ > g(˜Xsearchgoal) = g∗(X̃searchgoal). Thus,h(X̃i−1) < ∞.

To prove thatg(X̃i−1)+h(X̃i−1) ≤ minX̃′∈OPEN(g(X̃ ′)+h(X̃ ′)) we will show

thatg(X̃i−1) + h(X̃i−1) ≤ g(X̃i) + h(X̃i) as follows:

g(X̃i−1) + h(X̃i−1) ≤ consistency of heuristics

g(X̃i−1) + h(X̃i) + c(S(X̃i), besta(X̃i), S(X̃i−1)) ≤ lemma 3

v(X̃i−1) + c(S(X̃i), besta(X̃i), S(X̃i−1)) + h(X̃i) ≤∑
Y∈succ(X

X̃+Hu

i
,besta(X̃i))

P (X
X̃+Hu

i
, besta(X̃i), Y)·

max(c(S(X̃i), besta(X̃i), S(Ỹ)) + w(Y), c(S(X̃), besta(X̃i), S(X̃i−1)) + v(X̃i−1)) + h(X̃i) = eq. 1

Q
f(Y)=v(Ỹ),w

(X
X̃+Hu

i
, besta(X̃i)) + h(X̃i) = lemma 4

g(X̃i) + h(X̃i) ≤ inductive assumption

min
X̃′∈OPEN

(g(X̃
′) + h(X̃

′))

11

Finally, the fact thatg(X̃i−1) = g∗(X̃i−1) now comes directly from theorem 1.

Theorem 2 No state is expanded more than once during the execution of the Com-
putePath function.

Proof: Suppose a statẽX is selected for expansion for the first time during the
execution of the ComputePath function. Then, it is removed fromOPEN set on line
10. According to theorem 1 itsg-value at this point is equal tog∗(X̃). On line 11
the state is made consistent by setting itsv-value to itsg-value. The only way how̃X
can be chosen for expansion again is if it is inserted intoOPEN, but this only happens
if its g-value is decreased. This however is impossible sinceg(X̃) is already equal to
g∗(X̃) = minπ̃ from X̃n to X̃0

φπ̃(X̃n, X̃0) whereX̃0 hasS(X̃0) = Sgoal (according

to Lemma 1) andg(X̃) must always remain an upper bound onφπ̃best
(X̃, X̃0) (accord-

ing to Lemma 7).

A.2 Main Function

In this section we present the theorems about the main function of the algorithm. All
references to line numbers are for the figure 2 unless explicitly specified otherwise.

By w∗(X) we denote a minimum expected cost of a policy for reaching a goal state
from stateX. We also introducewu-values defined recursively as follows:

w
u(X) =

{
0 if S(X) = 0
mina∈A(S(X)) Qwu,wu (Xu, a) otherwise (5)

We also define goal distances for full statesg∗-values under a functionw recur-
sively as follows:

g
∗(X) =

{
0 if S(X) = Sgoal
mina∈A(S(X)) Q

f(Y =succ(Xu,a)b)=g∗(Y),w
(Xu, a) otherwise (6)

Lemma 8 For eachX, wu(X) = wu(Xu)

Proof: According to equation 5, ifS(X) = S(Xu) = Sgoal then
wu(X) = wu(Xu) = 0. Otherwise,wu(X) = mina∈A(S(X)) Qwu,wu(Xu, a) =
mina∈A(S(X)) Qwu,wu((Xu)u, a) = wu(Xu).

Lemma 9 For eachX, g∗(X) = g∗(Xu)

Proof: According to the definition,Xu = [S(X);H(X);Hu(X)], and there-
fore S(X) = S(Xu). Suppose firstS(X) = Sgoal. Then, according to equation 6,
g∗(X) = 0 andg∗(Xu) = 0.

12

Now supposeS(X) = S(Xu) 6= Sgoal. Then, according to equa-
tion 6, g(X) = mina∈A(S(X)) Qf(Y =succ(Xu,a)b)=g∗(Y),w(Xu, a) and g(Xu) =
mina∈A(S(Xu)) Qf(Y =succ((Xu)u,a)b)=g∗(Y),w((Xu)u, a).

