
Lifelong Planning A*

Sven Koenig a, Maxim Likhachev b, and David Furcy c

aComputer Science Department, USC, Los Angeles, CA 90089
bSchool of Computer Science, CMU, Pittsburgh, PA 15213

cCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

Heuristic search methods promise to find shortest paths for path-planning problems faster
than uninformed search methods. Incremental search methods, on the other hand, promise
to find shortest paths for series of similar path-planning problems faster than is possible
by solving each path-planning problem from scratch. In this article, we develop Lifelong
Planning A* (LPA*), an incremental version of A* that combines ideas from the artificial
intelligence and the algorithms literature. It repeatedly finds shortest paths from a given
start vertex to a given goal vertex while the edge costs of a graph change or vertices are
added or deleted. Its first search is the same as that of a version of A* that breaks ties in favor
of vertices with smaller g-values but many of the subsequent searches are potentially faster
because it reuses those parts of the previous search tree that are identical to the new one. We
present analytical results that demonstrate its similarity to A* and experimental results that
demonstrate its potential advantage in two different domains if the path-planning problems
change only slightly and the changes are close to the goal.

Keywords: A*, continual planning, heuristic search, heuristic search-based planning, in-
cremental search, lifelong planning, plan reuse. replanning, and symbolic STRIPS-style
planning.

1 Overview

Artificial intelligence has investigated search methods that allow one to solve path-
planning problems in large domains. Most of the research on search methods has
studied how to solve one-shot path-planning problems. However, many artificial
intelligence systems have to adapt their plans continuously to changes of the world
or their models of the world. In these cases, the original plan might no longer apply
or might no longer be good. In this case, one needs to replan for the new situation
[1]. Examples of practical significance include the aeromedical evacuation of in-
jured people in crisis situations [2] and air campaign planning [3]. Similarly, one
needs to solve a series of similar path-planning problems if one wants to perform a

Preprint submitted to Elsevier Science 24 May 2005

series of what-if analyses or if the cost of planning operators, their preconditions,
or their effects change over time because they are learned or refined. Consequently,
search is often a repetitive process. In this situation, many artificial intelligence sys-
tems replan from scratch, that is, solve the path-planning problems independently.
However, this can be inefficient in large domains with frequent changes and thus
severely limits their responsiveness or the number of what-if analyses that they
can perform, which is often unacceptable. This problem becomes even more severe
when changes occur during planning. Fortunately, the changes to the path-planning
problems are usually small. For example, planes might no longer be able to land
on a particular airfield for the aeromedical evacuation example. This suggests that a
complete recomputation of the best plan can be wasteful since some of the previous
search results can be reused. This is what incremental search methods do. Notice
that the terminology is unfortunately somewhat problematic since the term “incre-
mental search” also refers to both on-line search and search with limited look-ahead
[4].

Although incremental search methods are not widely used in artificial intelligence,
different researchers have developed incremental versions of uninformed search
methods, mostly in the algorithms literature. Incremental search methods, such as
DynamicSWSF-FP [5], reuse information from previous searches to find shortest
paths for series of similar path-planning problems potentially faster than is possible
by solving each path-planning problem from scratch. Heuristic search methods,
such as A* [6], on the other hand, are widely used in artificial intelligence. They
use heuristic knowledge in the form of approximations of the goal distances to focus
the search and find shortest paths for path-planning problems potentially faster than
uninformed search methods.

In this article, we develop Lifelong Planning A* (LPA*), a replanning method
that is an incremental version of A*. 1 We chose its name in analogy to “life-
long learning” [7] because it reuses information from previous searches. (Other
researchers use the term continual planning for the same concept.) LPA* repeat-
edly finds shortest paths from a given start vertex to a given goal vertex in a given
graph as edges or vertices are added or deleted or the costs of edges are changed,
for example, because the cost of planning operators, their preconditions, or their
effects change from one path-planning problem to the next. LPA* generalizes both
DynamicSWSF-FP and A* and promises to find shortest paths faster than these
two search methods individually because it combines their techniques. It is easy to
understand, easy to analyze, and easy to optimize. Its first search is the same as that
of a version of A* that breaks ties among vertices with the same f-value in favor of
smaller g-values but the subsequent searches are potentially faster because it reuses

1 The artificial intelligence planning literature actually distinguishes between replanning
and plan reuse. Replanning attempts to retain as many plan steps of the previous plan as
possible. Plan reuse does not have this requirement. Strictly speaking, LPA* is a plan reuse
method rather than a replanning method.

2

those parts of the previous search tree that are identical to the new search tree, and
uses an efficient method for identifying these parts. This can reduce the search time
if large parts of the search trees are identical, for example, if the path-planning
problems change only slightly and the changes are close to the goal. LPA* can also
handle changes to the graph during its search and can be extended to inadmissible
heuristics, more efficient tie-breaking criteria, and nondeterministic graphs [8].

In the following, we first describe the path-planning problems that LPA* solves.
Second, we explain why it is possible to take advantage of information from previ-
ous searches. Third, we describe LPA* and how it takes advantage of this informa-
tion, both in the abstract and for a concrete example. Fourth, we prove properties
about its behavior, in particular its correctness, its close similarity to A*, its ef-
ficiency in terms of vertex expansions, and several other properties that help one
to understand how it operates. Fifth, we explain how to optimize it. Finally, we
evaluate it experimentally and apply it to both simple route planning and symbolic
planning.

2 Notation

Lifelong Planning A* (LPA*) solves the following path-planning problems: It ap-
plies to path-planning problems on known finite graphs whose edge costs increase
or decrease over time. (Such cost changes can also be used to model edges or ver-
tices that are added or deleted.) S denotes the finite set of vertices of the graph.
succ(s) ⊆ S denotes the set of successors of vertex s ∈ S. Similarly, pred(s) ⊆ S
denotes the set of predecessors of vertex s ∈ S. 0 < c(s, s′) ≤ ∞ denotes the cost
of moving from vertex s to vertex s′ ∈ succ(s). LPA* always determines a shortest
path from a given start vertex sstart ∈ S to a given goal vertex sgoal ∈ S, knowing
both the topology of the graph and the current edge costs. We use g∗(s) to denote
the start distance of vertex s ∈ S, that is, the cost of a shortest path from sstart to s.
The start distances satisfy the following relationship:

g∗(s) =











0 if s = sstart

mins′∈pred(s)(g
∗(s′) + c(s′, s)) otherwise.

(1)

To motivate and test LPA*, we use a special case of these search problems that
is easy to visualize. We apply LPA* to route planning in known eight-connected
gridworlds with cells whose traversability changes over time. They are either
traversable (with cost one) or untraversable. LPA* always determines a shortest
path between two given cells of the gridworld, knowing both the topology of the
gridworld and which cells are currently blocked. This is a special case of the path-

3

planning problems on eight-connected grids whose edge costs are either one or
infinity. As an approximation of the distance between two cells, we use the maxi-
mum of the absolute differences of their x and y coordinates. These heuristics are
for eight-connected gridworlds what Manhattan distances are for four-connected
gridworlds.

3 Lifelong Planning A* – Overview

Path-planning problems can be solved with traditional graph-search methods, such
as breadth-first search, if they update the shortest path every time some edge costs
change. They typically neither take advantage of available heuristics nor reuse in-
formation from previous searches. The following example, however, shows that
taking advantage of these sources of information can potentially be beneficial indi-
vidually and even more beneficial when they are combined.

