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of underlying structure that is under-utilized in motion planning
and mobile manipulation. In domestic environments for example,
walls and shelves are static, large objects such as furniture and
kitchen appliances most of the time do not move and do not
change, and objects are typically placed on a limited number of
support surfaces such as tables, countertops or shelves. Matio
planning for robots operating in such environments should
be able to exploit this structure to improve its performance
with each execution of a task. In this paper, we develop an
online motion planning approach which learns from its planning
episodes (experiences) a graph, aBxperience Graph. This graph -,
represents the underlying connectivity of the space required should _be capable (_)f eXpIOItlng.Iearned knowledge abou_t the
for the execution of the mundane tasks performed by the Under|y|ng geometnc structure in tasks and human environ-

robot. The planner uses theExperience graph to accelerate its ments. While human environments can be very dynamic, e.g.
planning efforts whenever possible. On the theoretical side, we with people walking around, large parts of the environment
show that planning with Experience graphs is complete and 4pq il static for significant periods of time. Similarkgsks

provides bounds on sub-optimality with respect to the graph that tend to h f f tial struct biect
represents the original planning problem. On the experimental ena to have some form ol spatial structure, e.g. objects are

side, we show in simulations and on a physical robot that our Often found on support surfaces like tables and desks.
approach is particularly suitable for higher-dimensional motion This work focuses on learning from experience for motion
planning tasks such as planning for single-arm manipulation planning. Our approach relies on a graph-search method for

and two armed mobile manipulation. The approach provides . - . .
significant speedups over planning from scratch and generates planning that builds afExperience Graptonline to represent

predictable motion plans: motions planned from start positions the high-level connectivity of the free space used for the
that are close to each other to goal positions that are also encountered planning tasks. New motion planning requests

close to each. other tend to bg similar. In addjtion, we show reuse this graph as much as possible, accelerating theipdann
how the Experience graphs can incorporate solutions from other qcess significantly by eliminating the need for searching
approaches such as human demqnstratlons, providing an easyI i f th h- Whil . |
way of bootstrapping motion planning for complex tasks. arge portions of the search-space. While previously encoun
tered motion planning problems can speed up the planner
|. INTRODUCTION dramatically, in their absence, it gracefully falls baclsearch-
Motion planning is essential for robots operating in dynaming the original search-space, adding the newly generated
human environments. Tasks like picking and placing objeowotion to the Experience graph. Planning with Experience
and mobile manipulation of larger boxes require the robot graphs is therefore complete. Furthermore, we show that it
approach and pick up (or place) objects with minimal callisi provides bounds on sub-optimality with respect to the graph
with the rest of the environment. Fast performance of motidhat represents the original planning problem. Planninth wi
planning algorithms in such tasks is critical, to account fdExperience graphs leads to consistent and predictablémwu
the speed of operation expected by humans and to accountffwr motion plans requested in similar (but not the same)
sudden changes in the environment. This is especially fuessenarios, e.g when the goal states of the robot are close
tasks involving higher-dimensional configuration spaaeg, to each other. Our approach is particularly useful when the
for a two-armed mobile manipulation system ( Figlire 1). tasks are somewhat repeatable spatially, e.g. in moving a se
At the same time, many of mundane manipulation taskd dishes off a particular counter into a dishwasher. Aldfou
such as picking and placing various objects in a kitchen aifge start and goal states would be different for each motion
highly repetitive. It is therefore expected that robotsstio plan, the general motion of moving a dish from the counter
be capable of learning and improving their performance with the washer would essentially be the same each time.
every execution of these repetitive tasks. In particulaloots ~ We provide experimental results demonstrating the use of
) ) ) ) our approach both in simulation and on a real robot. A full-
We thank Willow Garage for their support of this work. Thisearch was
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Fig. 1. Motion planning is often used to compute motions foetipe tasks
such as dual-arm mobile manipulation in a kitchen.