(Xu)u = Xu becauseHu(X) does not contain anyhi elements equal tob and
thereforeHu(Xu) = Hu(X). Also, S(X) = S(Xu). Consequently,g(Xu) =
mina∈A(S(X)) Qf(Y =succ(Xu,a)b)=g∗(Y),w(Xu, a) = g(X).

Lemma 10 For each X and a ∈ A(S(X)), hS(X),a(succ(X, a)b) =
hS(X),a(succ(Xu, a)b) andg∗(succ(Xu, a)b) = g∗(succ(X, a)b)

Proof: We consider all possible cases forhS(X),a(X). Suppose firsthS(X),a(X) =
null. That is, actiona is (and always was) deterministic. ThenhS(X),a(Xu) = null
also and thereforehS(X),a(succ(X, a)b) = hS(X),a(succ(Xu, a)b) = null. Also,
succ(Xu, a)b = (succ(X, a)b)u becauseh-values are not affected by actiona and
thereforeg∗(succ(Xu, a)b) = g∗(succ(X, a)b) according to lemma 9.

Suppose nowhS(X),a(X) 6= b. Then againhS(X),a(Xu) = hS(X),a(X) and
thereforehS(X),a(succ(X, a)b) = hS(X),a(succ(Xu, a)b). Also, succ(Xu, a)b =
(succ(X, a)b)u becauseh-values are not affected by actiona and therefore
g∗(succ(Xu, a)b) = g∗(succ(X, a)b) according to lemma 9.

Now supposehS(X),a(X) = b. If hS(X),a ∈ H, then hS(X),a(Xu) = b,
whereas ifhS(X),a ∈ H, then hS(X),a(Xu) = u. In either case, however,
hS(X),a(succ(X, a)b) = hS(X),a(succ(Xu, a)b) = b. Also, g∗(succ(X, a)b) =
g∗((succ(X, a)b)u) and g∗(succ(Xu, a)b) = g∗((succ(Xu, a)b)u) according to
lemma 9. But(succ(X, a)b)u = (succ(Xu, a)b)u and thereforeg∗(succ(X, a)b) =
g∗(succ(Xu, a)b) as stated in the theorem.

Theorem 3 Suppose that before line 10 is executed for every stateX it is
true that 0 ≤ w(X) ≤ w(Xu). Then after line 11 is executed for
each stateX on πbest from Xpivot to a goal state it holds thatw(X) ≥
EX′∈succ(X,besta(X))(c(S(X), besta(X), S(X ′)) + w(X ′)) if S(X) 6= Sgoal and
w(X) = 0 otherwise.

Proof: We first prove that after line 11 is executed for each stateXi onπbest from
Xpivot = Xn to a goal stateX0 it is true thatX̃i = [S(Xi);H(Xi)], whereX̃i is the
ith state oñπbest from X̃pivot = X̃n to a goal stateX̃0. We prove this by induction.
It certainly holds fori = n sinceX̃n = [S(Xpivot);H(Xpivot)] = [S(Xn);H(Xn)].
We now prove that it continues to hold fori− 1.

On line 6 we pickXi−1 to be equal tosucc(Xi, ai)b, whereai = besta(Xi) =
besta(X̃i). We thus need to show that[S(succ(Xi, ai)b);H(succ(Xi, ai)b)] is the
i − 1th state oñπbest. According to the definition of̃πbest the i − 1th state on it is

defined as:X̃i−1 = [S(succ(XX̃+Hu

i , ai)b);H(succ(XX̃+Hu

i , ai)b)]. We thus need

to show thatS(succ(Xi, ai)b) = S(succ(XX̃+Hu

i , ai)b) and H(succ(Xi, ai)b) =

H(succ(XX̃+Hu

i , ai)b), where Xi = [S(Xi);H(Xi);H(Xi)] and X
X̃+Hu

i =
[S(Xi);H(Xi);Hu(Xpivot)].