Consider the gridworlds of size 15 × 20 shown in Figure 1. The original gridworld
is shown on top and the changed gridworld is shown at the bottom. We assume
that one can squeeze through diagonal obstacles, which is simply an artifact of
how we generated the underlying graphs from the gridworlds. The traversability of
only a few cells has changed. In particular, three blocked cells became traversable
(namely, A6, D2, and F5) and three traversable cells became blocked (namely, B1,
C4, E3). Thus, two percent of the cells changed their status but the obstacle density
remained the same. The figure shows the shortest paths in both cases. The shortest
path changed since one cell (C4) on the original shortest path became blocked. The
new shortest path is one step longer than the old one.

Once the start distances of all cells are known, one can easily trace back a shortest
path from the start cell to the goal cell by always greedily decreasing the start
distance, starting at the goal cell. This is similar to how A* traces the shortest path
back from sgoal to sstart using the search tree it has constructed. Thus, we only need
to determine the start distances. The start distances are shown in each traversable
cell of the original and changed gridworlds. Those cells whose start distances in
the changed gridworld have changed from the corresponding ones in the original
gridworld are shaded gray.

We investigate two different ways of decreasing the search effort for determining
the start distances for the changed gridworld.

• First, some start distances have not changed and thus need not be recom-
puted. This is what DynamicSWSF-FP [5] does. DynamicSWSF-FP, as origi-
nally stated, searches from the goal vertex to all other vertices and thus maintains
estimates of the goal distances rather than the start distances. It is a simple matter
of restating it to search from the start vertex to all other vertices. Also, to calcu-

4

Original Eight-Connected Gridworld

12

2

3

3

4

6

4

5

5

6

5

7 6

5

6

6 6

6 6

8 8

7 7 7

6 7

7

8

14159

8

12 11 10 10

7 866

7

88

9

8

9

9

11111112

1212

9

10

10

10

10

1818

11

11

10

12

14

14

14

13

12 14

14

14

15

15

15

16

16

15

15

16

17

16

15

16 17

16

1817

18

18

1 2

3 4

5 6 7

10

10 11

8

3 5 7

14

sstart sgoal12

8

55

7

7

8

3

3

3

4

6

6 6

7

777

9

7

3

4

4

5

5

9

5

5 5

6

6

6

6

7

8 9

8

9

8 9

9

12

12

11

11

11

9

9

10

1313

13

13

12 13

13

14

13

15

16

16

16

16

17

17

11

13

13

18

16

16A

B

C

D

E

F

1 2 3 4 5 6

Changed Eight-Connected Gridworld

12

2

3

4

8

4

5

9

9

10

7 6

5

6

6 6

6 6 6

10 9

7 7 7

6 7

7

9

141510

8

12 11 10 10

7 866

7

88

9

8

9

9

11111112

1212

10

10

10

10

10

1919

11

11

10

12

15

15

14

13

12 14

14

14

16

16

16

17

16

15

15

17

17

17

16

17 18

17

17

1818

19

18

1 2

3 4

5 6 7

11

12 12

8

3 5 7

15

sstart 13

8

A

B

C

D

1 2 3 4 5

55

7

7

8

3

3

3

10

10

8 6

7

889

10

7

3

4

4

5

5

9

5

5 5

6

6

6

6

9 9

8

9

8

10

12

12

11

11

11

9

9

10

1313

13

13

13 14

14

15

14

16

17

17

16

16

18

18

11

13

13

18

16

17

E

F

6

13

sgoal

Fig. 1. Simple Gridworld

late a shortest path from the start vertex to the goal vertex not all distances need
to be known even for uninformed search methods. To make DynamicSWSF-FP
more efficient and thus avoid biasing our experimental results in favor of LPA*,
we changed the termination condition of DynamicSWSF-FP so that it stops im-
mediately after it is sure that it has found a shortest path from the start vertex
to the goal vertex. The modified version of DynamicSWSF-FP is an incremental
version of breadth-first search.

• Second, heuristic knowledge, in the form of approximations of the goal dis-
tances, can be used to focus the search and determine that some start distances
need not be computed at all. This is what A* [6] does.

We demonstrate that the two ways of decreasing the search effort are orthogonal by
developing LPA* that combines both of them and thus is potentially able to replan

5

Original Eight-Connected Gridworld

sgoalsstartsgoal

uninformed search heuristic search

breadth-first search A*

DynamicSWSF-FP (with early termination) Lifelong Planning A*

in
cr

em
en

ta
l s

ea
rc

h
co

m
pl

et
e

se
ar

ch

sstart

sgoalsstart sgoalsstart

Changed Eight-Connected Gridworld

sstart sstart

sstart sgoal

uninformed search heuristic search

breadth-first search A*

DynamicSWSF-FP (with early termination) Lifelong Planning A*

in
cr

em
en

ta
l s

ea
rc

h
co

m
pl

et
e

se
ar

ch

sgoal

sstart sgoal

sgoal

Fig. 2. Performance of Search Methods in the Simple Gridworld

faster than either DynamicSWSF-FP or A*.

Figure 2 shows in gray those cells whose start distances each of the four search
methods recomputes. (To be precise: It shows in gray the cells that each of
the four search methods expands.) During the search in the original gridworld,
DynamicSWSF-FP computes the same start distances as breadth-first search dur-
ing the first search and LPA* computes the same start distances as A*. (This is
only guaranteed if the search methods break ties suitably.) During the search in
the changed gridworld, however, both incremental search (DynamicSWSF-FP) and

6

24

1 02

1

3

4 3

A

B

C

D

0 1 2 3

2

2

3

5 4

56 6 5
E

F

Start distances / heuristics

24

∞ ∞∞
∞

∞

∞ ∞

A

B

C

D

0 1 2 3

∞
∞
∞

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #1

24

∞ 0∞
∞

∞

∞ ∞

A

B

C

D

0 1 2 3

∞
∞
∞

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #2

[5;0] [6;1]

[5;1]

24

∞ 0∞
1

∞

∞ ∞

A

B

C

D

0 1 2 3

∞
∞
∞

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #3

[6;1]

[5;2]
24

∞ 0∞
1

∞

∞ ∞

A

B

C

D

0 1 2 3

2
∞
∞

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #4

[6;1]

[6;3]

24

1 0∞
1

∞

∞ ∞

A

B

C

D

0 1 2 3

2
∞
∞

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #5

[7;2]

[6;3]

[6;2]

24

1 0∞
1

∞

∞ ∞

A

B

C

D

0 1 2 3

2
2
3

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #7

[7;2]

[6;3][6;4]

24

1 0∞
1

∞

∞ ∞

A

B

C

D

0 1 2 3

2
2
∞

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #6

[7;2]

[6;3]

[6;3]

[8;3] [8;3]

24

1 0∞
1

∞

∞ 3

A

B

C

D

0 1 2 3

2
2
3

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #8

[7;2]

[7;4]

[6;4]

[8;3]

24

1 0∞
1

∞

4 3

A

B

C

D

0 1 2 3

2
2
3

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #9

[7;2]

[7;4][6;5]

[8;3]

24

1 0∞
1

∞

4 3

A

B

C

D

0 1 2 3

2
2
3

5 ∞
∞∞ ∞ ∞

E

F

Iteration #10

[7;2]

[7;4]

[8;3]

[7;6][6;6] [8;6]

24

1 0∞
1

∞

4 3

A

B

C

D

0 1 2 3

2
2
3

5 ∞
∞6 ∞ ∞

E

F

Shortest path

[7;2]

[7;4]

[8;3]

[7;6] [8;6]

5 55

4

5

2 3

3

4

3

1 3

20 1 3

Fig. 3. An Example - First Search

heuristic search (A*) individually decrease the number of start distances that need
to be recomputed compared to breadth-first search, and together (LPA*) decrease
this number even more. Note that LPA* updates only a subset of those start dis-
tances that are incorrect (either because they have changed or never been calcu-
lated). We will prove this property in the analytical section.