We show how the use of Experience graphs improves thethat we attempt to use all the information from previous
performance of the planner in this high-dimensional stagearches instead of attempting to pick the most similar or
space. We also present results comparing our planner agabest path. Our approach can reuse parts of the Experience
sampling-based planning approaches. Finally, we showGaaph even when the start and goal states change. Contrary
preliminary application of Experience graphs to learning to other approaches, our approach also gracefully degesera
demonstration. to planning from scratch (with no reused information) toldea
with new scenarios which might be completely different from
the ones in the database. Our approach also does not rely

Initial approaches to motion planning focused on planningn object or shape recognition and is thus agnostic to the
from scratch, i.e. there was no reuse of the information frorepresentation of the environment, e.g. as a voxel grid or
previous plans. Recently, there has been more work on reisgividual objects represented using meshes. Although our
of previous information for motion planning, especiallytire approach is also comparable to Probabilistic Roadmaps §11]
context of performance optimization for motion planning irrucial difference is that Experience Graphs are genefatet
realtime dynamic environments. Lien et. al./[12] presersted task-based requests instead of sampling the whole space. We
approach that involved constructing roadmaps for obstaclare also able to provide a bound on the quality of the returned
storing them in a database, and reusing them during motisolution, with respect to the discretization of the actiow a
planning. Bruce et. al.|[3] extended the traditional RR§tate spaces. Finally, our approach tends to generatestemtsi
approach to reuse cached plans and bias the search towaudstions as we confirm in our experimental analysis.
waypoints from older plans. Extensions of this approach can
be found in [20] 6]. _

In [15], an evolutionary algorithm approach was used to bids Overview
RRT search for replanning in dynamic environments towardsAn Experience Graplor E-Graph is a graph formed from
the edges of the explored areas, intended to reduce the tilme solutions found by the planner for previous planning
spent on searching parts of the space that have already bgeeries or from demonstrations. We will abbreviate thigpgra
explored. In [20], workspace probability distributions nwe as G¥. The graphGF is incomparably smaller than graph
automatically learned for certain classes of motion plagni G used to represent the original planning problem. At the
problems. The distributions attempted to capture a loecallgame time, it is representative of the connectivity of thecsp
optimal weighting of workspace features. exercised by the previously found motions. The key idea of

Trajectory libraries have seen use for adapting policies fplanning withGF is to bias the search efforts, using a specially
new situations|[18], especially for control of underacéwht constructed heuristic function, towards finding a way to get
systems and high-dimensional systems. [In [1], new trajesato the graphG® and to remain searching” rather than
tories in a state space were generated by combining neat®yas much as possible. This avoids exploring large portions
trajectories, including information about local value étion  of the original graphG. In the following we explain how to
estimates at waypoints. In_[14], a trajectory library waedis do this in a way that guarantees completeness and bounds on
in combination with an optimal control method for genergtinsolution quality with respect to the original gragh
a balance controller for a two link robot. Transfer of pai
across tasks, where policies designed for a particulantas&
adapted and reused in a new task, were discussedin [19]. First, we will list some definitions and notations that will

A learning based approach to reuse information from preJielp explain our algorithm. We assume the problem is repre-
ous motion plans, the environment, and the types of obstackénted as a graph where a start and goal state are provided
was presented in JetcheV [7]. Here, a high-dimensionalifeat (Sstart; Sg0at) @nd the desired output is a path (sequence of
vector was used to capture information about the proximi§fges) that connect the start to the goal.
of the robot to obstacles. After a dimensionality reduction « G(V®, EY) is a graph modeling the original motion
the feature space, several learning methods includingesear  planning problem, wher& © is the set of vertices and
neighbor, locally weighted regression and clustering aedu E¢ is the set of edges connecting pairs of vertices in
to predict a good path from the database in a new situation. Ve,

The work in [8] is most similar to our work and involves « G¥(V¥ EF) is the E-Graph that our algorithm builds
the use of a database of older motion plans. The approach over time G” C G).
uses a bi-directional RRT and tries to draw the search taard ¢ c(u,v) is the cost of the edge from vertexto vertexv
a path which is most similar to the new motion planning « ¢”(u,v) is the cost of the edge from vertexto vertex
problem (based on distances to the start, goal and obstacles v in graphG* and is always equal to(u,v)

Some more recent work![2] also attempts to repair paths fromEdge costs in the graph are allowed to change over time
a database of past paths using sampling-based planners.(itticluding edges being removed and added which happens
future work to compare against this approach. when new obstacles appear or old obstacles disappear). The

The use of a database of motion plans is a key featureore static the graph is, the more benefits our algorithm
of our approach. However, we differ from other approachgsovides. The algorithm is based on heuristic search and is

