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Abstract— Path planning in the presence of dynamic obsta-
cles is a fundamental problem in robotics with widespread
applications. A typical approach to such problems is that a
robot predicts the trajectories of dynamic obstacles, and plans
its path while avoiding them. Such a formulation becomes
limiting though for scenarios where an agent cannot complete
its task efficiently, without disrupting the movement of dynamic
obstacles. For example, when merging in heavy traffic or nav-
igating through crowded corridors. In this paper, we propose
a paradigm for planning in dynamic environments, called
Disruption-Limited Planning (DLP), that allows a robot to
disrupt the motions of dynamic obstacles in order to accomplish
its task. DLP builds on the premise that while a robot may have
to disrupt others’ trajectories to achieve its goals, it should try
to limit the disruption. DLP assumes that it can estimate others’
response to its own actions/plans, and plans its own path while
ensuring that no other agents’ disrupted trajectory cost gets
worse than w-times their initial trajectory costs. While our for-
mulation is motivated by the Stackelberg competitions, we show
that DLP can be both more expressive and computationally
more efficient compared to a Stackelberg planner. We present
DLP paradigm, develop its efficient implementation based on
A*, analyze its theoretical properties, and apply it to multiple
planning in dynamic environment problems, including x,y,time
planning, planning for self-driving, and planning for arm
manipulation. We compare DLP with purely altruistic, purely
egocentric, and optimal Stackelberg planners, demonstrating
the efficacy of DLP over these alternatives.

I. INTRODUCTION

Safe and comfortable navigation in the presence of moving
obstacles is a basic requirement for any robot, sharing
space with other robots, humans, cars, etc. Typically such a
planning system consists of two components, i) a predictor,
that predicts the trajectories of the other obstacles/agents in
the scene (using the information provided by the perception
engine), and ii) a planner, that plans a path to the goal,
avoiding these obstacle trajectories. Subsequently, there has
been a lot of research on both the components, to accurately
predict the trajectories [1], and to plan efficiently around
them [2], [3]. We observe that such a planning formulation
becomes unsuitable for problems where a robot may need
to disrupt the predicted movement of the dynamic obstacles
in order to achieve its task within a reasonable amount of
time. Examples of such include, merging/lane changing in
heavy traffic, navigating against the flow of traffic, navigat-
ing through crowded places and narrow corridors, etc. In
Figures 1-3, we present examples of navigation problems,
where such disruptions may facilitate planning.
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In Figure 1, the robot (referred to as ego) needs to plan a
path to its goal (box with green check), while pedestrians are
blocking its path. Clearly, there is no solution for ego without
disrupting the pedestrian formations. Now suppose that ego
knows that if it moves towards a pedestrian, the pedestrian
moves away from it. Once a pedestrian moves away from
their original position, she/he navigates back to it when
possible. Using this interaction model, ego can therefore plan
its path disrupting pedestrians. For example, Figure 1b shows
the case where ego ignores the pedestrians assuming they
will move away (acting selfishly). Here, ego minimize its
plan cost, and as a result forces the pedestrian on the right
to move all the way to the robot’s goal, making it navigate
back a long distance (path back shown by the black arrows).
Figure 2 shows a warehouse like scenario where ego needs
to reach its goal across a corridor navigated by a long line of
robots. Ego knows that other robots (in black) can wait and
resume later, if ego blocks their path. In Figure 2b shows
the case where ego treats other robots as dynamic obstacles
that won’t change their course and therefore doesn’t disrupt
their movement. As a result ego takes a much longer path
on the right. In contrast, Figure 2c shows the case where
ego ignores other robots, follows its best plan, and causes a
collision when a group of robot moves to the left when all
the cells are already blocked. The final example (Figure 3)
shows a lane change scenario where ego (car in blue) needs
to merge into a lane occupied by a long sequence of cars.
Ego is slower than the other vehicles and thus needs to cut
in to the target lane possibly forcing others to slow down.
Figure 3b, shows the different options ego has to merge in. If
ego ignores the dynamic obstacles, and optimizes for its own
cost, it can merge into the first gap, making others slow down
considerably. Other gaps provide options of lesser disruptions
as ego can speed up to match the speed of others.