To illustrate the behavior of LPA*, we use the route-planning example in the eight-
connected gridworld shown in Figures 3, 4 and 5. The cells are either traversable
or blocked, and their traversability changes over time. LPA* always determines a
shortest path from start cell A3 to goal cell F0. The upper left gridworld in Figure 3
shows the true start distances in the upper left corners of the cells and the heuristics
in their lower right corners.

We first illustrate the main principle behind LPA*. LPA* maintains two estimates
of the start distance of each cell, namely a g-value and an rhs-value. The g-values
directly correspond to the g-values of an A* search. The rhs-values are one-step

7

24

1 0∞
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

5 ∞
∞6 ∞ ∞

E

F

Iteration #1

[7;2]

[7;4]

[8;3]

[7;6] [8;6]

[6;5]

24

1 0∞
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

∞ ∞
∞6 ∞ ∞

E

F

Iteration #2

[7;2]

[7;4]

[8;3]

[8;7]

[8;7]

[6;6]

24

1 0∞
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #3

[7;2]

[7;4]

[8;3]

24

1 02
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

∞ ∞
∞∞ ∞ ∞

E

F

Iteration #4

[7;4]

[8;3]

24

1 02
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

∞ 4
∞∞ ∞ ∞

E

F

Iteration #5

[8;3]

[8;5][7;5]

24

1 02
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

∞ 4
5∞ ∞ ∞

E

F

Iteration #6

[8;3]

[8;5]

[7;6]

[7;6]

24

1 02
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

6 4
5∞ ∞ ∞

E

F

Iteration #7

[8;3]

[8;5][7;7] [7;6]

24

1 02
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

6 4
5∞ 6 ∞

E

F

Iteration #8

[8;3]

[8;5][7;7]

24

1 02
1

∞

3

A

B

C

D

0 1 2 3

2
2
3

6 4
57 6 ∞

E

F

Shortest path

[8;3]

[8;5]

Fig. 4. An Example - Second Search

24

1 02

1

3

4 3

A

B

C

D

0 1 2 3

2

2

3

5 4

56 6 5
E

F

24

1 02

1

3

4 3

A

B

C

D

0 1 2 3

2

2

3

5 4

56 6 5
E

F

Fig. 5. An Example - Principle Behind LPA*

lookahead values based on the g-values and thus potentially better informed than
the g-values. Their name comes from DynamicSWSF-FP where they are the values
of the right-hand sides (rhs) of grammar rules. The rhs-value of the start cell is
zero. The rhs-value of any other cell is the minimum over all of its neighbors of
the g-value of the neighbor and the cost of moving from the neighbor to the cell in
question. Consider, for example, the g-values given in the left gridworld in Figure 5.
The rhs-value of cell A0 is three, namely the minimum of the g-value of cell A1 plus
one and the g-value of cell B1 plus one. Thus, the g-value of cell A0 equals its rhs-
value. We call such cells locally consistent. This concept is important because all
g-values are equal to the respective start distances iff all cells are locally consistent.

Now assume that one is given the g-values in the left gridworld in Figure 5, and
it is claimed that they are equal to the start distances. There are at least two dif-
ferent approaches to verify this. One approach is to perform a complete search to

8

determine the start distances and compare them to the g-values. Another approach
is to check that all cells are locally consistent, that is, that their g-values are equal
to their rhs-values, which is indeed the case. Thus, the g-values are indeed equal
to the start distances. Both approaches need the same amount of time to confirm
this. Now assume that cell D1 becomes blocked as shown in the right gridworld in
Figure 5, and it is claimed that the g-values in the cells remain equal to the start
distances. Again, there are at least two different approaches to verify this. One ap-
proach is to perform again a complete search to determine the start distances and
compare them to the g-values. The second approach is again to check that all cells
are locally consistent. Since the g-values remain unchanged, each g-value continues
to be equal to the corresponding rhs-value unless the rhs-value has changed which
is only possible if the blockage status of at least one neighbor of the corresponding
cell has changed. Thus, one needs to check only whether the cells close to changes
in the gridworld remain locally consistent, that is, cells C1 and E1. It turns out that
cell C1 remains locally consistent (its g-value and rhs-value are both three) but cell
E1 has become locally inconsistent (its g-value is five but its rhs-value is now six).
Thus, not all g-values are equal to the start distances. (This does not mean that all
g-values except the one of cell E1 are equal to the start distances.) Note that the
second approach now needs less time than the first one. Furthermore, the second
approach provides a starting point for replanning. One needs to work on the lo-
cally inconsistent cells since all cells need to be locally consistent in order for all
g-values in the cells to be equal to the start distances. Locally inconsistent cells thus
provide a starting point for replanning. However, LPA* does not make every cell
locally consistent. Instead, it uses heuristics to focus its search and updates only the
g-values that are relevant for computing a shortest path. This is the main principle
behind LPA*.

Iterations 1-10 in Figure 3 trace the behavior of the first search of LPA*. Each grid-
world shows the g-values of the cells at the beginning of an iteration. LPA* main-
tains a priority queue that always contains exactly the locally inconsistent cells.
These are the cells whose g-values LPA* potentially needs to update to make them
locally consistent. The priorities of the cells in the priority queue are pairs that are
compared according to a lexicographic ordering. The first component of the key
roughly corresponds to the f-value used by A*, and the second component roughly
corresponds to the g-value used by A*. Cells in the priority queue are shaded and
their keys are given below their g-values. LPA* always recalculates the g-value of
the cell (“expands the cell”) with the smallest key in the priority queue (shown
with a bold border in the figure). This is similar to A* that always expands the cell
with the smallest f-value in the priority queue. The initial g-values are all infinity.
LPA* always removes the cell with the smallest key from the priority queue. If the
g-value of the cell is larger than its rhs-value, LPA* sets the g-value of the cell to
its rhs-value. Otherwise, LPA* sets the g-value to infinity. LPA* then recalculates
the rhs-values of the cells potentially affected by this assignment, checks whether
the cells become locally consistent or inconsistent, and (if necessary) removes them
from or adds them to the priority queue. It then repeats this process until it is sure

9

that it has found a shortest path. LPA* expands the cells in the same order during
the first search as an A* search that breaks ties among cells with the same f-value
in favor of smaller g-values. One can then trace back a shortest path from the start
cell to the goal cell by starting at the goal cell and always greedily decreasing the
start distance. Any way of doing this results in a shortest path from the start cell to
the goal cell. Since all costs are one, this means moving from F0 (6) via E1 (5), D1
(4), C1 (3), B1 (2), and A2 (1) to A3 (0), as shown in the bottom right gridworld.
Moving in the opposite direction then results in a shortest path from cell A3 to cell
F0.

Now assume that cell D1 becomes blocked. Iterations 1-8 in Figure 4 trace the
behavior of the second search of LPA*. Note that the new blockage changes only
three start distances, namely the ones of cells D1, E1, and F0. This allows LPA* to
replan a shortest path efficiently even though the shortest path from the start cell to
the goal cell changed completely. This is an advantage of reusing parts of previous
plan-construction processes (in the form of the g-values) rather than adapting pre-
vious plans, at the cost of larger memory requirements. In particular, not only can
the g-values be used to determine a shortest path but they can also be more easily
reused than the shortest paths themselves. The number of cells in our example is
too small to result in a large advantage over an A* search but in the experimental
section we will report more substantial savings in larger gridworlds.