Il. RELATED WORK

IIl. ALGORITHM

B. Definitions and Assumptions



therefore assumed to take in a heuristic functigh(u,v)
estimating the cost from: to v (u,v € V¢). We assume

h%(u,v) is admissible and consistent for any pair of states I I I |
u,v € VY. An admissible heuristic never overestimates the . :
minimum cost from any state to any other state. A consister | . .. ! :

heuristich®(u, v) is one that satisfies the triangle inequality, S
hE (u,v) < c(u,s) + h%(s,v) and h%(u,u) = 0, Vu,v,s €

V& andV(u,s) € EC.
. ) Fig. 2. Effect ofe®. The dark solid lines are paths @ while the dark
C. Algorithm Detail dotted lines are best paths frosg to s,,4; according toh”. Note ase”

The planner maintains two graphs,andG~. At the high- PCE2ses, he heurste prfes t vavel af. Tne lgnt gray orces and
level, every time the planner receives a new planning reéqu@sen planning with E-Graphs. The dark gray arrow shows themed path.
the findPathfunction is called. It first update§” to account
for edge cost changes and perform some precomputatioas.arbitrary number of two kinds of segments. The first type
Then it calls thecomputePathfunction, which produces a of segment corresponds to an instantaneous jump between
path 7. This path is then added t6”. The updateEGraph betweens; ands;,; at a cost equal to the original heuristic
function works by updating any edge costsG that have inflated by ¥ (this is equivalent to saying all states can
changed. If any edges are invalid (e.g. they are now blockeshch all of the other states according to the original Iséiari
by obstacles) they are put into a disabled list. Conversgly,but inflated bys¥). The second kind of segment is an edge
an edge in the disabled list now has finite cost it is re-emhblgrom G¥ and it uses its actual cost. As the penalty terfn
At this point, the graphG* should only contain finite edges.increases, the heuristic path framto the goal will go farther
A precomputeShortcuts function is then called which can legit of its way to travel toward the goal using E-Graph edges.
used to compute shortcut edges before the search begins. Wayrhe larger:~ is, the more the actual search avoids exploring
to compute shortcuts are discussed in Sedfibn V. Finally, og and focuses on traveling on pathsGH. Figure[2 demon-
heuristich”, which encourages path reuse, is complled  strates how this works. As? increases, the heuristic guides
_ the search to expand states along parts76f as shown in
findPath§tart, Sgoat) Figurel2. In Figuré€2a, the heuristic causes the search twégn

%f updateEGraph(sqoal) the graphGE because without inflating at all €& = 1),

: m = computePath(sstart, Sgoal) . . . B :
3 GE— GEUn t_he heuristicis will never fayor following edges i@A". Thls
figure also shows how during the search, by followiG§

paths, we can avoid obstacles and have far fewer expansions.
The expanded states are shown as filled in gray circles, which

Sy goal

@ef =1 (b) e — o0

updateEGraphi
P Pl3Goar) change based osf”.
1: updateChangedCosts() . .
2: disable edges that are now invalid The computePattunction (shown below) runs weighted A*
3: re-enable disabled edges that are now valid without re-expansions_[13]. Weighted A* uses a parameter
4: precomputeShortcuts() . S " . .

o , , e > 1 to inflate the heuristic used by A*. The solution cost is

5. compute heuristi@” according to Equatiof] 1

guaranteed to be no worse thatimes the cost of the optimal
solution and in practice it runs dramatically faster than. A*
Our algorithm's speed-up comes from being able to reushe main modification to Weighted A*, is that in addition
parts of old paths and avoid searching large portions &f ysing the edges tha¥ already provides (getSuccessors),
graphG. To accomplish this we introduce a heuristic whickye add two additional types of successaisortcutsandsnap
intelligently guides the search towadd@” when it looks like motions(line 9). The only other change is that instead of using
following parts of paths irG” will help the search get close the heuristichC, we use our new heuristic® (lines 4 and 16).
to the goal. We define a new heuristi€ in terms of the given  ghortcut successors are generated when expanding a state

heuristich and edges irG'” for any states, € V. s € GE. A shortcut successor us€s® to jump to a place
N-1 much closer tos,.,; (Closer according to the heuristic).
h¥(s0) = min Z min{ePh%(si, sit1), ¢ (si,si11)} (1) This shortcut may use many edges from various previous
fi——; paths. The shortcuts allow the planner to quickly get near
wherer is a path(sg...sy_1) andsy_1 = sg0q ande? is  the goal without having to re-generate pathsGifi. Possible
a scalar> 1. ' shortcuts are discussed in Sectioh V.

