
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

PRIORITIZED COMPUTATION FOR NUMERICAL SOUND PROPAGATION

John Drake

Center for Human Modeling and Simulation,
University of Pennsylvania

Philadelphia, PA, USA
drake@seas.upenn.edu

Maxim Likhachev

The Robotics Institute,
Carnegie Mellon University

Pittsburgh, PA, USA
maxim@cs.cmu.edu

Alla Safonova

Center for Human Modeling and Simulation,
University of Pennsylvania

Philadelphia, PA, USA
alla@seas.upenn.edu

ABSTRACT
The finite difference time domain (FDTD) method is commonly
used as a numerically accurate way of propagating sound. How-
ever, it requires extensive computation. We present a simple method
for accelerating FDTD. Specifically, we modify the FDTD update
loop to prioritize computation where it is needed most in order to
faithfully propagate waves through the simulated space. We esti-
mate for each potential cell update its importance to the simulation
output and only update theN most important cells, whereN is de-
pendent on the time available for computation. In this paper, we
explain the algorithm and discuss how it can bring enhanced accu-
racy and dynamism to real-time audio propagation.

1. INTRODUCTION

Faithful propagation of sound through arbitrary environments is a
computationally complex problem. Audio propagation solutions
must be re-evaluated as the source position(s), listener position(s),
and environment geometry change over time. If the recomputation
can be done very quickly, the method might be useful in real-time
applications like virtual environment audio simulations.

In this paper we present a method to accelerate the finite dif-
ference time domain numerical sound propagation method so that
it might be used in real-time applications under broader config-
urations. We prioritize computation where it is needed most to
most accurately propagate a wave, eliminating computation where
it would have little effect on the output.

2. PREVIOUS WORK

Sound propagation can broadly be split into two groups: geometric
methods and numerical methods. Geometric methods often take
advantage of analytic solutions to wave equation problems directly
in terms of the geometry of the environment and assume that sound
waves travel in straight lines. Numerical methods discretize and
solve wave equation problems with numerical analysis.

Geometric methods include such techniques as image methods
[1], ray tracing [2], beam tracing [3], and acoustic energy transfer

This work was supported by NSF Grant IIS-1018486.

methods [4]. In the early image method presented in [1], virtual
image sources are created from the true sound source to represent
the acoustical contribution of sounds reflected from geometry in
the environment. Similar to graphics research on geometric trac-
ing techniques, ray [2] and beam [3] tracing methods have been
developed for audio propagation. Ray tracing samples an environ-
ment with a multitude of rays reflecting from surfaces. Errors are
introduced in ray tracing methods when samples miss important
features in the environment [5]. Beam tracing methods improve
on this by sampling continuous areas of the environment with each
cast beam and splitting each cast beam where the environment is
discontinuous, such as at the edge of a beam-intersecting wall.
However, it is hard to accurately handle effects like wave diffrac-
tion in arbitrary environments using these methods.

Numerical methods include finite element [6] and finite dif-
ference [7] methods. The finite difference time domain method
(FDTD) is an especially popular numerical method in acoustics,
though originally developed for electricity and magnetism [7]. In
the FDTD method, a finite simulation lattice is overlaid on the en-
vironment to discretize it in space, and the output is computed at
discrete time steps over many iterations. The method naturally
allows the modeling of arbitrary environment configurations and
captures wave phenomena like diffraction. However, it suffers
from high memory and computation time demands, especially as
a simulation’s time or space discretization is refined. We focus on
FDTD in this paper and look at it in greater detail in Section 3.

Several hybrid methods have been developed, merging geo-
metric and numerical methods [8], [9]. Hybrid methods are good
for real-time applications because different wave properties can
be efficiently represented by different methods. A recent example
is the "Wave-Ray Coupling" presented by Yeh et al. 2013 [10],
where a geometric technique handles long-distance wave propa-
gation in a large environment and a numerical method captures
important wave diffraction effects (which the geometric technique
cannot handle) close to the listener position. Acceleration of com-
putationally expensive numerical methods like FDTD is neces-
sary for the numerical components of hybrid methods to function
well in real-time applications. For example, the adaptive rectangu-
lar decomposition method [11] is used instead of plain FDTD in
[10]. Any additional acceleration to the numerical component of a

DAFX-1

http://cg.cis.upenn.edu/
mailto:drake@seas.upenn.edu
http://sbpl.pc.cs.cmu.edu/
mailto:maxim@cs.cmu.edu
http://cg.cis.upenn.edu/
mailto:alla@seas.upenn.edu

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

hybrid system can critically provide better real-time performance
over a broader range of configurations, e.g. a larger numerical sim-
ulation zone capturing a more complete simulation of diffracted
waves in the environment. This paper offers one such acceleration
technique.