4 Lifelong Planning A* – Details

So far, we have given some intuition about how LPA* works. We now explain
the details. LPA* is an incremental version of A* that applies to the same finite
path-planning problems as A*. It shares with A* the fact that it uses nonnega-
tive and consistent heuristics h(s) [9] that approximate the goal distances of the
vertices s to focus its search. Consistent heuristics obey the triangle inequality
h(sgoal) = 0 and h(s) ≤ c(s, s′) + h(s′) for all vertices s ∈ S and s′ ∈ succ(s)
with s 6= sgoal. For example, the heuristics that we used in the context of the grid-
worlds, (namely the maximum of the absolute differences of the x and y coordinates
of a cell and the goal cell) are consistent. LPA* reduces to a version of A* that
breaks ties among vertices with the same f-value in favor of smaller g-values when
LPA* is used to search from scratch and to a version of DynamicSWSF-FP that
applies to path-planning problems and terminates earlier than the original version
of DynamicSWSF-FP (as described above) when LPA* is used with uninformed
(that is, zero) heuristics. These statements assume that A* and DynamicSWSF-FP
break ties among vertices with the same f-values suitably. 2

2 To be precise: LPA* differs from DynamicSWSF-FP only in the calculation of the pri-
orities for the vertices in the priority queue (Line {01} in the pseudo code in Figure 6)
and the termination condition {09}. DynamicSWSF-FP calculates the key of vertex s as

10

The pseudocode uses the following functions to manage the priority queue: U.TopKey() returns the smallest priority of all
vertices in priority queue U . (If U is empty, then U.TopKey() returns [∞;∞].) U.Pop() deletes the vertex with the smallest
priority in priority queue U and returns the vertex. U.Insert(s, k) inserts vertex s into priority queue U with priority k.
Finally, U.Remove(s) removes vertex s from priority queue U .

procedure CalculateKey(s)
{01} return [min(g(s), rhs(s)) + h(s);min(g(s), rhs(s))];

procedure Initialize()
{02} U = ∅;
{03} for all s ∈ S rhs(s) = g(s) = ∞;
{04} rhs(sstart) = 0;
{05} U.Insert(sstart, [h(sstart); 0]);

procedure UpdateVertex(u)
{06} if (u 6= sstart) rhs(u) = mins′∈pred(u)(g(s′) + c(s′, u));
{07} if (u ∈ U) U.Remove(u);
{08} if (g(u) 6= rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
{09} while (U.TopKey()<̇CalculateKey(sgoal) OR rhs(sgoal) 6= g(sgoal))
{10} u = U.Pop();
{11} if (g(u) > rhs(u))
{12} g(u) = rhs(u);
{13} for all s ∈ succ(u) UpdateVertex(s);
{14} else
{15} g(u) = ∞;
{16} for all s ∈ succ(u) ∪ {u} UpdateVertex(s);

procedure Main()
{17} Initialize();
{18} forever
{19} ComputeShortestPath();
{20} Wait for changes in edge costs;
{21} for all directed edges (u, v) with changed edge costs
{22} Update the edge cost c(u, v);
{23} UpdateVertex(v);

Fig. 6. Lifelong Planning A*

4.1 Lifelong Planning A*: The Variables

LPA* maintains an estimate g(s) of the start distance g∗(s) of each vertex s. The
initial search of LPA* calculates the g-values of each vertex in exactly the same
order as A*. LPA* then carries the g-values forward from search to search. LPA*
also maintains a second kind of estimate of the start distances. The rhs-values are
one-step lookahead values (based on the g-values) that always satisfy the following
relationship (Invariant 1) according to Lemma 1 in the appendix:

rhs(s) =











0 if s = sstart

mins′∈pred(s)(g(s′) + c(s′, s)) otherwise.
(2)

k(s) = min(g(s), rhs(s)). LPA* calculates the same key when it is used with uninformed
heuristics. In that case, the first and second components of the key are identical and only
the first component needs to be used. The termination condition of the original version of
DynamicSWSF-FP is “while (U 6= ∅).”

11

A vertex is called locally consistent iff its g-value equals its rhs-value. This con-
cept is similar to satisfying the Bellman equation for undiscounted deterministic
sequential decision problems [10]. If all vertices are locally consistent then all of
their g-values satisfy

g(s) =











0 if s = sstart

mins′∈pred(s)(g(s′) + c(s′, s)) otherwise.
(3)

A comparison to Equation 1 shows that all g-values are equal to their respective
start distances. Thus, the g-values of all vertices equal their start distances iff all
vertices are locally consistent. This concept is important because one can then trace
back a shortest path from sstart to any vertex u by always moving from the current
vertex s, starting at u, to any predecessor s′ that minimizes g(s′) + c(s′, s) until
sstart is reached (ties can be broken arbitrarily). However, LPA* does not make
every vertex locally consistent. Instead, it uses the heuristics to focus the search
and updates only the g-values that are relevant for computing a shortest path.

A* maintains an OPEN and a CLOSED list. The CLOSED list allows A* to avoid
vertex reexpansions. LPA* does not maintain a CLOSED list since it uses local
consistency checks to avoid vertex reexpansions. The OPEN list is a priority queue
that allows A* to always expand a fringe vertex with a smallest f-value. LPA*
also maintains a priority queue for this purpose. Its priority queue always contains
exactly the locally inconsistent vertices (Invariant 2) according to Lemma 2. The
keys of the vertices in the priority queue roughly correspond to the f-values used by
A*, and LPA* always recalculates the g-value of the vertex (“expands the vertex”)
in the priority queue with the smallest key. This is similar to A* that always expands
the vertex in the priority queue with the smallest f-value. By expanding a vertex, we
mean executing {10-16} (numbers in brackets refer to line numbers in Figure 6).
The key k(s) of vertex s is a vector with two components:

k(s) = [k1(s); k2(s)], (4)

where k1(s) = min(g(s), rhs(s))+h(s) and k2(s) = min(g(s), rhs(s)) {01}. The
priority of a vertex in the priority queue is always the same as its key (Invariant 3)
according to Lemma 3. Keys are compared according to a lexicographic ordering.
For example, a key k(s) is less than or equal to a key k′(s), denoted by k(s)≤̇k′(s),
iff either k1(s) < k′

1(s) or (k1(s) = k′
1(s) and k2(s) ≤ k′

2(s)). The first component
of the keys k1(s) corresponds directly to the f-values f(s) := g∗(s) + h(s) used by
A* because both the g-values and rhs-values of LPA* correspond to the g-values of
A* and the h-values of LPA* correspond to the h-values of A*. 3 The second com-
ponent of the keys k2(s) corresponds to the g-values of A*. LPA* always expands

3 It turns out that using only the first component of the keys as priority is insufficient

12

the vertex in the priority queue with the smallest k1-value, which corresponds to the
f-value of an A* search, breaking ties in favor of the vertex with the smallest k2-
value, which corresponds to the g-value of an A* search. This is similar to A* that
always expands the vertex in the priority queue with the smallest f-value, break-
ing ties towards smallest g-values. The resulting behavior of LPA* and A* is also
similar. The keys of the vertices expanded by LPA* are nondecreasing over time
according to Theorem 1. This is similar to A* where the f-values of the expanded
vertices are also nondecreasing over time (since the heuristics are consistent), and –
if A* breaks ties among vertices with the same f-values in favor of smaller g-values
– [f(s); g(s)] is also nondecreasing over time (since all children of an expanded
vertex have strictly larger g-values than the expanded vertex itself).

4.2 Lifelong Planning A*: The Algorithm

LPA* is shown in Figure 6. The main function Main() first calls Initialize() to ini-
tialize the path-planning problem {17}. Initialize() sets the initial g-values of all
vertices to infinity and sets their rhs-values according to Equation 2 {03-04}. Thus,
initially sstart is the only locally inconsistent vertex and is inserted into the oth-
erwise empty priority queue with a key calculated according to Equation 4 {05}.
This initialization guarantees that the first call to ComputeShortestPath() performs
exactly an A* search, that is, expands exactly the same vertices as A* in exactly
the same order, provided that A* breaks ties among vertices with the same f-values
suitably. Note that, in an actual implementation, Initialize() only needs to initialize
a vertex when it encounters it during the search and thus does not need to initialize
all vertices up front. This is important because the number of vertices can be large
and only a few of them might be reached during the search. LPA* then waits for
changes in edge costs {20}. To maintain Invariants 1-3 if some edge costs have
changed, it calls UpdateVertex() {23} to update the rhs-values and keys of the ver-
tices potentially affected by the changed edge costs as well as their membership
in the priority queue if they become locally consistent or inconsistent, and finally
recalculates a shortest path {19} by calling ComputeShortestPath(), that repeatedly
expands locally inconsistent vertices in order of their priorities {10}.