Equation[1 returns the cost of the minimal path from the Finally, for environments that can support it, we introduce
the queried state, to the goal where the path consists ofhap motionsSometimes, the heuristic may lead the search
to a local minimum at the “closest” point 16 with respect
t This can be done with one search prior to'plannir'\g or can be darthe {5 the heuristic,hG, but it may not be a state o&¥. For
fly for states generated by the planner. The first option isilfda whenever le. i i . . 2D h .. il
the heuristic is computed for lower-dimensional projectiofighe original €X&mple, 'n(_la y,0) navigation, a (z,y) heuristic wi
problem, such as 3D space for the end-effector of a high-dimealsarm.  create a minimum for 2 states with the same x,y but different



computePathqrt, Sgoal)

1: OPEN =0

2: CLOSED =19

3 g(sstart) =0

4: f(ssta'rt) = EhE(Sstart)

5: insertss¢qrt iNto OPEN with f(sstart)

6: while sg4; is not expandedio
7 removes with the smallestf-value fromOPEN
8 inserts in CLOSED

S = getSuccessors(s) U shortcuts(s) U snap(s)
10: for all s’ € S do
11: if s’ was not visited befor¢hen
12 £(5') = g(s") = o0
13: end if
14: if g(s’) > g(s) +c(s,s’) ands’ ¢ CLOSED then
15 a(s) = 9(3) + o(s, 5)
16: f(s') = g(s') + ehB(s)
17: inserts’ into OPEN with f(s’)
18: end if
19:  end for
20: end while

Theorem 2. For a finite graphG, the planner terminates, and
the solution it returns is guaranteed to be no worse than”
times the optimal solution cost in graph.

Considerh/(s) = h¥(s)/eF. h'(s) is clearly consistent.
Then,ehf(s) = e-eEh'(s). The proof that -c£h/(s) leads to
Weighted A* (without re-expansions) returning paths baeahd
by € - ¢ times the optimal solution cost follows from [13].

V. IMPLEMENTATION DETAIL

In this section we discuss how various parts of the algorithm
could be implemented.

A. Heuristic

Some heuristicsh¢ are derived using dynamic program-
ming in a lower dimensional state space, such as a 2D Dijkstra
search for an«, y, 6) navigation problem. Alternatively, some
heuristicsh® can be computed in O(1) upon request (e.g.
euclidean distance).

6. A problem then arises because there isn't a useful heuristi In the first case, we can compui& by running a Dijkstra
gradient to follow, and therefore, many states will be exfggh search on the low-dimensional projection@fwith additional

blindly. We borrow the idea cdaptive motion primitivef]

edges fromG'F connecting the low-dimensional projection of

to generate a new action which can snap to a staté&6n the states irG”. This can be computed with similar efficiency

whenever states;,s; have h%(s;,s;) = 0 ands; € GF

to the original heuristich®, so it doesn't hurt the planning

and s; ¢ GF. The action is only used if it is valid with times (this is what we used in our experiments).

respect to the current planning problem (e.g. doesn't dmlli

In the second casé,” can be computed by constructing a

with obstacles). As with any other action, it has a cost that fully connected graph ofr Z and s, (using bothe?A¢ and

taken into account during the search.

IV. THEORETICAL ANALYSIS

cF). A Dijkstra seach is used to find the heuristi€ from
each of these states to the goal. Then during the searchyor an
states, hf(s) = minsle{vEUSQOal}(hG(& s +hE(s, Sgoal))-

Our planner provides a guarantee on completeness with, o implementation, we compute the heurist in an
respect tax (the original graph representation of the problem),,_yemand fashion. Our computation runs Dijkstra’s atbari

Theorem 1. For a finite graph G, our p|anner terminates andunt” the heuristic of the requested state is computed aed th

finds a path inG that connectss,iq,+ 10 5404 if ONE EXists.

suspends until another un-computed heuristic is requested

Since no edges are removed from the graph (we oriy Shortcuts

add) and we are searching the graph with Weighted A* (a Shortcuts accelerate the search by allowing the search to
complete planner), if a solution exists on the original #appypass retracing an old path (re-expanding the states on it)

our algorithm will find it.

in GF. The algorithm works with or without the shortcuts.