3. BACKGROUND

Sound is a wave phenomena dependent on the wave equation. An-
alytic solutions to the equation exist for simple configurations, but
no complete analytic solutions exist for complex environments.

The FDTD method provides a way to solve the equation in
complex environments in a discrete way. The environment is dis-
cretized in space into a regular grid. The sizes of the grid cells in
each dimension do not have to match but for simplicity they will
be equal here, represented by h. pn(i, j, k) represents the pressure
at location i, j, k at time n. Throughout, we use the speed of sound
c ≈ 340m/s.

Following is a brief derivation of an FDTD update equation,
based on the description in [11].

∂2p

∂t2
− c2∇2p = F (x, t) (1)

F (x, t) is a forcing term representing sound inputs. It is zero with-
out inputs.
∇2 represents the 3D Laplacian operator, ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
,

the divergence of the gradient at a point in the pressure field.
The Laplacian operator can be discretized for a grid represen-

tation in many ways[12]. We use the L2 discretization for speed
and simplicity:

∇2pn(i, j, k) ≈

lap(i, j, k) =
1

h2

 −6pn(i, j, k)+
pn(i− 1, j, k) + pn(i+ 1, j, k)+
pn(i, j − 1, k) + pn(i, j + 1, k)+
pn(i, j, k − 1) + pn(i, j, k + 1)

(2)

Or more succinctly with K as a Discrete Laplacian Matrix and P
a long vector of all pressure values in the grid:

∇2p ≈ 1

h2
KP (3)

yielding
∂2P

∂t2
− c2

h2
KP = F (t) (4)

Discretizing in time with time step 4t and using the leapfrog in-
tegrator yields the following update equation.

Pn+1 = 2Pn − Pn−1 +

(
c4t
h

)2

KPn +4t2Fn(t) (5)

Time step size 4t depends, for the sake of numerical stability
in the simulation, on the grid resolution according to Courant-
Friedrichs-Lewy condition4t < h

c
√
3

To model the interface of air and environment surfaces, any of
many absorbing boundary conditions (ABCs) can be used. Please
see [13], based on the original Perfectly Matched Layer (PML)
work [14] for a very helpful derivation of the PML ABC for the
single field parameter "scalar" FDTD context presented above. The
works [15],[16] present the formulation of a simple surface ABC
which also may be used in this context.

4. PRIORITIZED FDTD

Full FDTD simulation demands the evaluation of a large number
of computations. There are many time steps needed, and in each
one, potentially every grid cell representing the simulation space
needs to be updated. Each FDTD time step depends on the previ-
ous time step, but within each time step, every cell update compu-
tation is independent. Also, if one cell is updated, the effect of that
update is only relevant to its neighboring cells whose discretized
Laplacian estimations in the subsequent time step include a term
reading the value of that previously-updated cell. Areas of uniform
pressure remain static until disturbed by impinging waves and also
become static again after those waves pass by. These properties
together allow us to accelerate FDTD by prioritizing computation
where it is needed most and omitting it elsewhere.

We incorporate these properties into one tunable system by
the introduction of a cell update importance function and priori-
tized selection of which updates to execute. We concentrate on
accelerating FDTD impulse response simulation of low frequency
diffracting waves. Higher frequency reflecting components can be
simulated in real time with other methods, together forming a hy-
brid system as in [10]. Our method of acceleration is orthogonal
to other approaches like parallelization, so we believe it can be
applied on top of other methods for further improved results.

4.1. FDTD Setup

We initialize our FDTD simulation grid with a grid cell size, h
appropriate for low frequency waves (e.g. simulation frequency=
1KHz, h ≤ c

2KHz
guided by the Nyquist-Shannon sampling the-

orem). These low frequency waves have a greater tendency to
diffract in a significant way in human-scale environments than do
higher frequency waves.