13

Since according to the definition ofπbest Xi = succ(Xi+1, ai+1)b =
succ(succ(Xi+2, ai+2)b, ai+1)b and so on,hS(Xi),ai(Xi) can only be different from

hS(Xi),ai(XX̃+Hu

i) if hS(Xi),ai(XX̃+Hu

i) = u andhS(Xi),ai(Xi) = b. Consequently,

the same preferred outcome of actionai exists for bothXi andX
X̃+Hu

i , namely the
one that hashS(Xi),ai = b. In other words,[S(succ(Xi, ai)b);H(succ(Xi, ai)b)] =

[S(succ(XX̃+Hu

i , ai)b);H(succ(XX̃+Hu

i , ai)b)]. That is, [S(Xi−1);H(Xi−1)] =
X̃i−1

We now prove the statement of the theorem itself. Consider an arbitraryXi on
πbest from Xpivot = Xn to a goal stateX0. Because of the statement we have just
proven and the execution of line 4,w(Xi) = g(X̃i), whereX̃i = [S(Xi);H(Xi)] is
the ith state oñπbest from X̃pivot = X̃n to a goal statẽX0.

If i = 0 thenw(Xi) = g(X̃i) = 0 according to Lemma 4.
Suppose nowi > 0. According to Lemma 4 thenw(Xi) = g(X̃i) =

Qf(Y)=v(Ỹ),wold
(XX̃+Hu

i , ai), wherewold is w-function before the execution of the
ComputePath function. In addition, thew-value of eachX ′ ∈ succ(Xi, ai) such that
X ′ 6= Xi−1 remains the same as that before the ComputePath function was called.
This is so because UpdateMDP does not updatew-values of states with at least one

hj-value that is neither equal tohj(X
X̃+Hu

i) nor equal tob. Moreover, from Lemma 3

v(X̃i−1) ≥ g(X̃i−1) = w(Xi−1). Hencew(Xi) ≥ Qf(Y)=w(Xi−1),w(XX̃+Hu

i , ai).
Thus,

w(Xi) ≥∑
Y∈succ(X

X̃+Hu

i
,ai)

P (X
X̃+Hu

i
, ai, Y)·

max(c(S(X
X̃+Hu

i
), ai, S(Y)) + w(Y), c(S(X

X̃+Hu

i
), ai, S(succ(X

X̃+Hu

i
, ai)

b)) + w(Xi−1))

We distinguish two cases. First, supposehS(Xi),ai(Xi) is different from

hS(Xi),ai(XX̃+Hu

i). This is only possible ifhS(Xi),ai(XX̃+Hu

i) = u and
hS(Xi),ai(Xi) = b. The latter implies that there is only one outcome ofsucc(Xi, ai),
namely,Xi−1. Hence,

w(Xi) ≥∑
Y∈succ(X

X̃+Hu

i
,ai)

P (X
X̃+Hu

i
, ai, Y) · (c(S(X

X̃+Hu

i
), ai, S(succ(X

X̃+Hu

i
, ai)

b)) + w(Xi−1)) =

(c(S(X
X̃+Hu

i
), ai, S(succ(X

X̃+Hu

i
, ai)

b)) + w(Xi−1)) =

c(S(Xi), ai, S(Xi−1)) + w(Xi−1)) =

c(S(Xi), besta(Xi), S(Xi−1)) + w(Xi−1)) =

E
X′∈succ(Xi,besta(Xi))

(c(S(Xi), besta(X), S(X
′)) + w(X

′))

Now supposehS(Xi),ai(Xi) = hS(Xi),ai(XX̃+Hu

i). Then the probability distribu-

tion is the same forsucc(XX̃+Hu

i , ai) andsucc(Xi, ai). Hence,

14

w(Xi) ≥

P (X
X̃+Hu

i
, ai, succ(X

X̃+Hu

i
, ai)

b) · (c(S(X
X̃+Hu

i
), ai, S(succ(X

X̃+Hu

i
, ai)

b)) + w(Xi−1))+∑
Y∈succ(X

X̃+Hu

i
,ai)s.t.Y 6=succ(X

X̃+Hu

i
,ai)

b

P (X
X̃+Hu

i
, ai, Y) · (c(S(X

X̃+Hu

i
), ai, S(Y)) + w(Y)) =

P (Xi, ai, Xi−1) · (c(S(Xi), ai, S(Xi−1)) + w(Xi−1))+∑
Y∈succ(X

X̃+Hu

i
,ai)s.t.Y 6=succ(X

X̃+Hu

i
,ai)

b

(P (X
X̃+Hu

i
, ai, Y) · (c(S(Xi), ai, S(Y)) + w(Y)))