A locally inconsistent vertex s is called locally overconsistent iff g(s) > rhs(s).
When ComputeShortestPath() expands a locally overconsistent vertex {12-13},
then it sets the g-value of the vertex to its rhs-value {12}, which makes the vertex
locally consistent. A locally inconsistent vertex s is called locally underconsistent
iff g(s) < rhs(s). When ComputeShortestPath() expands a locally underconsis-
tent vertex {15-16}, then it simply sets the g-value of the vertex to infinity {15}.
This makes the vertex either locally consistent or overconsistent. If the expanded

to imply Theorem 4 and thus insufficient to guarantee the efficiency of LPA* in terms of
vertex expansions.

13

vertex was locally overconsistent, then the change of its g-value can affect the lo-
cal consistency of its successors {13}. Similarly, if the expanded vertex was locally
underconsistent, then it and its successors can be affected {16}. To maintain Invari-
ants 1-3, ComputeShortestPath() therefore updates the rhs-values of these vertices,
checks their local consistency, and adds them to or removes them from the priority
queue accordingly {06-08}.

LPA* expands vertices until sgoal is locally consistent and the key of the vertex to
expand next is no less than the key of sgoal. This is similar to A* that expands ver-
tices until it expands sgoal at which point in time the g-value of sgoal equals its start
distance and the f-value of the vertex to expand next is no less than the f-value of
sgoal. If g(sgoal) = ∞ after the search, then there is no finite-cost path from sstart

to sgoal. Otherwise, one can trace back a shortest path from sstart to sgoal by always
moving from the current vertex s, starting at sgoal, to any predecessor s′ that mini-
mizes g(s′)+c(s′, s) until sstart is reached (ties can be broken arbitrarily) according
to Theorem 5. This is similar to what A* can do if it does not use backpointers.

5 Analytical Results

We now present some properties of LPA* that provide insight into how it works
and show that it terminates, is correct, similar to A*, and efficient in terms of vertex
expansions. The proofs of all theorems are given in the appendix.

One of the most fundamental theorems for explaining the operation of LPA* is the
next one about the order in which LPA* expands vertices.

Theorem 1 The keys of the vertices that ComputeShortestPath() selects for expan-
sion on line {10} are monotonically nondecreasing over time until ComputeShort-
estPath() terminates.

Theorem 1 allows one to prove several properties of ComputeShortestPath(). For
example, consider a locally consistent vertex whose key is less than U.TopKey(),
that is, the smallest key of any locally inconsistent vertex. Its g-value can change
only when it is expanded again. Consequently, its key cannot increase and must
remain less than U.TopKey() since U.TopKey() is monotonically nondecreasing
according to Theorem 1. Thus, the vertex cannot be expanded again. The next the-
orem proves that this remains true for locally consistent vertices whose keys are
less than or equal to U.TopKey().

Theorem 2 Let k = U.TopKey() during the execution of line {09}. If vertex s is lo-
cally consistent at this point in time with k(s)≤̇k, then it remains locally consistent
until ComputeShortestPath() terminates.

14

Now assume that ComputeShortestPath() expands a locally overconsistent vertex.
ComputeShortestPath() sets the g-value of the vertex to its rhs-value {12}. This
does not change its rhs-value nor its key but makes it locally consistent. Conse-
quently, the vertex satisfies the conditions of Theorem 2 and thus remains locally
consistent until ComputeShortestPath() terminates, which proves the next theorem.

Theorem 3 If a locally overconsistent vertex is selected for expansion on line
{10}, then it is locally consistent the next time line {09} is executed and remains
locally consistent until ComputeShortestPath() terminates.

5.1 Termination and Correctness

Theorem 3 implies that ComputeShortestPath() expands any locally overconsistent
vertex at most once until it terminates. Now assume that ComputeShortestPath()
expands a locally underconsistent vertex. ComputeShortestPath() sets the g-value
of the vertex to infinity {15}. This makes the vertex either locally consistent or
overconsistent. Since the g-value of a vertex changes only when it is expanded, the
vertex cannot become locally underconsistent before it is expanded again. Thus, if
the vertex is expanded again, it is expanded as locally overconsistent and, as just
argued, is then not expanded again until ComputeShortestPath() terminates. Thus,
ComputeShortestPath() expands each vertex at most twice and therefore terminates.

Theorem 4 ComputeShortestPath() expands each vertex at most twice, namely at
most once when it is locally underconsistent and at most once when it is locally
overconsistent, and thus terminates.

All theorems stated so far hold for the termination condition of ComputeShort-
estPath() {09} and the modified termination condition “while U is not empty.”
ComputeShortestPath() with the latter termination condition terminates when all
vertices are locally consistent and thus when the g-values of all vertices equal their
start distances. In this case, one can trace back a shortest path from sstart to any ver-
tex s′′ by always moving from the current vertex s, starting at s′′, to any predecessor
s′ that minimizes g(s′) + c(s′, s) until sstart is reached (ties can be broken arbitrar-
ily). However, the modified termination condition expands too many vertices since
one only needs to find a shortest path from sstart to sgoal. For example, Theorem 2
shows that, if the goal vertex is locally consistent during the execution of line {09}
and its key is less than or equal to U.TopKey(), then it remains locally consis-
tent until ComputeShortestPath() terminates. Thus, its g-value no longer changes.
The g-value of the goal vertex equals its start distance after ComputeShortestPath()
with the modified termination condition terminates. Thus, it was equal to its start
distance since its last expansion. This implies that the g-value of the goal vertex
also equals its start distance after ComputeShortestPath() with the actual termina-
tion condition {09} terminates. Furthermore, one can show that, if the goal vertex

15

is locally consistent during the execution of line {09} and its key is less than or
equal to U.TopKey(), that is, after ComputeShortestPath() with the actual termina-
tion condition {09} terminates, then one can find a shortest path from sstart to sgoal

in exactly the same way as stated for the modified termination condition, which
proves the next theorem.

Theorem 5 After ComputeShortestPath() terminates, one can trace back a shortest
path from sstart to sgoal by always moving from the current vertex s, starting at sgoal,
to any predecessor s′ that minimizes g(s′) + c(s′, s) until sstart is reached (ties can
be broken arbitrarily).

5.2 Similarity to A*

In Section 4, we pointed out strong algorithmic similarities between LPA* and A*.
The next theorems show additional similarities between LPA* and A*.

Theorem 4 already showed that ComputeShortestPath() expands each vertex at
most twice. This is similar to A*, that expands each vertex at most once. Thus,
ComputeShortestPath() returns after a number of vertex expansions that is at most
twice the number of vertices.

The next three theorems show that ComputeShortestPath() expands locally over-
consistent vertices in a way very similar to how A* expands vertices. The next
theorem, for example, shows that the first component of the key of a locally over-
consistent vertex at the time ComputeShortestPath() expands it is the same as the
f-value of the vertex. The second component of its key is its start distance.

Theorem 6 Whenever ComputeShortestPath() selects a locally overconsistent ver-
tex s for expansion on line {10}, then its key is k(s)=̇[f(s); g∗(s)].