We focus on the task of recording an impulse response, rather
than continuously propagating an arbitrary source wave. Simu-
lated impulse responses can be efficiently convolved with arbi-
trary source waves after simulation to auralize output. The impulse
response context allows us accelerate computation more than we
could if the source emitted an arbitrary wave. This is true because
with an impulse, more of the pressure field is likely to be static and
unimportant (in front of or behind the impulse wave) at any arbi-
trary time step than if the field were inundated with a continuous
series of waves.

To record an impulse response, we use an input pulse defined
by the following Gaussian function. Its parameters were chosen
to make the pulse peak near the origin and to be short but not so
short that it causes major ringing oscillations when played into the
1KHz grid simulation.

pulseCenterT ime = 0.0025

spread = 0.001

f(t) = e
− (t−pulseCenterTime)2

2∗spread2 (6)

Note that any impulse response recorded from t = 0 using this
impulse must be shifted in time by −pulseCenterT ime.

PML ABC zones are placed around the boundaries of the sim-
ulation space. It is suggested in [17] to make the PML thickness
at least 65-70% of the longest wavelength of interest. Because
we primarily focused on the recording of impulse responses and
to aid computation times we use na = 10, which corresponds
to a "longest wavelength of interest" of 0.65c/h/10 = 130Hz.

DAFX-2

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

The profile of our input pulse approximately corresponds to a si-
nusoidal wave section with a frequency around 200Hz, so the PML
thickness is reasonable.

4.2. FDTD Computation

Described below is our method to accelerate FDTD computation
in the context described in Section 4.1.

4.2.1. Importance Function

An importance function, notated as importance(i, j, k), estimates
the importance of a cell update during simulation. Before the first
FDTD update pass, the importance function is initialized for ev-
ery cell to zero. At the moment of the start of the input pulse, the
sound source location and its immediate neighbors are given arti-
ficially elevated importance values to seed their evaluation when
they are first important.

In the last moments of a simulation, many regions of the envi-
ronment are so far from the listener position(s) that no wave leav-
ing those regions and traveling at the speed of sound could reach
the listener(s) before the end of the simulation. We include this
in all importance functions by forcing importance to zero when a
cell update can be omitted. Let L represent the listener position in
grid units. Let dur be the duration of the simulation. Omit deter-
mines when a cell update would be made to a cell too far from the
receiver position to possibly have any effect on the output of the
simulation.

Omit(i, j, k, t) =
h · |[i, j, k]− L|

c
> (dur − t) (7)

Idealy, an importance function would look into the future and
determine how much of an effect an update will have on the even-
tual output of the simulation. Since this is not possible to do in
any less time than it would take to run the simulation to that future
time or even in less time than it takes to do a single update, we
approximate the importance function by estimating the effect an
update could have on the immediate region surrounding it in the
following time step. In FDTD simulation, the discretized Lapla-
cian approximation (lap) is the only term in the update equation
(Equation 5, inside K) which interacts with neighboring cells, so
our importance functions incorporate the same values which lap
uses. Importance functions we used take these forms:

importance1 (m1) is something like the Laplacian approxi-
mation, but the absolute value of each term is used and all coeffi-
cients are one. It is always non-negative.

m1(i, j, k) =

 |pn(i, j, k)|+
|pn(i− 1, j, k)|+ |pn(i+ 1, j, k)|+
|pn(i, j − 1, k)|+ |pn(i, j + 1, k)|+
|pn(i, j, k − 1)|+ |pn(i, j, k + 1)|

importance1(i, j, k) =

{
0 if Omit(i, j, k, t)

m1(i, j, k) otherwise

}
(8)

importance2 (m2) is something like a gradient magnitude.
m2 yields the largest magnitude of a difference between any two
nearby pressure values (Nearby(i, j, k) denotes the set of nearby

pressure values and includes the value of the cell itself). It is al-
ways non-negative.