Consider nowY ∈ succ(XX̃+Hu

i , ai) such thatY 6= succ(XX̃+Hu

i , ai)b. Con-
sider alsoZ ∈ succ(Xi, ai) such thathS(Xi),ai(Y) = hS(Xi),ai(Z) (that is,Y andZ
are corresponding outcomes). ThenY = [S(Z);H(Z);Hu(Z)] = Zu. Consequently,
w(Y) = wold(Y) ≥ wold(Z) = w(Z) according to the assumptions of the theorem.
As a result,

w(Xi) ≥∑
Y∈succ(Xi,ai)

(P (Xi, ai, Y) · (c(S(Xi), ai, S(Y)) + w(Y))) =

E
X′∈succ(Xi,besta(Xi))

(c(S(Xi), besta(X), S(X
′)) + w(X

′))

Theorem 4 For each stateX, it holds thatwb(X) ≤ g∗(X).

Proof:
The case ofg∗(X) = ∞ is trivial. We therefore assume thatg∗(X) is finite and

prove by induction. Suppose there existX such thatwb(X) > g∗(X). It could not
have been a state whoseS(X) = Sgoal since according to the definitions ofwb(X) and
g∗(X), they are both equal to 0. We therefore assume thatS(X) 6= Sgoal. Then

w
b(X) = min

a∈S(X)
(c(S(X), a, succ(X, a)b) + w

b(succ(X, a)b))

and,

g
∗(X) = min

a∈A(S(X))
Q

f(Y =succ(Xu,a)b)=g∗(Y),w
(X

u
, a)

= min
a∈A(S(X))

∑
Y∈succ(Xu,a)

P (X
u

, a, Y) · max(c(S(X
u), a, S(Y)) + w(Y),

c(S(X
u), a, S(succ(X

u
, a)b)) + g

∗(succ(X
u

, a)b))

≥ min
a∈A(S(X))

c(S(X
u), a, S(succ(X

u
, a)b)) + g

∗(succ(X
u

, a)b)

≥ min
a∈A(S(X))

c(S(X), a, S(succ(X, a)b)) + g
∗(succ(X, a)b)

15

.
The last line is due to the fact thatS(X) = S(Xu), S(succ(Xu, a)b) =

S(succ(X, a)b) and g∗(succ(Xu, a)b) = g∗(succ(X, a)b) according to lemma 10.
Let us consider a pathπ = [{Xn, an, Xn−1}, . . . , {X1, a1, X0}], whereXn = X,
S(X0) = Sgoal and for every tuple{Xi, ai, Xi−1}, Xi−1 = succ(Xi, ai)b and
ai = mina∈A(S(Xi)) c(S(Xi), a, succ(Xi, a)b) + g∗(succ(Xi, a)b). Sinceg∗(X) is
finite and all costs are bounded from below by a positive constant, the pathπ is finite.

Becausewb(Xn) > g∗(Xn) andwb(X0) = g∗(X0) = 0, there must be a tuple
{Xi, ai, Xi−1} ∈ π such thatwb(Xi) > g∗(Xi) whereaswb(Xi−1) ≤ g∗(Xi−1). But
then we get the following contradiction

g
∗(Xi) = c(S(Xi), ai, succ(Xi, ai)

b) + g
∗(succ(Xi, ai)

b)

≥ c(S(Xi), ai, succ(Xi, ai)
b) + w

b(succ(Xi, ai)
b)

≥ min
a∈A(S(Xi))

c(S(Xi), a, succ(Xi, a)b) + w
b(succ(Xi, a)b)

= w
b(Xi)

.

Theorem 5 After each execution of the UpdateMDP function, for each stateX it holds
that wold(X) ≤ w(X) ≤ g∗old(X) ≤ g∗(X), wherewold-values arew-values before
the execution of UpdateMDP,g∗old(X) areg∗-values underwold-values andg∗(X) are
g∗-values underw-values.

Proof:
First, let us show that before the first execution of UpdateMDP for everyX it

holds thatw(X) ≤ g∗(X). It holds because according to the assumptions about state
initialization before the main function is executed,w(X) ≤ wb(X). On the other hand,
according to theorem 4,wb(X) ≤ g∗(X).

We now prove by induction. Supposewold(X) ≤ g∗old(X) before the call to Up-
dateMDP. We need to show that after UpdateMDP function returns, for each stateX
we havewold(X) ≤ w(X) ≤ g∗(X).