Our planner provides a bound on the sub-optimality ®asically, the shortcuts are pre-computed edges that conne
the solution cost. The proof for this bound depends on oy states inGZ to a very small set of states iZ. Shortcut

heuristic functionh” being #-consistent.

Lemma 1. If the original heuristic functionh®(u,v) is
consistent, then the heuristic functié¥ is e£-consistent.

From Equatioi1L, for any, s’ € V& (s,s') € EC.
h¥(s) < min{e®h%(s,s),c(s,s")} + h(s")
hE(s) < ePn(s,s') + hE(s)
hE(s) < efe(s,s) + hE ()

successors can only be generated when expanding asstate
GF. There are several obvious choices for this subset. For
example, it can contain all states sGt’ that are closest to the
goal within each connected component®@¥f. The closeness
can be defined byt“ or h¥. In our experiments we uséd”.
Other ways can also be used to compute this subset of states.
It is future work to explore these options.

C. Pre-Computations
Some of the computations afi” can be done before the

The argument for the first line comes from Equatidn fjoal is known. In particularshortcuts(s) (line 9 of com-
by contradiction. Suppose the line is not true. Then, durimytePath need to know the costs of least-cost paths between

the computation ofh”(s), a shorter pathm could have
been found by traveling tos’ and connecting tos with
min{eFh%(s,s'),cP(s,s')}. The last step follows fronh“
being admissible. Thereforé is e-consistent.

pairs of states irG”. If stateu € G¥ is being expanded and
has a shortcut to the stateon the same component @ then
we need to assign an edge cot, v). In order to do that we
need to know the cost of a least-cost path®h from « to v.



These costs can be computed before knowing the goal by using
an all-pairs shortest path algorithm like Floyd-Warshahis

can be done in a separate thread between planning queries (a:
well as adding the path from the previous query i6t6). To
make Floyd-Warshall run faster and to save memory, we can
also exploit the fact that most of the pathg# don't intersect
each other in many places. We can therefore compress it into a
much smaller graph containing only vertices of degte®2 and

run Floyd-Warshall on it. Then, the cost of a path between any

pairz,y € GF is given bygnZZfL{C(x, x;)+c(x, yi)+c(yi, y) } (a) Bootstrap goals (b) One of the test sets
Wherez,; € {z1,22} and y¢7€ {y1,y2}. z1 andz, are states Fig. 3. Full-body planning in a warehouse
with degree# 2 that contain the path on which x resides. TABLE |
andy, are defined similarly. WAREHOUSEENVIRONMENT: E-GRAPH PLANNING TIME
successes(of 500) mean time(s)| std dev(s)| max(s)
V1. EXPERIMENTAL RESULTS 500 0.30 0.43 337

A variety of experiments were run in multiple domains tg . ) i )
verify the performance gains of our algorithm. We comparefB”OW'ng it can get it closer to the goal. Settiago 2 inflates

our approach against Weighted A* without usi6§ as well the whole heuristic including the part of the’ using paths

as with a variety of sampling-based planners. The test durmain GF. This encourages the planner to use shortcuts as soon

include planning for a 7 degree of freedom arm as well as fuffS they become available, preventing it from re-expanding a

body planning for the PR2 robot (two arms, the telescopirfd Path- . _
spine and the navigation of the base). The results were compared against regular Weighted A*

_ with ¢ = 20 so that both approaches would have the same sub-
A. Full Body Planning optimality bound. We also compared against several sagplin

Planning in higher-dimensional spaces can be challengit@ghniques from the OMPL (Open Motion Planning Library),
for search-based planners. A full-body planning scenasio fincluding RRT-Connect (a bi-directional RRT), PRM, and
a PR2 robot is thus a good test of the capabilities developB&RT* [5,19,/111)10]. Since the PRM is a multi-query approach,
in this work. Our test involves the PR2 carrying objects iwe allowed it to keep its accumulated roadmap between
a large environment. We restrict the objects to be upright fiveries like our method does. Since RRT* is an anytime
orientation, a constraint that often presents itself in-vearld method that improves as more time is allowed we provide
tasks like carrying large objects, trays, or liquid congmin results for the first solution found as well as the solutioteraf
We assume that the two end-effectors are rigidly attached@dr timeout (we gave all planners up to 2 minutes to plan).
the object. The state space is 10 dimensional. Four define ¥fg post-process all sampling planner paths using OMPL's
position and yaw of the object in a frame attached to the robshort-cutter (E-Graph and Weighted A* paths have no post-
The planner operates directly in this workspace (instead [focessing).
joint space) and uses inverse kinematics to map movementd) Warehouse scenaridOur first scenario is modeled on an
back onto the joint angles of both arms. To restrict the numbi@dustrial warehouse where the robot must pick up objedts of
of inverse kinematics solutions to one, the redundant @egi@ pallet and move them onto a shelving unit (Figure 3). The
of freedom in each arm (upper arm roll joint) are part of ougoals alternate between pallet and shelves. Since our grlann
state. The robot’s position and yaw in the map frame and theproves in performance with repeated attempts in a pdaticu
height of the telescoping spine are the last four dimensionspatial region of space, we first bootstrap it with 45 uniflyrm