These examples illustrate that: i) ego may need to disrupt
others’ plans to effectively accomplish its task, and ii) such
a disruption should be limited, as otherwise, the impact on
others can be unnecessarily high. We propose a novel path
planning paradigm, Disruption-Limited Planning (DLP), that
builds on these observations. DLP assumes that it can predict
others’ best/rational response to its own actions/plans and
can estimate the cost of such response trajectories. Using
this information, DLP plans ego’s own path guaranteeing
that no other agents’ final trajectory cost gets worse than w-
times their initial (i.e., before disruption) trajectory cost. On
one hand, this formulation allows DLP to effectively solve
problems where ego may have to disrupt the trajectories
of others. On the other hand, it guarantees to limit the
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(a) Planning problem (b) Ego selfish (c) Ego with DLP (w = 2.0)
Fig. 1. An example navigation problem through blocked corridors.

(a) Planning problem (b) Ego altruistic (c) Ego selfish (d) Ego with DLP (w = 2.0)
Fig. 2. An example navigation problem in warehouses.

(a) Planning problem (b) Ego options (c) DLP (w = 2.0) plan execution, in VTD and Rviz
Fig. 3. An example of lane change in with a sequence of cars.

disruption in a way that no other agent’s trajectory cost
increases beyond a chosen bound due to ego’s plan. Figure 1c
shows the application of DLP (with w = 2) for the pedestrian
example. In it, the ego robot chooses a longer path to goal
(through left), limiting the disruptions to others’ trajectories.
In Figure 2d, we show the application of DLP for the
warehouse scenario. We observe that with DLP ego plans a
much shorter path to goal (compared to Figure 2b) without
causing any collisions. Figure 3c, shows ego changing lane
with DLP (shown using the VTD 2.2 simulator), by adjusting
to the gap that offers ego to merge in with limited disruption
to others. Specifically, it plans to speed up and then merge
in between vehicles at a speed that makes the other vehicles
slow down only marginally.

The DLP formulation builds upon the concept of the
Stackelberg competitions, and in particular resembles a two
player pure strategy Stackelberg game formulation [4], where
a leader (ego) knows the best response from others, and
optimizes a joint utility function comprising of the cost of the
ego’s plan and the cost of the planned responses of the others.
DLP differs from the classical Stackelberg formulation in
two aspects. First, it does not assume a leader-follower
relationship, and instead considers this as one of the possible
relationships allowing the planner to figure out what is best
(for example, ego cutting in in front of another obstacle, or
slowing down and merging in behind the obstacle). Second,
DLP uses the bounds on others’ trajectory cost as constraints
to limit its search for plans. Doing this, instead of optimizing

a joint utility function, makes the planning computationally
significantly more efficient, as we show in our experiments.
In addition, the bounded formulation ensures that the prop-
erties of DLP remain true when the estimated disruption cost
is an upper bound of the true disruption cost. In other words,
while a Stackelberg formulation assumes the knowledge of
the best response, DLP can work for any estimated response,
as long as the computed response cost is an upper bound of
the best response cost.

In the rest of the paper, we describe the DLP paradigm and
state its assumptions. We develop an efficient implementation
of DLP based on A* and analyze its theoretical properties.
We apply DLP to multiple path planning in dynamic envi-
ronment problems, including x,y,time planning, planning for
self-driving, and planning for arm manipulation. We compare
DLP with usual altruistic planning (ego is not allowed to
disrupt others movement), purely egocentric (ego plans for
itself and lets others to react), and an optimal Stackelberg
game planner, showing that DLP provides a reasonable and
efficient formulation to solve problems where a limited
disruption to others’ trajectory can help the robot fulfil its
mission.