Let us first prove thatwold(X) ≤ w(X). We only need to consider the states up-
dated by UpdateMDP function sincew-values of all other states remain unchanged. We
first prove by induction on the execution of line 4 that for each stateX updated by Up-
dateMDP it holds thatXu = XX̃+Hu

. Consider the first time, line 4 is executed. Then
X = Xpivot. Therefore,Xu = [S(X);H(X);Hu(Xpivot)] = XX̃+Hu

. UpdateMDP

also updates directly[S(X);H(X);Hu(Xpivot)] = XX̃+Hu

. Now consider the ith

execution of line 4, whereas on all previous executions it held thatXu = XX̃+Hu

. At
ith execution, stateX is a state which is equal to somesucc(Y, besta(Y))b, whereY is
a state that was updated during (i-1)th execution of line 4. Thus,Hu(X) = Hu(Y) and
thereforeXu = [S(X);H(X);Hu(Xpivot)] = XX̃+Hu

. Once again, UpdateMDP

also updates[S(X);H(X);Hu(Xpivot)] = XX̃+Hu

.
Thus, for each state updated by UpdateMDP, it holds thatXu =

[S(X);H(X);Hu(Xpivot)]. As a result, ifS(X) = Sgoal, then according to the de-
finition of g-values,g∗old(X̃) = g∗old(X) = 0. On the other hand, ifS(X) 6= Sgoal,
then

16

g∗old(X̃) = min
a∈A(S(X̃))

Q
f(Y =succ(XX̃+Hu

,a)b)=g∗(Ỹ),wold
(XX̃+Hu

, a)

= min
a∈A(S(X))

Qf(Y =succ(Xu,a)b)=g∗(Ỹ),wold
(Xu, a)

Becauseg∗(Ỹ) = g∗(Y) = 0 if S(Y) = sgoal, it then holds that

g∗old(X̃) = min
a∈A(S(X))

Qf(Y =succ(Xu,a)b)=g∗(Y),wold
(Xu, a)

= g∗old(X)

Thus, for each stateX updated by UpdateMDP, it holds thatg∗old(X̃) = g∗old(X).
Also, according to corollary 3,g(X̃) = g∗old(X̃) and from induction assumption
wold(X) ≤ g∗old(X). Thus when UpdateMDP executesw(X) = g(X̃) on line 4,
then

w(X) = g(X̃) = g∗old(X̃) = g∗old(X) ≥ wold(X)

Suppose now UpdateMDP executesw([S(X);H(X);Hu(Xpivot)]) = g(X̃) on

line 4. According to lemma 9g∗old(X) = g∗old(X
u) = g∗old(X

X̃+Hu

) and since
wold(XX̃+Hu

) ≤ g∗old(X
X̃+Hu

), it follows that:

w(XX̃+Hu

) = g(X̃) = g∗old(X̃) = g∗old(X) = g∗old(X
X̃+Hu

) ≥ wold(XX̃+Hu

)

We now prove that for every stateX w(X) ≤ g∗old(X) ≤ g∗(X). We first note that
since as we have just proved none ofw-values decreased, it holds that for every state
X g∗(X) ≥ g∗old(X).

SupposeX was not updated by UpdateMDP, that is,w(X) = wold(X). Then
w(X) = wold(X) ≤ g∗old(X) ≤ g∗(X).

Now supposew(X) was updated by UpdateMDP. Once again suppose the update
is w(X) = g(X̃) on line 4. Then

w(X) = g(X̃) = g∗old(X̃) = g∗old(X) ≤ g∗(X)

Now suppose the update isw([S(X);H(X);Hu(Xpivot)]) = g(X̃) on line 4.
Then

w(XX̃+Hu

) = g(X̃) = g∗old(X̃) = g∗old(X) = g∗old(X
X̃+Hu

) ≤ g∗(XX̃+Hu

)

17

Theorem 6 For a non-negative functionw ≤ wu, the following holds: for each state
X, g∗(X) is bounded from above bywu(X).

Proof:
This certainly holds forX whoseS(X) = Sgoal. Now supposeS(X) 6= Sgoal.