A 3D Dijkstra heuristic is used to plan (backwards) for alistributed goals (split between the pallet and the shlves
sphere inscribed in the carried object from its goal positioThe bootstrap goals and the resulta@t (projected onto
to the start position (this is the low-dimensional projenti 3D end effector position) after processing them are shown in
for the heuristic). The heuristic is useful in that it acctsun Figure[3&. We bootstrapped the PRM with the same 45 goals.
for collisions between the object and obstacles. However, i A set of 100 random goals (with varying positions and yaws
does not handle the complex kinematic constraints on théthe object) alternating between the pallet and the skelve
motion of the object due to the arms, spine, and base amdre then specified to the planner. This entire process was
does not account for collisions between the body of the rob@peated 5 times witliZ“ cleared before running each new
and the environment. In all experiments= 2 ande” = 10 set of 100 goals. The planning times for E-Graphs for all 500
resulting in a sub-optimality bound of 20. We chose thegsandom goals are shown in Talile I. On average, 94% of the
values for the parameters (manually) as they provided a goedges on a path produced by our planner were recycled from
combination of speed-up and sub-optimality bound. In fituGE. The mean time to updat@” between queries (add the
work, we will look into ways to automatically reduce the subrew path and compute Floyd-Warshall) was 0.31 seconds.
optimality bound as planning time allows. Settin§ to 10 In Table[dl we compare E-Graphs to several other methods.
greatly encourages the search to go@éd if it looks like We show the average speed-up by computing the average E-



TABLE Il
WAREHOUSEENVIRONMENT: PLANNING TIME COMPARISON

method successes(of 500) mean speed-ug std dev max
speed-up| speed-up
Weighted A* 497 15.80 54.05 625.54
RRT-Connect 500 0.59 0.42 3.08
PRM 500 2.16 14.79 226.51
RRT* (first solution) 440 11.90 45.57 594.45
TABLE Il
WAREHOUSEENVIRONMENT: PATH QUALITY COMPARISON
method object XYZ path | std dev | base XY path| std dev
length ratio ratio length ratio ratio
Weighted A* 0.70 0.15 1.36 2.89
RRT-Connect 0.94 059 155 3.31 (@) GF after bootstrap goals (b) GF after bootstrap goals
PRM 0.78 0.33 0.64 0.39
RRT* (first solution) 0.86 0.37 1.47 3.46
RRT* (final solution) 0.87 0.43 141 2.84

Graph to other method ratio (across the cases where both
methods found a solution to the query). We can see that
generally E-Graphs are significantly faster than other odgh
(except for bi-directional RRT). In Tab[e]ll we can see fesu
comparing path quality on two metrics: the length of the path
the carried object travels and the length of the path the base

. . . E E
travels. The results in this table are also ratios and we can (¢) G after test goals (d) G after test goals
see that all methods produce shorter paths than E-Graphs. Fig. 4. Full-body planning in a kitchen scenario
This is expected from Weighted A* since E-Graph paths TABLE V
sometimes go out of their way a bit to find solutions quicker. KITCHEN ENVIRONMENT: PLANNING TIME COMPARISON
Sampling planners generally have poor path quality but the  method successes(of 40) mean speed-up :;ge‘(‘fxp speenup
shortcutting post-process step works well on this reldtive —Weighted A* 37 34.62 87.74 | 506.78
simple experiment where most paths are very close to straigh RRT-Connect 40 1.97 2.35 11.32
. . . . . . N PRM 25 16.52 74.25 372.90
lines in configuration space. Our next experiment iS & MOFERRT (first solution) 73 50.99 141.35 | 613.54
difficult kitchen scenario where the more complicated paths
cause shortcutting to be less effective. however, PRMs only solved 25 of the 40 cases and therefore