II. RELATED WORK

Planning for dynamic environments has been an active
area of research for a number of years. In particular, there
are two main challenges when planning for dynamic environ-
ments. First, the dimensionality of the search-space increases
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with time being an additional dimension. Second, this do-
main necessitates frequent replanning as predicted motions
of obstacles are often imperfect. Subsequently, there has
been a plethora of algorithms, focusing on fast planning (and
replanning). These algorithms differ in terms of: a) search-
space representation, such as, lattice based planning [3] vs
sampling based planning [2], [5], b) representation of the
dynamic obstacles [6], c) representation of time as a dimen-
sion [7], and d) anytime behavior to support fast replanning
requirement [7], [8]. All these algorithms assume that the
predicted trajectories of other obstacles are inviolable, and
thus, differ from the DLP paradigm which relaxes this
assumption, allowing for limited disruptions to the movement
of the dynamic obstacles.

There are number of planning approaches that as-
sume/predict some sort of a response model from the other
actors in a scene, and utilize that to plan for ego. For
example, there are planning algorithms that a) assume joint
responsibility of collision avoidance [9], b) assume co-
operation from pedestrians while navigating through crowded
environments [10], [11], c) apply heuristic rules to emulate
agent behavior [12], d) forward simulate the response of
world scene w.r.t to an action of the ego agent [13]–[15].
While DLP follows the basic principle of these response-
driven algorithms, it differs in two aspects. First, it does not
assume a static response, instead it associates the responses
with costs to agents. Second, it explicitly attempts to limit
the disruptions (cost penalties) to other agents, using it as a
constraint for ego planning.

The formulation and algorithms proposed in [16] targeted
for human-robot cohabitation closely relates DLP. It uses the
predicted plans for humans to guide the robots to minimize
resource conflicts. It also proposes a negotiation strategy
where ego computes a plan assuming desired profile usage
(desired by ego) and associates a cost with the deviation from
the original usage similar to the notion of disruption. While
built on similar principles, DLP is a generic path planning
algorithm, in contrast to a planning framework applicable to
a particular model of resource conflicts. Second, the explicit
negotiation described requires restoring a world state to one
that the human is believed to expect. Such world restoration
or explicit negotiation is rarely applicable for domains like
self driving or navigation among crowd. Finally, the integer
programming (IP) formulation in [16] minimizes a joint cost
for ego and others, DLP instead follows a bounded disruption
based pruning approach.

Game theory based approaches have also been widely
applied to emulate the joint evolution of strategies for
multiple interacting actors [17]. These approaches seek to
attain equilibrium conditions based on the assumptions about
the actor behaviors. Stackelberg games [4] are a special class
of games that assumes leader-follower roles, and optimizes
a joint utility function. While not as extensively as in the
case of security games [18], both Nash and Stackelberg
like formulations have been used for behavior and path
planning [19]–[21]. One of the main issues with the game
theoretic formulations for planning in dynamic environments

is their scalability [4], especially, when a robot needs to plan
for a long horizon. In DLP, we provide an alternate planning
paradigm that retains the essence of a Stackelberg formu-
lation but improves upon its computational performance by
using the estimated responses as pruning conditions.

III. DISRUPTION-LIMITED PLANNING

In this section, we explain the details of Disruption-
Limited Planning. While the DLP paradigm is flexible
enough to be used with a range of path planning algorithms
for dynamic environments, here we present an approach that
is based on A* algorithm [22], an optimal and efficient graph
search method.

A. Algorithm

DLP builds on the premise that it can predict the ego-
independent trajectories for other dynamic agents, as well as
their responses for given ego actions (plans), given that the
agents have observed ego. In addition, DLP assumes that
it can estimate the costs associated with such trajectories
of other agents. At a high level, DLP runs an A* search
and every time it expands a state, it simulates the responses
of dynamic objects by relying on a method for predicting
the responses. It then prunes states for which the estimated
cost of the responses violate the chosen suboptimality bound
(w), compared to the initial estimated costs. A pseudocode
for DLP is shown in Algorithm 1. Next, we introduce the
notations and go over the details of the proposed algorithm.