We prove by contradiction and assume that there exists one or more statesX whose
g∗(X) > wu(X), which implies thatwu(X) is finite. Let us consider a path
πgreedy,wu,wu(Xn, X0) whereXn = X andS(X0) = sgoal. According to its defini-
tion, for every pair of statesXi, Xi−1 on this path it holds thatXi−1 = succ(Xi, ai)b,
whereai = arg mina′∈A(S(Xi)) Qwu,wu(Xu

i , a′). Since all costs are positive and
wu(X) is finite, wu(Xi) > wu(Xi−1). Also, since the costs are bounded from be-
low by a positive constant,wu(X0) = 0 andwu(X) is finite, it holds that the path
πgreedy,wu,wu(Xn, X0) is finite.

This means that there must exist suchXi on the path thatg∗(Xi) > wu(Xi), while
g∗(Xi−1) ≤ wu(Xi−1) whereXi−1 = succ(Xi, ai)b Then we arrive at the following
contradiction

g
∗(Xi) ≤

Q
f(Xi−1=succ(Xu

i
,ai)

b)=g∗(Xi−1),w
(X

u
i , ai) ≤

Q
f(Xi−1=succ(Xu

i
,ai)

b)=g∗(Xi−1),wu (X
u
i , ai) =∑

Y∈succ(Xu
i

,ai)

P (X
u
i , ai, Y) · max(c(S(Xi), ai, S(Y)) + w

u(Y), c(S(Xi), ai, S(Xi−1)) + g
∗(Xi−1)) ≤

∑
Y∈succ(Xu

i
,ai)

P (X
u
i , ai, Y) · max(c(S(Xi), ai, S(Y)) + w

u(Y), c(S(Xi), ai, S(Xi−1)) + w
u(Xi−1)) =

Qwu,wu (X
u
i , ai) =

min
a′∈A(S(Xi))

Qwu,wu (X
u
i , a

′) =

w
u(X)

Theorem 7 For each stateX, w(X) is bounded from above bywu(X).

Proof:
Before the first execution of UpdateMDP, according to the initialization assump-

tions, for every stateX, 0 ≤ w(X) ≤ wb(X). Also, according to theorem 4, for
each stateX, wb(X) ≤ g∗(X) and according to theorem 6,g∗(X) ≤ wu(X). Thus,
0 ≤ w(X) ≤ wu(X).

We now prove the theorem by induction. Suppose before the ith execution of Up-
dateMDP, it holds that0 ≤ wold(X) ≤ wu(X), wherewold-values arew-values right
before the ith execution of UpdateMDP function. We need to show that after the ith
execution of UpdateMDP function, the inequality0 ≤ w(X) ≤ wu(X) holds.

According to theorem 6, for every stateX, g∗old(X) ≤ wu(X). At the same time,
according to theorem 6,w(X) ≤ g∗old(X). Thus,w(X) ≤ wu(X).

18

The inequality0 ≤ w(X) follows from the fact that0 ≤ wold(X) and theorem 6,
according to which,wold(X) ≤ w(X).

Theorem 8 PPCP terminates, and at that time,w(Xstart) ≤ wu(Xstart) and the ex-
pected cost of the policy of always taking actionbesta(X) at any stateX starting at
Xgoal until stateX0 whoseS(X0) = Sgoal is reached is no more thanw(Xstart).

Proof:
We will first show that the algorithm terminates.
For this let us first show that the set of all possible policiesπ(Xstart) ever con-

sidered by PPCP is guaranteed to be finite. To prove this we need to show that any
policy considered by PPCP is acyclic. Then, the fact that the set of all such policies
is finite will be due to the belief state-space itself being finite. Any policy PPCP has
at any point of time is acyclic because after each stochastic actiona at any stateX,
the correspondinghS(X),a is set to a value not equal tou in the outcome states and
remains such in all of their descendants, whereas all the ancestors ofX andX itself
hadhS(X),a = u. The deterministic paths in between any two stochastic actions on the
policy or in betweenXstart and the first stochastic action on the policy, on the other
hand, are all segments of the paths returned by ComputePath function and these paths
are finite according to corollary 2.