2) Kitchen Environment:A second set of tests was runis only compared against E-Graphs on easier queries where
in a simulated kitchen environment. 50 goals were chosehortcutting still works well.
in locations where object are often found (e.g. tables, €oun We ran an additional experiment in the kitchen scenario
tertops, cabinets, refrigerator, dishwasher). 10 reptasieée to show the consistency of E-Graph solutions. Consistency
goals were chosen to bootstrap our planner, which was th@easures how similar output of a planner is, given similar

tested against the remaining 40 goals. Fidlire 4 sh@f®oth inputs (start and goal). In many domains, this kind of path
after bootstrapping and after all the goals have been psedes

Table [IM shows the planning times for E-Graphs. On
average, 80% of the edges on a path produced by our planner
were recycled front;”. The mean time to updaté” between
gueries (add the new path and compute Floyd-Warshall) was
0.34 seconds. In Table]V we can see that E-Graphs provide a
significant speed-up over all the other methods, generally o
30 times (though only a factor of 2 for bi-directional RRT).
The PRM and RRT* also failed to solve many of the queries
within the 2 minute limit.

In Table[Vl we can see that E-Graphs provide significantly (a) RRT-Connect (b) E-Graph
shorter paths than bi-directional RRT (Figute 5 shows @) 5. An example comparing an RRT-Connect path to an E-Grah p
example). While RRT* path quality does improve with timegpath waypoints move from black to white). The E-Graph patshisrter and
after 2 minutes, it still is no better than E-Graphs. Th@ore goal directed.

PRM still does better than E-Graphs in the kitchen scenario, TABLE VI
KITCHEN ENVIRONMENT: PATH QUALITY COMPARISON
method object XYZ path | std dev | base XY path| std dev
TABLE IV length ratio ratio length ratio ratio
KITCHEN ENVIRONMENT: E-GRAPH PLANNING TIME Weighted A* 0.91 0.68 1.14 1.40
successes(of 40) mean time(s)[ std dev(s)| max(s) RRT-Connect 2.54 4.67 3.45 9.67
0 033 0.25 1.00 PRM 0.85 0.32 0.88 0.48
RRT* (first solution) 1.08 0.60 1.39 1.79
RRT* (final solution) 1.03 0.48 1.36 1.96
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Fig. 6. Consistency experiment in a kitchen scenario. 58sgoare split a) A demonstrated path E
into two groups and the various methods were asked to planeeetthem. @ P (b) G after 12 goals
Fig. 7. Learning by demonstration in a more difficult warehosisenario
TABLE VI
KITCHEN ENVIRONMENT: PATH CONSISTENCY COMPARISON
method dynamic time
warping similarity
E-Graphs 407
RRT-Connect 1512
PRM 748
RRT* (first solution) 1432
RRT* (final solution) 1034

predictability is critical for people to be comfortable anul ) _
rqbots. We _tested this by pIaqng t_WO groups of goals in the (a) Grasping pipeline setugb) G partway through the
kitchen environment as shown in Figlile 6. There are 58 goals experiment

split evenly between a cabinet and a refrigerator shelf. We
ran through the goals alternating between the two groups so

that while no two queries have the same start and goal, Hi&ajity is. Our planner will use parts of it if possible anture

paths should be mostly the same for each. The results of theq tion with a bound on the resulting solution quality.
experiment are shown in Taldle V1. We used the dynamic time

warping similarity metric/[16] to compare the methods. Havi c. Single Arm Planning

a value closer to 0 means the paths are more similar. Since i

this method is for comparing pairs of paths, we performed '€ Planners performance was also tested for tabletop
an all-pairs comparison within each group and then took tha&nipulation using the PR2 robot (Figlre 8a). A searchdbase
average path similarity. We can see that E-Graphs by far hdy@nner [4] generates safe paths for each of the PR2's 7-DOF

the most consistent paths due to the deterministic nature 23S Separately. The goals for the planner are specifieceas th
the planner and reuse of previous path segments. position and orientation of the end-effector. Our impletaen

tion builds on the ROS grasping pipeline to pick up and put
down objects on the table in front of the robot. Our approach
is used during both the pick and place motions to plan paths
The high dimensionality of the full-body domain makes ifor the robot's arms (individually).
easy for the planner to get stuck in large local minima. This | the experiments, statistics for 411 planning requestewe
is especially true when the heuristic is misleading, sucmas ocorded using Weighted A*, our approach, and a randomized
Figure[Za. After picking up an object at the pallet and giveQianner (SBL[[17]). The results are shown in TaBle Wil and
a goal in the shelf, the heuristic guides the search arouad gurel8h showsr® part-way through the experiment. We set

right side of the pole where the robot’s body won't fit through. _ 9 gnd 2% — 50 for a sub-optimality bound of 100. We
The search without Experience Graphs then takes over 30\ ine regular Weighted A* planner with= 100.