Ego planning notations: Let S denote the finite set of dis-
crete states over which we search for a path (Π(sstart, sgoal))
from sstart to sgoal. The search proceeds by expanding states
to generate successors s′ ∈ Succ(s). The current best cost
and the optimal cost to arrive at a state s is denoted by g(s)
and g∗(s), respectively. c(s, s′) denotes the cost between any
two states s and s′ connected by an edge. The heuristic
function h(s) is an estimate of the cost of the path from s
to sgoal. We assume that the heuristic function is consistent,
i.e., it never overestimates the cost-to-goal and satisfies the
triangle inequality.

Inputs: Inputs to the DLP algorithm include a world
state and a set of key functions for simulating/predicting the
behavior of the dynamic obstacles in the world state.

World state: A given or simulated world state W consists
of the current states of the dynamic obstacles that are
part of it as well as the other information (maps, static
obstacles, traffic information, etc) required to navigate in
such an environment. The planner takes a starting world
configuration W (sstart) as input. Internally, DLP updates an
agent state in the world using the UPDATEWORLD routine.
Each state s ∈ S includes a world state snapshot W (s).

HASOBSERVED function: For a given world state W ,
DLP assumes to have access to an oracle which tells us
whether HASOBSERVED(W, i) is true, signifying whether
agent Ai has observed ego (i.e., ego’s move), and can be
expected to respond to ego’s plan. In Stackelberg game terms,
this routine tells us whether ego has established a leader-
follower relationship with Ai and thus can plan considering
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Algorithm 1 Disruption-Limited Planning (based on A*)
1: procedure PREDICTRESPONSE(W, (s, s′))
2: W ′ = UpdateWorld(W, (s, s′))
3: for agent Ai ∈W do
4: if HASOBSERVED(W, i) then
5: ΠAi , CAi ← PREDICTRESPONSE(Ai,W

′)
6: else
7: ΠAi

, CAi
← Π∗Ai

, C∗Ai

8: W ′ = UPDATEWORLD(W ′, (sAi , s
′
Ai

) ∈ ΠAi)
9: if CAi > w × C∗Ai

or InV alid(W ′) then
10: return false
11: W (s′)←W ′

12: return True

13: ∀Ai,Π
∗
Ai
, C∗Ai

← PREDICTOTHERS(W (sstart))
14: g(sstart) = 0; g(sgoal) =∞
15: Insert sstart in OPEN with key g(sstart) + h(sstart)
16: while g(sgoal) > OPEN.Min() do
17: s← OPEN.Top()
18: Remove s from OPEN
19: for s′ in Succ(s) do
20: if g(s′) > g(s) + c(s, s′) then
21: if PREDICTRESPONSE(W (s), (s, s′)) then
22: g(s′)← g(s) + c(s, s′)
23: Insert/update s′ in OPEN with key

g(s′) + h(s′)

its best response. For DLP, this routine is of key significance,
as it allows ego to switch between non-interactive to inter-
active mode. For example, in a lane change, once ego has
pushed itself into a given lane, any obstacle that is behind ego
has to observe it, and therefore will respond to ego’s actions.
Note that, the HASOBSERVED routine is only applicable for
a non-ego agent Ai, as we assume perfect perception for ego.

PREDICTOTHERS function: For any agent Ai, we as-
sume that DLP can predict for them independently of
ego as well as compute their responses to an ego plan.
The PREDICTOTHERS routine takes the initial world state
W (sstart) and predicts trajectories for each agent Ai ∈
W (sstart), and publishes an associated cost to it. Note that
such a prediction system is implicit in any planning with
dynamic obstacles domain, DLP just associates a cost to such
computed trajectories.