Theorem 1 showed that ComputeShortestPath() expands vertices in order of mono-
tonically nondecreasing keys. Thus, Theorem 6 implies that ComputeShortest-
Path() expands locally overconsistent vertices in order of monotonically nonde-
creasing f-values and vertices with the same f-values in order of monotonically
nondecreasing start distances. A* has the same property provided that it breaks ties
in favor of vertices with smaller start distances.

Theorem 7 ComputeShortestPath() expands locally overconsistent vertices s with
finite f-values in the same order as A* (possibly except for vertices with the same
[f(s); g∗(s)] keys), provided that A* always breaks ties among vertices with the
same f-values in favor of vertices with the smallest start distances and in case of
remaining ties expands sgoal last.

Note, however, that most of the vertices expanded by A* are usually not expanded

16

by ComputeShortestPath(). The next theorem shows that ComputeShortestPath()
expands at most those locally overconsistent vertices whose f-values are less than
the f-value of the goal vertex and those vertices whose f-values are equal to the f-
value of the goal vertex and whose start distances are less than or equal to the start
distance of the goal vertex. A* has the same property provided that it breaks ties
in favor of vertices with smaller start distances. (Theorem 11 points out a related
similarity of LPA* and A*.)

Theorem 8 ComputeShortestPath() expands at most those locally overconsistent
vertices s with [f(s); g∗(s)]≤̇[f(sgoal); g

∗(sgoal)].

The next theorem shows that the search tree of LPA* contains the search tree of
A*. This is not surprising since LPA* finds shortest paths and every search method
that finds shortest paths has to expand at least the vertices that A* with the same
heuristics expands, except possibly for some vertices whose f-values are equal to
the f-value of the goal vertex [9].

Theorem 9 LPA* shares with A* the following property for sgoal and all ver-
tices s that A* expands (possibly except for vertices with [f(s); g∗(s)] =
[f(sgoal); g

∗(sgoal)]), provided that A* always breaks ties among vertices with the
same f-values in favor of vertices with the smallest start distances and its g-values
are assumed to be infinity if A* has not calculated them: The g-values of these ver-
tices s equal their respective start distances after termination and one can trace
back a shortest path from sstart to them by always moving from the current vertex
s′, starting at s, to any predecessor s′′ that minimizes g(s′′) + c(s′′, s′) until sstart

is reached (ties can be broken arbitrarily).

5.3 Efficiency

We now show that LPA* can expand fewer vertices than suggested by Theorem 4.
The next theorem shows that LPA* is efficient because it performs incremental
searches and thus calculates only those g-values that have been affected by cost
changes or have not been calculated yet in previous searches.

Theorem 10 ComputeShortestPath() does not expand any vertices whose g-values
were equal to their respective start distances before ComputeShortestPath() was
called.

Our final theorem shows that LPA* is efficient because it performs heuristic
searches and thus calculates only the g-values of those vertices that are important
to determine a shortest path. Theorem 8 has already shown how heuristics limit the
number of locally overconsistent vertices expanded by ComputeShortestPath(). The
next theorem generalizes this result to all locally inconsistent vertices expanded by
ComputeShortestPath().

17

Theorem 11 ComputeShortestPath() expands at most those vertices s with
[f(s); g∗(s)]≤̇[f(sgoal); g

∗(sgoal)] or [fold(s); gold(s)]≤̇[f(sgoal); g
∗(sgoal)], where

gold(s) is the g-value and fold(s) = gold(s) + h(s) is the f-value of vertex s di-
rectly before the call to ComputeShortestPath().

More informed heuristics are larger and thus [f(s); g∗(s)] and [fold(s); gold(s)] are
larger. This implies that fewer vertices s satisfy [f(s); g∗(s)]≤̇[f(sgoal); g

∗(sgoal)] or
[fold(s); gold(s)]≤̇[f(sgoal); g

∗(sgoal)]=̇[g∗(sgoal), g
∗(sgoal)] and can get expanded

by ComputeShortestPath() according to the previous theorem.

Note, however, that incremental search is not more efficient than search from
scratch in the worst case [11]. Replanning with LPA* can best be understood as
transforming the A* search tree of the old search problem to the A* search tree of
the new one. This results in some computational overhead since parts of the old A*
search tree need to be undone. It also results in computational savings since other
parts of the old A* search tree can be reused. The larger the overlap between the
old and new A* search trees, the more efficient replanning with LPA* tends to be
compared to using A* to create the new search tree from scratch. To be more pre-
cise: It is not only important that the trees are similar but most start distances of its
vertices have to be the same as well. LPA* can be less efficient than A* if the over-
lap between the old and new A* search trees is small. Note also that LPA* needs
about the same amount of memory as A* since it needs to remember the previous
search tree. Therefore, the search trees need to fit in memory, which is a realistic
assumption, for example, when searching maps in robotics, computer gaming, or
network routing, in addition to the application discussed in the second part of this
article.

6 Optimizations of Lifelong Planning A*

There are several ways of optimizing LPA*, including modifying the termination
condition of ComputeShortestPath() {09}. As stated, ComputeShortestPath() ter-
minates when the goal vertex is locally consistent and its key is less than or equal
to U.TopKey(). However, ComputeShortestPath() can also terminate when the goal
vertex is locally overconsistent and its key is less than or equal to U.TopKey(). To
understand why this is so, assume that the goal vertex is indeed locally overcon-
sistent and its key is less than or equal to U.TopKey(). Then, its key must be equal
to U.TopKey() since U.TopKey() is the smallest key of any locally inconsistent
vertex. Thus, ComputeShortestPath() could expand the goal vertex next, in which
case it would set its g-value to its rhs-value. The goal vertex then becomes locally
consistent according to Theorem 3, its key is less than or equal to U.TopKey(),
and ComputeShortestPath() thus terminates. At this point in time, the g-value of
the goal vertex equals its start distance. Thus, ComputeShortestPath() can already
terminate when the goal vertex is locally overconsistent and its key is less than or

18

The pseudocode uses the following functions to manage the priority queue: U.Top() returns a vertex with the smallest
priority of all vertices in priority queue U . U.TopKey() returns the smallest priority of all vertices in priority queue U .
(If U is empty, then U.TopKey() returns [∞;∞].) U.Insert(s, k) inserts vertex s into priority queue U with priority k.
U.Update(s, k) changes the priority of vertex s in priority queue U to k. (It does nothing if the current priority of vertex s
already equals k.) Finally, U.Remove(s) removes vertex s from priority queue U .

procedure CalculateKey(s)
{01’} return [min(g(s), rhs(s)) + h(s);min(g(s), rhs(s))];

procedure Initialize()
{02’} U = ∅;
{03’} for all s ∈ S
{04’} rhs(s) = g(s) = ∞;
{05’} p(s) = NULL;
{06’} rhs(sstart) = 0;
{07’} U.Insert(sstart, [h(sstart); 0]);

procedure UpdateVertex(u)
{08’} if (g(u) 6= rhs(u) AND u ∈ U) U.Update(u, CalculateKey(u));
{09’} else if (g(u) 6= rhs(u) AND u /∈ U) U.Insert(u, CalculateKey(u));
{10’} else if (g(u) = rhs(u) AND u ∈ U) U.Remove(u);

procedure ComputeShortestPath()
{11’} while (U.TopKey()<̇CalculateKey(sgoal) OR rhs(sgoal) > g(sgoal))
{12’} u = U.Top();
{13’} if (g(u) > rhs(u))
{14’} g(u) = rhs(u);
{15’} U.Remove(u);
{16’} for all s ∈ succ(u)
{17’} if (rhs(s) > g(u) + c(u, s))
{18’} p(s) = u;
{19’} rhs(s) = g(u) + c(u, s);
{20’} UpdateVertex(s);
{21’} else
{22’} g(u) = ∞;
{23’} for all s ∈ succ(u) ∪ {u}
{24’} if (s 6= sstart AND p(s) = u)
{25’} p(s) = arg mins′∈pred(s)(g(s′) + c(s′, s));
{26’} rhs(s) = g(p(s)) + c(p(s), s);
{27’} UpdateVertex(s);

procedure Main()
{28’} Initialize();
{29’} forever
{30’} ComputeShortestPath();
{31’} Wait for changes in edge costs;
{32’} for all directed edges (u, v) with changed edge costs
{33’} cold = c(u, v);
{34’} Update the edge cost c(u, v);
{35’} if (cold > c(u, v))
{36’} if (rhs(v) > g(u) + c(u, v))
{37’} p(v) = u;
{38’} rhs(v) = g(u) + c(u, v);
{39’} UpdateVertex(v);
{40’} else
{41’} if (v 6= sstart AND p(v) = u)
{42’} p(v) = arg mins′∈pred(v)(g(s′) + c(s′, v));
{43’} rhs(v) = g(p(v)) + c(p(v), v);
{44’} UpdateVertex(v);