Thus, the set of all possible policies considered by PPCP is finite. The termination
criterion for the algorithm is that all states on its current policy are havew-values at
least as large as the expectation over the action cost plusw-values of the successors of
their action defined bybesta pointer, except for the goal states, whosew-values are 0
because they are bounded bywu-values according to theorem 7 and these are zeroes
for goal states. In other words, for everyX on the current policy s.t.S(X) 6= Sgoal it
holds that

w(X) ≥ E
X′∈succ(X,besta(X))(c(S(X), besta(X), S(X

′)) + w(X
′)) (7)

At each iteration, PPCP fixes at least one stateX on the policy to satisfy this equa-
tion. While fixing the equation, PPCP may changebesta action for stateX and/or
changew-value of X. There is a finite number of possible subtrees belowX that
PPCP can consider since the set of all possible policies considered by PPCP is finite.

The change in thew-value ofX may potentially affect other states, but since the
policy is acyclic it can not affect the states that are descendants ofX. The number of
ancestors ofX, on the other hand, is finite since the policy is acyclic and the belief
state-space is finite. Therefore, PPCP is bound to arrive in a finite number of iterations
at a policy for which all of the states that belong to it satisfy the equation 7. Each iter-
ation is also guaranteed to be finite for the following reasons. First, the ComputePath
function is guaranteed to return because each state is expanded no more than once
per search according to theorem 2. Second, the UpdateMDP function is guaranteed to
return, because the path it processes is guaranteed to be of finite length according to
corollary 2.

We now show that after PPCP terminates,w(Xstart) ≤ wu(Xstart) and the ex-
pected cost of the policy of always taking actionbesta(X) at any stateX starting at

19

Xgoal until stateY whoseS(Y) = Sgoal is reached is no more thanw(Xstart). The
first part comes directly from theorem 7. The second part can be proved as follows.

Consider the following potential function that we maintain while executing the
policy defined bybesta actions starting withXstart: F (t) = costsofar(t) + w(Xt),
wheret is the current time-step. So, initiallyF (t = 0) = 0 + w(Xstart) = w(Xstart).
We execute the policy until we reach a stateY such thatS(Y) = Sgoal. Suppose it
happens at timestept = k. That is,Y = Xt. ThenF (t = k) = costsofar(k) + 0 =
costsofar(k). We need to show that the expected value ofF (t = k) is bounded above
by w(Xstart).

Initially, E{F (t = 0)} = w(X0), whereX0 = Xstart. Now consider the expecta-
tion at the ith step:

E{F (t = i)} = E{costsofar(i) + w(Xi)}
= E{costsofar(i− 1) + cost(i) + w(Xi)}
= E{costsofar(i− 1)}+ E{cost(i) + w(Xi)}

Since all states on the policy (except for the goal states) satisfy the equation 7, we
havew(Xi−1) ≥ E{cost(i)+w(Xi)}. After taking an additional expectation we have
E{w(Xi−1)− cost(i)} ≥ E{w(Xi)}. Hence,

E{F (t = i)} = E{costsofar(i− 1)}+ E{cost(i) + w(Xi)}
≤ E{costsofar(i− 1)}+ E{cost(i) + (w(Xi−1)− cost(i))}
= E{costsofar(i− 1) + w(Xi−1)}
= E{F (t = i− 1)}

By induction thenE{F (t = k)} ≤ E{F (t = 0)} = w(Xstart).

Theorem 9 Suppose there exists a minimum expected cost policyρ∗ that satisfies the
following condition: for every pair of statesX1 ∈ ρ∗ andX2 ∈ ρ∗ such thatX2 can
be reached with a non-zero probability fromX1 when following policyρ∗ it holds that
eitherhS(X1),ρ

∗(X1) 6= hS(X2),ρ
∗(X2) or hS(X1),ρ

∗(X1) = hS(X2),ρ
∗(X2) = null. Then

the policy defined bybesta pointers at the time PPCP terminates is also a minimum
expected cost policy.

Proof: Let us assume that there exists a minimum expected cost policyρ∗ that
satisfies the conditions of the theorem. That is, for every pair of statesX1 ∈ ρ∗

and X2 ∈ ρ∗ such thatX2 can be reached with a non-zero probability fromX1

when following policy ρ∗ it holds that eitherhS(X1),ρ
∗(X1) 6= hS(X2),ρ

∗(X2) or
hS(X1),ρ

∗(X1) = hS(X2),ρ
∗(X2) = null. Sinceρ∗ is an optimal policy, its expected

cost isw∗(Xstart).
We will show thatwu(Xstart) ≤ w∗(Xstart). This will prove the theorem since the

expected cost of the policy returned by PPCP is bounded from above bywu(Xstart).
The expected cost the policy will then be exactly equal tow∗(Xstart) sinceρ∗ is already
an optimal policy.