PREDICTRESPONSE function: The PREDICTRESPONSE
routine computes the expected response for each agent Ai in
a given world state conditioned on ego’s actions, and checks
whether the new trajectory costs are within w-bounds of the
initial costs. If an agent Ai has observed ego, this routine
outputs a response trajectory for Ai (line 5). Otherwise Ai

follows its initially computed trajectory (line 7). If the new
trajectory cost for an agent is worse that w times its initial
cost, it returns false (line 10), otherwise it updates the world
with actions from each agent (line 11) and returns true. Note
that we assume there is either a natural order among the
agents Ai ∈ W (sstart), or the PREDICTOTHERS routine

finds an optimal order among the agents. While this is a nat-
ural (and efficient) assumption for many real world scenarios
(row of cars in a lane, line of robots in warehouses), it is
not a requirement for DLP, i.e., its properties do not depend
on the particular implementations of the PREDICTOTHERS
or PREDICTRESPONSE functions.

Output: The objective of DLP is to compute a minimum
cost path for ego (from sstart to sgoal), subject to the
constraints that the estimated response for any dynamic
obstacle Ai ∈W (sstart), has cost ≤ w× its initial trajectory
cost. In other words, the constraint is to limit the disruption
to any single obstacle by a factor of w.

Main loop: The main planning loop (lines 14- 23) for ego
simply follows A* algorithm, i.e., it iterates over the states in
the OPEN list, popping them in the order of their priority
(g + h) values, generating and updating their successors.
The only difference being in the line 21, where it plans for
the other agents’ best response, and only inserts/updates the
resulting state if the response is bounded by w, and prunes
the states for which the response trajectories for other agents
violate the chosen bound on their initial costs.

(a) (b) (c) (d)
Fig. 4. An example explaining the DLP algorithm

In Figure 4, we explain how DLP (with w = 2) works
on a simple example. The planning problem is shown in
Figure 4a, with ego E (green robot in the lower cell) and
a dynamic obstacle O (grey robot in the left most cell) at
their start states. The goals for E and O are marked with
green and grey circles respectively. DLP starts by calling
PREDICTOTHERS (line 13), which returns a plan with cost
3 (timesteps) for O. After that, DLP starts planning for ego
(E) by expanding the start state and examining its successors.
Let’s assume for the start states of E and O, HASOBSERVED
is false, and thus at this step, O follows its trajectory (line 7).
As there is no conflict, the next world state is computed
with E and O as shown in Figure 4b. For this state, we
assume that HASOBSERBED is true. Before adding the next
state to the OPEN , DLP computes the response from O
(line 5). The best response for O is to wait a timestep, let
E pass and then proceed (cost = 4). As the response cost
for O is ≤ 2.0× its initial cost, this is a valid state for
DLP and the search proceeds by updating the (simulated)
world state (Figure 4c). In the next step, ego reaches the
goal state, and re-examines the PREDICTRESPONSE of O,
which does not change from the last step. DLP returns the
best cost solution for E (cost 3), with a guarantee that O can
compute a response trajectory that is not worse than 2.0× its
initial cost. Note that, the corresponding trajectories Π(E)
and (estimated) Π(O) with costs {3(E), 4(O)}, represents a
Stackelberg equilibrium condition, i.e., if we assume E to be
the leader and O the follower, neither E nor O can alter their
trajectories to obtain a better plan cost.
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B. Properties

From its premise, DLP does not plan a collision free
path for ego, assuming the predicted trajectories are ground
truths. Instead, it plans in a way that assumes that a dynamic
obstacle can recompute its path when it HASOBSERVED ego,
and the cost of the resulting trajectory is guaranteed to be
within w-times of its initial plan cost. Formally, this property
is defined as follows,

Theorem 1. Let for all ∀Ai ∈ W (sstart),Π
∗
Ai
, C∗Ai

rep-
resent the initial trajectories and costs of an agent Ai. If
the DLP search terminates at line 16 with a finite g(sgoal),
then the ego agent has a minimum-cost path from sstart
to sgoal that ensures that every agent Ai can compute a
response trajectory ΠAi (following Π∗Ai

till HASOBSERVED
is true, and then recomputing) with cost CAi

such that
∀Ai ∈ W (sstart), CAi

≤ w × C∗Ai
, otherwise no such path

(for ego) exists.
Proof: The completeness and minimum-cost property

of DLP follows from the completeness and optimality of
A* [22]. To prove that every agent Ai can compute a
trajectory with cost ≤ w×C∗Ai