Fig. 7. Lifelong Planning A* (optimized version)

equal to U.TopKey(). In this case, the goal vertex is not expanded. Its rhs-value
equals its start distance but its g-value is not updated and thus does not equal its
start distance. However, the procedure for tracing back a shortest path from the
start vertex to the goal vertex does not depend on the g-value of the goal vertex
and thus can be used unchanged. If the rhs-value of the goal vertex is infinity then
there is no path from the start vertex to the goal vertex. This optimization avoids

19

expanding all vertices whose keys are the same as the key of sgoal, which could
potentially be a large number of vertices.

In the following, we describe several other simple ways of optimizing LPA* that do
not change which vertices LPA* expands or in which order it expands them. The
resulting version of LPA* is shown in Figure 7.

• A vertex sometimes is removed from the priority queue and then immediately
reinserted with a different key. For example, a vertex can be removed on line
{07} and then be reentered on line {08}. In this case, it is often more efficient
to leave the vertex in the priority queue, update its key, and only change its
position in the priority queue {08’}.

• When UpdateVertex() on line {13} computes the rhs-value for a successor of
a locally overconsistent vertex it is unnecessary to take the minimum over all
of its predecessors. It is sufficient to compute the rhs-value as the minimum of
its old rhs-value and the sum of the new g-value of the locally overconsistent
vertex and the cost of moving from the locally overconsistent vertex to the
successor {19’}. The reason is that only the g-value of the locally overconsistent
vertex has changed. Since it decreased, it can only decrease the rhs-value of the
successor.

• When UpdateVertex() on line {16} computes the rhs-value for a successor of a
locally underconsistent vertex, the only g-value that has changed is the g-value
of the locally underconsistent vertex. Since it increased, the rhs-value of the
successor can only be affected if its old rhs-value was based on the old g-value
of the locally underconsistent vertex. This can be used to decide whether the
successor needs to be updated and its rhs-value needs to be recomputed {26’}.

• The second and third optimizations concern the computations of the rhs-values
of the successors after the g-value of a vertex has changed. Similar optimizations
can be made for the computation of the rhs-value of a vertex after the cost of
one of its incoming edges has changed {38’,43’}.

• Finally, we introduce new variables p(s) that satisfy the invariants rhs(s) =
g(p(s)) + c(p(s), s) for all vertices s to avoid some calculations. For example,
we can now write “if (s 6= sstart AND p(s) = u)” {24’} instead of the more
cumbersome similar “if (s 6= sstart AND rhs(s) = g(u) + c(u, s)).”

Also, we have not included two optimizations in the pseudocode because they make
it somewhat messy. One optimization is to initialize the data structures of vertices
only when the vertices are encountered during the search rather than up front in
Initialize(). The other optimization is to continue the while-loop of ComputeShort-
estPath() only if the heuristic value of the vertex with the smallest key in the prior-
ity queue is finite. This is similar to A* that can terminate if it is about to expand a

20

vertex with an infinite f-value. The second optimization was not used in the exper-
imental evaluation of LPA*.

7 Extensions of Lifelong Planning A*

The costs of edges can change during replanning. In this case, it can be more ef-
ficient to take the changed edge costs into account before ComputeShortestPath()
terminates than to wait until it does. This requires one to modify ComputeShort-
estPath() so that it continues to maintain Invariants 1-3, which can be done by pro-
cessing all edges with changed edge costs before the while loop in ComputeShort-
estPath() iterates, by copying lines {21-23} and inserting them directly after line
{16} into the while loop. In this case, Theorem 5 continues to hold but some of
the other theorems might not, including Theorem 4. For example, a vertex that has
already been expanded twice and thus is locally consistent can, after each change of
edge costs, again become locally inconsistent and thus be expanded up to two more
times. On the other hand, a vertex that is locally inconsistent can, after a change of
edge costs, become locally consistent and thus might not get expanded at all.

8 Experimental Evaluation

We now compare breadth-first search, A*, DynamicSWSF-FP, and the optimized
version of LPA* experimentally. We use DynamicSWSF-FP with the same opti-
mizations that we developed for LPA*, to avoid biasing our experimental results in
favor of LPA*. We study two versions of A*, namely one that breaks ties among
vertices with the same f-value in favor of vertices with smaller g-values (A* ver-
sion 1), just like LPA*, and one that breaks ties among vertices with the same
f-value in favor of vertices with larger g-values (A* version 2), which tends to re-
sult in fewer vertex expansions. The priority queues of all search methods were
implemented as binary heaps. Since all search methods determine shortest paths,
we need to compare their total search time until a shortest path has been found. To
this end, we measure their actual runtimes ti (in milliseconds), run on a Pentium
1.7 MHz PC. Since the runtimes are machine dependent, they make it difficult for
others to reproduce the results of our performance comparison. We therefore also
use two performance measures that both correspond to common operations per-
formed by the search methods and thus heavily influence their runtimes, yet are
machine independent: the total number of vertex expansions ve (that is, updates of
the g-values, similar to backup operations of dynamic programming for sequential
decision problems), and the total number of heap percolates hp (exchanges of a
parent and child in the heap). Note that we count two vertex expansions, not just
one vertex expansion, if LPA* expands the same vertex twice, to avoid biasing our

21

uninformed search heuristic search

complete search Breadth-First Search A* Version 1 (A* Version 2)

ve = 1240.04 ve = 307.93 (255.58)

hp = 5232.67 hp = 2021.92 (2059.81)

ti = 0.249 ti = 0.083 (0.077)

incremental search DynamicSWSF-FP LPA*

ve = 104.91 ve = 23.71

hp = 491.08 hp = 212.43

ti = 0.036 ti = 0.015

Fig. 8. Comparison of Search Methods in Gridworlds with Random Edge Costs

uninformed search heuristic search

complete search Breadth-First Search A* Version 1 (A* Version 2)

ve = 1124.23 ve = 241.77 (103.33)

hp = 3612.74 hp = 1003.50 (820.79)

ti = 0.226 ti = 0.064 (0.040)

incremental search DynamicSWSF-FP LPA*

ve = 91.47 ve = 15.56

hp = 482.87 hp = 137.68

ti = 0.039 ti = 0.018

Fig. 9. Comparison of Search Methods in Gridworlds with Random Obstacles

experimental results in favor of LPA*.

We performed experiments with four-connected gridworlds of size 51 × 51 with
directed edges between adjacent cells. We use the Manhattan distances as heuristics
for the cost of a shortest path between two cells for both A* and LPA*, that is, the
sum of the absolute differences of their x- and y-coordinates. We generate one
hundred gridworlds. The start and goal cells are drawn with uniform probability
from all cells for each gridworld. All edge costs are either one or two with uniform
probability. We then change each gridworld five hundred times in a row by selecting
0.6 percent of the edges (with replacement) and assigning them random costs. After
each change, the search methods recompute a shortest path. Figure 8 reports the
average over the one hundred gridworlds for each search method and the three
performance measures (per replanning episode). Both versions of A* perform about
equally well; the tie-breaking rule does not make a difference in our gridworlds.