Nearby(i, j, k) =

pn(i, j, k)),

pn(i− 1, j, k)), pn(i+ 1, j, k)),
pn(i, j − 1, k)), pn(i, j + 1, k)),
pn(i, j, k − 1)), pn(i, j, k + 1))

m2(i, j, k) = max

p1∈Nearby(i,j,k)
p2∈Nearby(i,j,k)

(p1 − p2)

importance2(i, j, k) =

{
0 if Omit(i, j, k, t)

m2(i, j, k) otherwise

}
(9)

4.2.2. Most Important Cell Retrieval

In every FDTD update pass, a limited number of cells with the
highest importance values are recomputed. To efficently ascer-
tain which cells have the highest importance, we keep a list of
update candidate cells which we call candidates. An average
case O(n) time partial sorting algorithm is used to partially sort
candidates once per time step according to the importance func-
tion. It ensures that the first N cells in the list have greater im-
portance than all others. Provided their importances are non-zero,
these cells are updated in the usual FDTD manner to finish evalu-
ation of a time step.

The number of cells to recompute, N , can be estimated ac-
cording to the approximate volume of the pulse wavefront, defined
here by the inner and outer radii, ri and ro, of an impulse wave in
an open environment. t is the simulation time.

ro = c · t
ri = c · (t− 2 · pulseCenterT ime)

ApproxWaveV ol(t) ≈ 4

3
πro

3 − 4

3
πri

3 (10)

N(t) = ApproxWaveV ol(t)÷ h3 (11)

4.2.3. Refreshing the Importance Function Efficiently

To avoid unnecessarily evaluating the importance function for
every cell at every time step, we keep a set of cell references which
we call refreshSet. Once per time step, the importance for
every cell stored in refreshSet is evaluated and all other cells are
ignored. After this, refreshSet is cleared. In a single time step
of FDTD, the importance values of only updated cells and their
immediate neighbors can change. So, whenever a cell is updated in
one time step, the cell and its neighbors are added to refreshSet
for importance re-evaluation before updates at the next time step.

4.2.4. Pseudocode

Some specific implementation details have been simplified, such
as code to avoid duplicate additions to refreshSet and the special
case for PML zones. See Algorithm 1 and UpdateSimState.

5. DISCUSSION

5.1. Analysis

Figure 1 shows howN changes during a simulation. The unshaded
portion shows the amount of computation avoided by our method.

DAFX-3

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

begin
initialize;
for t = 0...dur at increments of4t do

UpdateSimState;
Force pressure at source cells;
Record IR output at listener cells;
Prepare for next time step;

Algorithm 1: FDTD Outer Loop

begin
initialize;
candidates =List of all sim cells;
for element ∈ refreshSet do

Refresh importance of element.
refreshSet = ∅;
N = compute as in Eq. 11;
Partially sort candidates as in 4.2.2;
for i = 1...N do

updateCell(candidates[i]);
refreshSet+ = candidates[i];
refreshSet+ = All neighbors of candidates[i];

Procedure UpdateSimState

The dashed line at the top marks the total number of cells in the
FDTD grid. At the beginning of a simulation, computation is lim-
ited byN , and at the end of a simulation, it is limited by theOmit
function. The superimposed curves show the numbers of updates
done on actual runs of our algorithm in our test environments. The
configuration of the environment affects how many updates are
done by affecting the number of zero-importance cells at different
times. Zero-importance cells are not updated even if N is larger
than the number of nonzero-importance cells). Figure 2 is similar
to Figure 1, but the simulation duration is five times longer.

The first profile, Figure 1, demonstrates the context where our
method is most useful: impulse response simulations of limited
duration, such as the numerical simulation component in a hybrid
system like Yeh et al.’s Wave-ray Coupling [10]. However, even in
less ideal situations like Figure 2, our method always saves some
computation at the beginning and end of the simulation and pro-
vides a pricipled approach to restricting computation in the middle
of the simulation too, by limiting N .

0 0.01 0.02 0.03
0

5

10

x 10 4

Simulation Time

C
el

ls
 U

pd
at

ed

Total # of Cells

Figure 1: With simulation parameters from our trials in Section 6,
the shaded region is computed, the rest omitted.

0 0.05 0.1 0.15
0

5

10

x 10 4

Simulation Time

C
el

ls
 U

pd
at

ed

Total # of Cells

Figure 2: Longer duration simulation worst-case behavior.