, we examine an edge (s, s′)
belonging to the ego path Πego. Note that s′ 6= sstart, and
thus, when s′ was added/updated to the OPEN , the check
at line 21 ensures that addition of (s, s′) to the ego plan
allows computation of a w-bounded new trajectory ∀Ai with
HASOBSERVED true, and for all others, it checks the validity
of following their initial trajectory. As this is true for the
addition of each edge of Πego, added in order, it is true
when the search terminates at line 16 with a finite cost path
from sstart to sgoal.

Relationship with Stackelberg games: The trajec-
tories computed with DLP, i.e., Πego and ΠAi

∀Ai ∈
W (sstart), represents a Stackelberg equilibrium (for a pure
strategy Stackelberg game, between ego and others [4]) if
HASOBSERVED is true ∀Ai in every world state, and the
utility function is designed as the minimum ego cost when
others have a w-bounded response, and −∞ otherwise. We
can prove this relation by noting that in DLP the plan cost
is minimized for ego as long as others’ have a w-bounded
plan. Therefore, with the resulting set of trajectories Πego and
ΠAi , ego has no impetus to alter its trajectory as it is a cost-
minimal one under the constraints (maximum utility), while
the others (conditioned by ego) has no impetus to change
their (least cost) responses.

(a) Warehouse scenario (b) Pedestrian scenario
Fig. 5. Example of problem instances for x,y,t -planning, (a) a planning
state for a warehouse scenario, and (b) the starting state for a pedestrian
scenario.

IV. EXPERIMENTAL RESULTS

A. x, y, t- Planning on grids

For this domain we consider two environments for ego to
navigate (Figure 5)- i) a warehouse-like environment with
series of robots passing through the narrow passages, and ii)
partially blocked environments with clusters of pedestrians
blocking ego’s way. For any timestep, a dynamic obstacle can
wait in its cell, or move to one of the eight connected cells
(if free). For this experiment we assume HASOBSERVED to
be always true for all the dynamic obstacles, i.e., ego can
assume leadership at any stage. We plan for the dynamic
obstacles in an assumed heuristic order (prioritized plan-
ning [23]), using A* as the baseline planner. In this domain,
we predict the trajectories of other agents also using A*,
assuming we know the goal for them. We compare DLP with
purely altruistic, egocentric and a Stackelberg like planner,
that uses A* to minimize the summation of trajectory costs
of ego and the other dynamic obstacles.

Warehouse scenarios We generate 30 problem instances
with a 20×20 grid with narrow passages, with 30−50 other
agents trying to move across left-to-right along the narrow
passages. Ego starts from a random cell in bottom, and has a
goal at a random cell in the top row. Trajectory costs for each
agent is the time to reach the goal plus a nominal distance
cost, to penalize unnecessary movements. We use Euclidean
distance heuristic for both time and distance to goal. The
results of this experiment are shown in Table I. As metrics,
we present i) the number of successfully solved scenarios
(when ego and others all have finite cost paths to their goals),
ii) the execution time for ego, iii) a measure for disruptions
caused to other robots, as a pair of avg. number of agents
disrupted per scene and the avg. delay in execution time
for these agents, and iv) the number of state expansions for
each algorithm (state expansions include ego planing and
prediction, i.e., planning for others). The results show that
egocentric planning does not work well in these cases, as ego
often causes collision. Altruistic planning successfully solves
all scenarios but causes a large increase in ego execution
time. DLP and Stackelberg planners do better than both
the altruistic and the egocentric planner, providing a trade-
off between ego execution time and disruptions caused to
others. While similar in terms of solution quality, DLP is
computationally much more efficient than the Stackelberg
planner as shown by the average state expansions.