minutes to solve the problem. Table[VIT shows that we have a speed increase of about
;owever, if a path were demonstrated, and then added® oyer poth methods. The heuristic computation time J0.1s
G*, our approach could harness this information to reagfyminates the planning times for both our approach and the
all the desired goals. We demonstrated such a path thro%ighted A* approach, resulting in a smaller speedup than
teleoperation in the simulated world (Figlré 7a). We adtiésd t gxpected by the ratio of expansions. On average, 95% of the

demonstrated path 6 by having each recorded WaYpomte%ges on a path produced by our planner were recycled from
be a vertex with a cost represented by the cost function use

in our approach. After the demonstration, our approach had

Fig. 8. Tabletop manipulation experiments

B. Learning by Demonstration

an average planning time of 1.08 seconds to all 12 goals as TABLE VIl
. . . . . . RESULTS ONTABLETOP MANIPULATION (4llGOALS)

shown in Flgur_ﬂb. While Iearnmg_ by demonstration isn t mean fime(s)| st dev fme(s)| mean expandd mean cost
the focus of this work, these preliminary results show it as [@ E-Graphs (E) 0.13 0.07 3 117349

i i ati ; ; ; Weighted A* (W) 0.26 0.10 145 109297
promising application. It is also interesting to note thgya ——SBL () o2 5 N A
path can be demonstrated regardless of how sub-optimal theRratio (W) 2.50 1.23 66 1.03

Ratio (S/E) 2.44 1.50 N/A N/A




comparison against the same search-based planning method
without E-Graphs showed a speed-up of 1 to 2 orders of
magnitude. Our comparison against a state of the art sagnplin
based approach showed that we are competitive in terms of
speed, but we yield more consistent paths.

As future work, we would like to use heuristics to pruié&
as it gets large, as well as taking a deeper look at applitatio
in the field of learning by demonstration. We are also intexks
in making this into an anytime search so that the solutioriccou

(@) 40 end effector trajectories (b) One visualized path

with similar starts and goals. Our
approach is in black, while the
sampling approach is in gray.

Fig. 9. E-Graphs provide similar solutions to similar problems [1]
TABLE IX
LENGTH OF40 SIMILAR QUERIES IN TABLETOP MANIPULATION
mean length (m)| std dev length (m)
1.378 0.012

1.211 0.178

(2]
(3]

E-Graphs
SBL

y\
GF. The mean time to updat€” (add the new path and ]

compute Floyd-Warshall) was 0.12 seconds.
These results show that our approach is competitive with!
sampling-based method in terms of planning times. How-
ever, our approach provides explicit cost minimization and®l
therefore, some notion of consistency (for similar goals we,
provide similar paths). Figudle Ba shows the paths of the end]
effector for 40 paths that had similar starts and goals {with
a 3x3x3cm cube). The gray paths are from the randomized
approach while the black are from our approach. Notice that
the randomized approach produces highly varying paths evé#i
after shortcutting. On the other hand our approach comgigte 10]
provides almost the same path each time (we also applied a
simple short-cutter to eliminate artifacts from the diszed
environment). Tablé@IX shows that our approach has only[]&]
slightly longer path length (for the end effector distanba)
a significantly lower standard deviation. While our planser’
Y ; S " [12]
cost function is actually trying to minimize the change imjo
angles, our average end effector path length is still redbti
competitive with the sampling-based approach. Figure 9!
shows one of these paths visualized in more detail.
VIl. CONCLUSION 4]
In this paper we have presented planning with ExperienSF1
Graphs, a general search-based planning method for reu
parts of previous paths in order to speed up future planning
requests. Our approach is able to do this while still praxgdi

[16] Hiroaki Sakoe and Seibi Chiba.

approach optimality as more time is allowed.
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