If the simulation computes output for a continuous input in-
stead of an impulse response or if multiple source positions are
present, our method can still be used. ApproxWaveV ol would
have to be changed, which would change the shape of the early
portions of Figures 1 and 2 (for lesser performance), but the end
portions of the simulation would remain the same, since the same
distance-based cell omission can be done. Conversely, adding ad-
ditional listener positions affects the later portions of simulation
while not affecting the beginning.

5.2. N Approximation

In an environment with many absorbing surfaces (or areas open
to the simulation boundary PML regions), a tighter bound on the
wavefront volume can be made by observing that if there were no
obstacles in the environment, an expanding spherical wave would
eventually begin to leave the simulation grid. The portions of the
wave which have left the space can be subtracted from the volume
as calculated in 4.2.2.

Our presented approximation for N , estimating the wave vol-
ume in an empty environment, is not always quite enough to cap-
ture important updates at the front of a wave because the impor-
tance function is only an estimation of true update importance. In
the "worst case" of a completely open environment while the prop-
agated wave forms a spherical shell, we find it helps to inflate the
very tight wavefront volume figure by up to 20% to ensure that im-
portant cells on the leading edge of the wavefront are not missed
in simulation. In our experiment trials, we did not have to inflate
the N value, because absorbers in our environments and the edges
of the simulation space reduced the actual simulated wave volume
below the estimated wave volume before significant deterioration
took place. If, as discussed in the previous paragraph, a tighter
volume bound were used, some inflation might indeed be needed
in all cases.

6. RESULTS

We computed average performance statistics on an Intel i7-860
machine. The code was compiled and linked from C++ source
with the MSVC 2008 compiler. We ran the simulation thirty six
times for our method and thirty six times for plain FDTD. The
trials were divided evenly between six environments which to-
gether stress our algorithm and represent plausible hybrid simula-
tion scenarios: four open artificial environments with various wall
configurations between source and listener, one completely open

DAFX-4

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Time Time Speedup
Prioritized FDTD in Time

Open 1.26s 4.29s 3.41
Env. A 1.24s 4.28s 3.44
Env. B 1.04s 4.31s 4.13
Env. C 1.17s 4.27s 3.66
Env. D 1.27s 4.29s 3.38

Building 0.71s 3.59s 5.07
Column
Averages 1.11s 4.17s 3.85

Table 1: Performance results in terms of time.

Updates Updates Speedup in
Prioritized FDTD Cell Updates

Open 15.0% 100% 6.66
Env. A 14.5% 99.1% 6.82
Env. B 12.3% 99.1% 8.05
Env. C 13.7% 99.4% 7.23
Env. D 15.5% 99.5% 6.86

Building 8.2% 80.8% 9.86
Column
Averages 13.1% 96.3% 7.58

Table 2: Performance results in terms of cell updates. "Updates
FDTD" is not always 100% because updates are not made within
environment obstacles.

environment with no walls, and one generated from interior ge-
ometry of a real building. The environment dimensions were all
fixed at 7m × 7m × 2.5m and the simulated duration (0.03s, long
enough to receive all impulse wave diffractions in our trials) was
also equal across all trials. These results are shown in Tables 1,
2, and 3. "Time" columns show average computation times, "Up-
dates" columns show average percentages of updates performed
out of the maximum possible, and "Speedup" columns show the
relative performance of our method over plain FDTD. In all trials,
FDTD updates were not made for cells within solid objects. The
real building environment had the largest number of occluded cells
(around 20%).

As seen in Table 1, our approach improves average simula-
tion speeds by a factor of 3.85. When the real building environ-
ment trial is considered alone, the improvement was over a factor
of 5. Memory usage with our method was around 70% greater
than plain FDTD, to store the candidates list, refreshSet, and
other data to do things like avoid duplicate neighbor additions to
refreshSet efficiently.