Algorithm Succ. EET DM SE
Altruistic 30 46.0±6.8 (0., 0.) 0.09
Egocentric 2 31.2±5.9 NA NA
DLP(w = 2) 30 34.3±4.8 (9.1, 1.0) 11.8
Stackelberg 30 34.1±4.8 (9.3, 1.0) 486.4

TABLE I
EXPERIMENTAL RESULTS FOR WAREHOUSE SCENARIOS. LEGEND: EET
– EGO EXECUTION TIME IN SECONDS, DM - DISRUPTION MEASURE, SE

– STATE EXPANSIONS (×106)

Pedestrian scenarios We generate 30 problem instances
20 × 20 partially blocked grids, with 30 − 50 pedestrian
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in cluster of 1 − 10, blocking ego’s path. Each pedestrian
occupies their cell for number of timesteps between 30− 50
(which also indicate their initial trajectory cost). Ego starts
from bottom-most row and has a goal at the topmost row.
We use the same plan costs and heuristics as the warehouse
problems. Table II includes the results for this domain
(same metrics as above). Here, altruistic planning does not
work, as the pedestrians always block ego’s way. While,
egocentric provides minimum execution time solutions to
ego, it induces collision in 18 of 30 problem instances.
DLP and Stackelberg planner provide similar results with
DLP requiring significantly less state expansions than the
Stackelberg planner.

Algorithm Succ. EET DM SE
Altruistic 0 NA (0., 0.) NA
Egocentric 12 29.1±3.8 (6.2, 1.4) 0.004
DLP(w = 2) 30 36.0±4.1 (3.7, 0.9) 0.71
Stackelberg 30 36.4±4.4 (2.1, 1.5) 2.95

TABLE II
EXPERIMENTAL RESULTS FOR PEDESTRIAN SCENARIOS. LEGEND: EET
– EGO EXECUTION TIME IN SECONDS, DM - DISRUPTION MEASURE, SE

– STATE EXPANSIONS (×106)

B. Planning for lane changes

In this experiment we test the efficacy of DLP on challeng-
ing lane change problems. We setup highway like scenarios
where ego is asked change lanes with 6− 10 vehicles in the
target lane, with headway gaps ranging between 1.5− 3secs
(similar to Figure 3). Ego speed is set to 15m/s, whereas the
target lane speed (speed limit) is randomly chosen between
20 − 30m/s, making it harder for ego to cut in. All the
agents follow a kinematic bicycle model [24]. We use a
simple lattice based planner [3] for ego that operates in the
lane frame. For others we use the same planning algorithm
but without any lateral primitives (i.e., other vehicles do not
leave their lane). The goal for ego is to reach the center
of the other lane with a maximum time of 15 seconds.
Goal for others is to continue straight at the speed limit
(i.e., reach 15× speed limit distance). For this domain, we
assume the HASOBSERVED to be true only for vehicles
that are behind ego in the target lane when ego enters the
target lane, and false otherwise. The cost for ego and others
are the time to reach the goal plus quadratic penalties for
acceleration/deceleration, with any collision having infinite
cost. We created 25 such instances of lane change problems,
and compare DLP with altruistic and egocentric planning,
we do not compute Stackelberg plans here, due to runtime
constraints.

Table III includes the results obtained for this experiment
with 4 metrics, number of successes (i.e., cases where
ego found collision free path to the next lane within 15
secs), ego execution time and the average max deceleration
experienced by the car following ego, and state expansions.
We use a collision buffer of 5ms, and acceleration bounds
−3.0,+3.0m/s2 for all the agents. We observe that ego does
not manage to lane change often with the altruistic approach

Algorithm Succ. EET OMD SE
Altruistic 8 10.3±0.9 NA 1143.5
Egocentric 14 5.9±0.3 2.7 216.0
DLP(w = 2) 25 8.3±1.2 0.8 1494.2

TABLE III
EXPERIMENTAL RESULTS FOR LANE CHANGE SCENARIOS. LEGEND:

EET – EGO EXECUTION TIME IN SECONDS, OMD - MAXIMUM

DECELERATION FOR OTHER DYNAMIC OBSTACLES, SE - STATE

EXPANSIONS.