20

Let us prove by contradiction and assume thatwu(Xstart) > w∗(Xstart). This
also means thatw∗(Xstart) is finite and therefore all branches on the policyρ∗ end up
at statesX whoseS(X) = Sgoal since an optimal policy when sensing is perfect is
acyclic.

Let us now pick a stateX ∈ ρ∗ such thatwu(X) > w∗(X), but all the successor
statesY of actionρ∗(X) executed at stateX havewu(Y) ≤ w∗(Y). Such stateX
must exist because at least forX = Xstart it holds thatwu(X) > w∗(X) and all
branches of the policy end up at statesY whoseS(Y) = Sgoal and for these states
wu(Y) = w∗(Y) = 0 according to the definition ofwu andw∗ values.

By definition,

wu(X) = min
a∈A(S(X))

Qwu,wu(Xu, a)

≤ Qwu,wu(Xu, ρ∗(X))

=
∑

Z∈succ(Xu,ρ∗(X))

P (Xu, a, Z) ·max(c(S(X), a, S(Z)) + wu(Z),

c(S(X), a, S(Z)) + wu(succ(Xu, ρ∗(X))b))

Let us now considerhS(X),ρ∗(X)(X). It must be the case that either
hS(X),ρ∗(X)(X) = u or hS(X),ρ∗(X)(X) = null since, according to the assumptions
of the theorem, no action whose outcome depends onhS(X),ρ∗(X) could have been
executed before. Thus,hS(X),ρ∗(X)(Xu) = hS(X),ρ∗(X)(X).

This property has an important implication that we will use. For any pair of states
Y ∈ succ(X, ρ∗(X)) and Z ∈ succ(Xu, ρ∗(X)) such thathS(X),ρ∗(X)(Zu) =
hS(X),ρ∗(X)(Y u) (in other words,Y and Z are corresponding outcomes of ac-
tion ρ∗(X) executed atX and Xu respectively), it holds thatP (X, ρ∗(X), Y) =
P (Xu, ρ∗(X), Z) andY u = Zu.

Using this fact and lemma 8 we can derive the following.

wu(X) ≤
∑

Z∈succ(Xu,ρ∗(X))

P (Xu, a, Z) ·max(c(S(X), a, S(Z)) + wu(Z),

c(S(X), a, S(Z)) + wu(succ(Xu, ρ∗(X))b))

=
∑

Z∈succ(Xu,ρ∗(X))

P (Xu, a, Z) ·max(c(S(X), a, S(Z)) + wu(Zu),

c(S(X), a, S(Z)) + wu((succ(Xu, ρ∗(X))b)u))

=
∑

Y ∈succ(X,ρ∗(X))

P (X, a, Y) ·max(c(S(X), a, S(Y)) + wu(Y u),

c(S(X), a, S(Y)) + wu((succ(X, ρ∗(X))b)u))

=
∑

Y ∈succ(X,ρ∗(X))

P (X, a, Y) ·max(c(S(X), a, S(Y)) + wu(Y),

21

c(S(X), a, S(Y)) + wu(succ(X, ρ∗(X))b))

According to the way we pickedX, wu(Y) ≤ w∗(Y) for every Y ∈
succ(X, ρ∗(X)). Moreover, from the definition of clear preferences it follows that
c(S(X), a, S(Y)) + wu(succ(X, ρ∗(X))b) ≤ c(S(X), a, S(Y)) + wu(Y) for all
Y ∈ succ(X, ρ∗(X)). Hence, we obtain the following contradiction

wu(X) ≤
∑

Y ∈succ(X,ρ∗(X))

P (X, a, Y) ·max(c(S(X), a, S(Y)) + w∗(Y),

c(S(X), a, S(Y)) + w∗(succ(X, ρ∗(X))b))

=
∑

Y ∈succ(X,ρ∗(X))

P (X, a, Y) · (c(S(X), a, S(Y)) + w∗(Y))

= w∗(X)

22