Figure 3 shows response waveform comparisons of our method
to full FDTD simulation for three environments, at three different
inflation factors for N and one deflation factor for N . Each plot
has a response from our method overlaid with the full FDTD re-
sponse. The first two environments (Env. C and Env. D respec-
tively in Table 1) are artificial and mostly open, so they exhibit
a mild case of the problem explained in Section 5.2, where N is
close to the actual wave volume and the importance function does
not perfectly indicate which cells must be updated. Mild N infla-
tion helps those results converge. The third environment is the real
building environment and has many reflecting surfaces which the

0.8 1.0 1.2 2.0
N Factor N Factor N Factor N Factor

Open 42967.8 3014.0 271.3 69.7
Env. A 6148.4 517.6 138.7 49.2
Env. B 21.9 3.7 2.9 2.8
Env. C 76.5 5.9 1.9 1.3
Env. D 4343.0 241.8 25.3 12.7

Building 91.4 39.4 46.0 36.6

Table 3: Sum of squared error between waveform outputs of the
full FDTD and the prioritized method. Compare with Figure 3

other tested environments do not have. Relative computation times
as N inflation factors change are given in the caption of Figure 3.

7. CONCLUSIONS & FUTURE WORK

Our prioritized computation method accelerates FDTD wave prop-
agation. It is especially helpful in the context of a hybrid simula-
tion where a method like FDTD captures the effect of an impulse
wave diffracting in an environment. Our acceleration allows such
an impulse response simulation to be repeated more rapidly, with
better discretization, or larger environment size, to improve real
time results.

Our implementation was not parallelized, but it also does not
prevent the use of parallelization. In fact, preliminary results show
that running our method on a single CPU thread is faster than a
four-way parallel FDTD implementation we tested on four CPU
threads, at least under the trial configurations tested in Section 6. It
is future work for us to parallelize prioritized FDTD computation.

We kept the complete set of simulated cells in the candidates
list, but this list could instead be grown, starting with just the sound
source cell, by appending the contents of refreshSet at each time
step. Old irrelevant cells could likewise be removed over time. If
candidates were made shorter like this or if special considera-
tion were given to the high temporal coherence of candidates,
the running time of the partial sorting algorithm could be reduced.

The partial sorting of candidates creates an overhead over
plain FDTD in the middle of long simulations (like ones with re-
flections which must be simulated), when N approaches the full
volume of the space. In these situations, because we do not change
the pressure field representation, computation can easily be switched
between our method and plain FDTD to avoid the overhead. Com-
putation savings would still be found at the beginning and end of
the simulation time. Alternatively, an upper bound can be placed
on the size of N to guarantee that performance is always better
than ordinary FDTD while still maintaining simulation quality in
a pricipled way. While potentially deleterious in the "worst case,"
an upper bound like this could ordinarily be used because the wave
volume in a simulation typically does not approach the total envi-
ronment volume.

Finally, future work also includes testing the effectiveness of
prioritized computation in numerical techniques other than FDTD.

8. REFERENCES

[1] B. M. Gibbs and D. K. Jones, “A simple image method for
calculating the distribution of sound pressure levels within an
enclosure,” Acustica, vol. 26, pp. 24–32, 1972.

DAFX-5

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

0.01 0.015 0.02 0.025 0.03
−0.05

0

0.05

0.1

0.15

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.1

0

0.1

0.2

0.3

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.1

−0.05

0

0.05

0.1

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.05

0

0.05

0.1

0.15

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.1

0

0.1

0.2

0.3

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.1

−0.05

0

0.05

0.1

Time

A
m

pl
itu

de

(a) (b)

0.01 0.015 0.02 0.025 0.03
−0.05

0

0.05

0.1

0.15

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.1

0

0.1

0.2

0.3

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.1

−0.05

0

0.05

0.1

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.05

0

0.05

0.1

0.15

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.1

0

0.1

0.2

0.3

Time

A
m

pl
itu

de

0.01 0.015 0.02 0.025 0.03
−0.1

−0.05

0

0.05

0.1

Time

A
m

pl
itu

de

(c) (d)

Figure 3: The broken lines are the full FDTD ground truth out-
put and the solid lines are the prioritized computation output. The
three waveforms correspond to Env. C, Env. D, and Building, re-
spectively, in Tables 1, 2 and 3.
(a): 20% N deflation (10% shorter computation time than (b), but
quality suffers in some environments)
(b): No N inflation (quality suffers a little in worst-case open en-
vironments – see Section5.2)
(c): 20% N inflation (5% longer computation time than (b))
(d): 100% N inflation (12% longer computation time than (b))

[2] A. Krokstad, S. Strøm, and S. Sørsdal, “Calculating the
acoustical room response by the use of a ray tracing tech-
nique,” J. Sound Vib., vol. 8, no. 1, pp. 118–125, 1968.