(a) (b)

Fig. 6. Visualisation depicting the plan that is computed for the PR2 arm
using DLP. As can be seen in the figure, the arm moves out of the way
of the dynamic obstacle to allow it to reach its goal location. In the same
planning loop, the dynamic obstacle also retracts back by a certain number
of steps to let the arm reach its goal location, while ensuring that its cost
is bounded by a factor of w. (a) shows the front view, and (b) shows the
side view of the experiment setup.

as it cannot find adequate gaps to merge in. Purely egocentric
approach fares better in terms of instances solved, but causes
collisions in the unsuccessful instances and imposes a high
deceleration on the others. DLP manages to solve all the
instances, i.e., finds lane change plans for ego within 15
seconds, by imposing less deceleration to other vehicles.

C. Planning for arm manipulation

Fig. 7. The PR2 arm coming up with a motion plan to move from its
given start to goal location using DLP (front view of the experiment setup).

Fig. 8. The PR2 arm coming up with a motion plan to move from its
given start to goal location using DLP (side view of the experiment setup).

We also test DLP on a motion planning task of moving
a 7 degrees-of-freedom manipulator in the presence of a
reactive dynamic obstacle. Usually, a robot encounters such
scenarios while working in spaces shared with humans or
other robots. Specifically in this task, as seen in Figure 6,
the right arm of the PR2 robot is tasked with moving from
its initial joint configuration (shown in light green) to a goal
location, specified in terms of the x, y and z coordinates and
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the roll, pitch and yaw of the end-effector. There is also a
dynamic obstacle in the form of a cylindrical rod, that moves
in the opposite direction of the arm, and blocking its path.
The PR2 arm uses a lattice based planner with a set of 14
motion primitives. The planner uses a 3D distance accounting
for obstacles for the end-effector of the arm computed via
a single 3D BFS search as heuristic function. The obstacle
rod is constrained to move only along the z-axis, using a
reactive planner. This reactive planner commands the rod to
move a certain fixed distance based on its distance from the
PR2 arm. The behavior of the arm planner and the reactive
planner is as shown in Figure 7 and 8.

We generate 30 problem instances by perturbing the start
and goal locations of the PR2 arm within a sphere of 10 cm
radius. The start and goal location of the rod are sampled
from a 5 cm band centered around a fixed location. The
amount by which the rod moves is kept constant across
all experiments. The maximum allowed planning time used
for these experiments is 120 seconds. The HASOBSERVED
variable is set to true when the Euclidean distance between
the arm and the dynamic obstacle is less than a pre-specified
threshold value. In this domain, we compare DLP with
altruistic and egocentric planners. The results are as shown
in Table IV, which shows that DLP provides a better trade-
off between ego and other agent cost compared to altruistic
(high ego cost) or the egocentric planner (high agent cost).
We run DLP with w = 1.5 and w = 2, to show that given a
high upper bound on the cost of the agent, the behaviour of
the ego robot is similar to the egocentric planner.

Algorithm Succ. EET AC SE
Altruistic 30 47.3±0.8 20 4192.3
Egocentric 30 26.3±0.4 28.3 62.6
DLP(w = 2.0) 30 29±1.2 28.0 1039.0
DLP(w = 1.5) 30 42±1.1 26.7 4637.2

TABLE IV
EXPERIMENTAL RESULTS FOR PR2 ARM PLANNING SCENARIOS.

LEGEND: EET – EGO EXECUTION TIME IN SECONDS, AC - AGENT

COST, SE – STATE EXPANSIONS

V. DISCUSSIONS

We presented a novel planning paradigm for dynamic
environments called Disruption-Limited Planning where an
agent can plan to disrupt others’ motion to achieve its mis-
sion, ensuring that no other agents’ trajectory cost increases
beyond a chosen bound. In future, we would like to extend
DLP to include uncertainty measures while predicting the
responses of other agents. We would also like to investigate
the possibilities of real-time variants of DLP.
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