[3] Norm Dadoun, David G. Kirkpatrick, and John P. Walsh,
“The geometry of beam tracing,” Proc. of the first annual
symposium on Computational geometry, pp. 55–61, 1985.

[4] Nicolas Tsingos, Simulating High Quality Virtual Sound
Fields for Interactive Graphics Applications, Ph.D. thesis,
Universite J. Fourier, Grenoble I, December 1998.

[5] Hilmar Lehnert, “Systematic errors of the ray-tracing algo-
rithm,” Applied Acoustics, vol. 38, pp. 207–221, 1993.

[6] Emmanuel Granier, Mendel Kleiner, Bengt-Inge Dalenbäck,
and Peter Svensson, “Experimental auralization of car audio
installations,” J. Audio Eng. Soc, vol. 44, no. 10, pp. 835–
849, 1996.

[7] Kane S. Yee, “Numerical solution of initial boundary value
problems involving maxwell’s equations in isotropic media,”
IEEE Transactions on Antennas and Propagation, vol. AP-
14, no. 3, pp. 301–307, May 1966.

[8] Ying Wang, Safieddin Safavi-Naeini, and Sujeet K. Chaud-
huri, “A hybrid technique based on combining ray tracing
and fdtd methods for site-specific modeling of indoor ra-
dio wave propagation,” IEEE Transactions on Antennas and
Propagation, vol. 48, pp. 743–754, 2000.

[9] S. Hampel, S. Langer, and A. P. Cisilino, “Coupling bound-
ary elements to a raytracing procedure,” International Jour-
nal for Numerical Methods in Engineering, vol. 73, pp. 427–
445, 2008.

[10] Hengchin Yeh, Ravish Mehra, Zhimin Ren, Lakulish Antani,
Ming C. Lin, and Dinesh Manocha, “Wave-ray coupling
for interactive sound propagation in large complex scenes,”
Proc. of ACM SIGGRAPH Asia (TOG), 2013.

[11] Nikunj Raghuvanshi, Rahul Narain, and Ming C. Lin, “Effi-
cient and accurate sound propagation using adaptive rectan-
gular decomposition,” IEEE Transactions on Visualization
and Computer Graphics, vol. 15, no. 5, 2009.

[12] Steve Schaffer, “Higher order multi-grid methods,” Mathe-
matics of Computation, vol. 43, no. 167, 1984.

[13] D. Zhou, W. P. Huang, C. L. Xu, D. G. Fang, and B. Chen,
“The perfectly matched layer boundary condition for scalar
finite-difference time-domain method,” IEEE Photonics
Technology Letters, vol. 13, no. 5, pp. 454–456, May 2001.

[14] Jean-Pierre Berenger, “A perfectly matched layer for the ab-
sorption of electromagnetic waves,” Journal of Computa-
tional Physics, vol. 114, pp. 185–200, 1994.

[15] Tapio Lokki, Alex Southern, and Lauri Savioja, “Studies
on seat dip effect with 3d fdtd modeling,” Proc. of Forum
Acusticum, 2011.

[16] Konrad Kowalczyk and Maarten van Walstijn, “Room acous-
tics simulation using 3-d compact explicit fdtd schemes,”
IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 19, no. 1, pp. 34–46, January 2011.

[17] Yotka S. Rickard, Natalia K. Geogieva, and Wei-Ping Huang,
“Application and optimization of pml abc for the 3-d wave
equation in the time domain,” IEEE Transactions on Anten-
nas and Propagation, vol. 51, no. 2, pp. 286–295, February
2003.

DAFX-6

	1 Introduction
	2 Previous Work
	3 Background
	4 Prioritized FDTD
	4.1 FDTD Setup
	4.2 FDTD Computation
	4.2.1 Importance Function
	4.2.2 Most Important Cell Retrieval
	4.2.3 Refreshing the Importance Function Efficiently
	4.2.4 Pseudocode

	5 Discussion
	5.1 Analysis
	5.2 N Approximation

	6 Results
	7 Conclusions & Future Work
	8 References