22

We also performed experiments with four-connected gridworlds of size 51 × 51
with obstacles. We again use the Manhattan distances as heuristics for the cost of
a shortest path between two cells, generate one hundred gridworlds, and draw the
start and goal cells with uniform probability from all cells for each gridworld. Each
cell is blocked with 20 percent probability. Blocked cells have neither incoming nor
outgoing edges but there exist edges from unblocked cells to adjacent unblocked
cells. Their costs are one. We then change each gridworld five hundred times in a
row by randomly selecting eight unblocked cells and making them blocked, and
randomly selecting eight blocked cells and making them unblocked. Thus, the ob-
stacle density remains unchanged but about 0.6 percent of the cells change their
blockage status. After each of the changes, the search methods recompute a short-
est path. Figure 9 reports the average over the one hundred gridworlds for each
search method and the three performance measures (per replanning episode). A*
version 2 outperforms A* version 1 in these gridworlds because there are often
multiple shortest paths and a large number of cells on these paths have f-values that
are equal to the f-value of the goal cell. A* version 1 expands all of these cells,
whereas A* version 2 expands only those cells on one of the shortest paths. Thus, it
appears to be a disadvantage that LPA* breaks ties in the same way as A* version 1.
However, the fact that LPA* finds all shortest paths during the first planning episode
speeds up replanning when some of them get blocked, and LPA* outperforms even
A* version 2 in the long run. This suggests that tie-breaking might become less
important as the number of replanning episodes increases.

Both tables confirm the observations made in Section 3. Each of the three perfor-
mance measures is improved when going from an uninformed to a heuristic search
and from a complete to an incremental search, although this is not guaranteed in
general. LPA* outperforms the other search methods according to all performance
measures. Thus, combining lifelong and heuristic searches can indeed speed up
replanning. Note, however, that the exact number of vertex expansions and heap
percolates depends on low-level implementation and machine details, for example,
how the graphs are constructed from the gridworlds and in which order successors
are generated when vertices are expanded. Similarly, the differences in runtime de-
pend on the instruction set of the processor, the optimizations performed by the
compiler, and the data structures used for the priority queues. For example, LPA*
needs more time per vertex expansion than both versions of A* but the resulting
difference in runtime could potentially be decreased in favor of LPA* by optimiz-
ing LPA* by “unrolling” its code into code for the first iteration and code for all
subsequent iterations and then deleting all unnecessary code from the code for the
first iteration. Similarly, LPA* needs fewer heap percolates than both versions of
A* but the resulting difference in runtime can be decreased in favor of A* by us-
ing buckets to implement the priority queues rather than heaps. For example, the
runtime of A* decreased from 0.083 and 0.077 milliseconds to 0.035 milliseconds
in the experiment of Figure 8 when we implemented A* with buckets and a simple
FIFO tie-breaking strategy within buckets.

23

edge cost changes path cost changes A* version 1 A* version 2 LPA*

#1 and #2 #1 and #2 #1 #2 #3 #4

0.2% 3.0% 0.302 0.299 0.386 0.029 10.370× 1

0.4% 7.9% 0.340 0.336 0.419 0.067 5.033× 1

0.6% 13.0% 0.365 0.362 0.453 0.108 3.344× 1

0.8% 17.6% 0.410 0.406 0.499 0.156 2.603× 1

1.0% 20.5% 0.373 0.370 0.434 0.174 2.126× 1

1.2% 24.6% 0.414 0.413 0.476 0.222 1.858× 1

1.4% 28.7% 0.470 0.468 0.539 0.282 1.657× 1

1.6% 32.6% 0.504 0.500 0.563 0.332 1.507× 1

1.8% 32.1% 0.479 0.455 0.497 0.328 1.384× 1

2.0% 33.8% 0.401 0.394 0.433 0.315 1.249× 1

Fig. 10. Experiment 1

We also performed more detailed experiments that compare LPA* with the two ver-
sions of A*. We use again four-connected gridworlds with directed edges between
adjacent cells, as in the first experiment. We report the probability that the cost of
the shortest path changes to ensure that the edge cost changes indeed change the
shortest path sufficiently often. A probability of 33.9 percent, for example, means
that the cost of the shortest path changes on average after 2.96 planning episodes.
For each experiment, we report the runtime (in milliseconds) averaged over all
first planning episodes (#1) and over all planning episodes (#2). We also report the
speedup of LPA* over A* version 2 in the long run (#3), that is, the ratio of the run-
times of A* version 2 and LPA* averaged over all planning episodes. Since LPA*
expands the same vertices during the first search as A* version 1 but expands them
more slowly, its first search is always slower than that of A* version 1, which in turn
often expands more vertices and then is slower than A* version 2. During the sub-
sequent searches, however, LPA* often expands fewer vertices than both versions
of A* and is thus faster than them. We therefore also report the replanning episode
after which the average total runtime of LPA* is smaller than the one of A* version
2 (#4), in other words, the number of replanning episodes that are necessary for one
to prefer LPA* over A* version 2. For example, if this number is one, then LPA*
solves one planning problem and one replanning problems together faster than A*
version 2.

Experiment 1: In the first experiment, the size of the gridworlds is 101 × 101. We
change the number of edges that get assigned random costs before each planning
episode. Figure 10 shows our experimental results. The smaller the number of edges
that get reassigned random costs, the less the search space changes and the larger
the advantage of LPA* in our experiments. The average runtime of the first planning

24

gridworld size path cost changes A* version 1 A* version 2 LPA*

#1 and #2 #1 and #2 #1 #2 #3 #4

51 × 51 7.3% 0.083 0.077 0.098 0.015 5.032× 1

76 × 76 10.7% 0.206 0.201 0.258 0.050 3.987× 1

101 × 101 13.0% 0.348 0.345 0.437 0.104 3.315× 1

126 × 126 16.2% 0.681 0.690 0.789 0.220 3.128× 1

151 × 151 17.7% 0.917 0.933 1.013 0.322 2.900× 1

176 × 176 21.5% 1.499 1.553 1.608 0.564 2.753× 1

201 × 201 22.9% 1.781 1.840 1.898 0.682 2.696× 1

Fig. 11. Experiment 2

episode of LPA* tends to be larger than the one of both versions of A* but the
average runtime of the following planning episodes tends to be so much smaller
(if the number of edges that get reassigned random costs is sufficiently small) that
the number of replanning episodes that are necessary for one to prefer LPA* over
A* is one. Although our tabulated results do not show this, the average runtime
of LPA* can also be larger than the one of A*, for example, if a larger number of
edges change their cost.

Experiment 2: In the second experiment, the number of edges that get reassigned
random costs before each planning episode is 0.6 percent. We change the size of
the square gridworlds. Figure 11 shows our experimental results. The smaller the
gridworlds, the larger the advantage of LPA* in our experiments, although we were
not able to predict this effect. This is an important insight since it implies that
LPA* does not scale well in our gridworlds (although part of this effect could be
due to the fact that more edges get reassigned random costs as the size of the grid-
worlds increases and this time is included in the runtime averaged over all planning
episodes). We therefore devised the third experiment.

Experiment 3: In the third experiment, the number of edges that get reassigned
random costs before each planning episode is again 0.6 percent. We change both the
size of the square gridworlds and how close the edges that get reassigned random
costs are to the goal cell. 80 percent of these edges leave cells that are close to the
goal cell. Figure 12 shows our experimental results. Now, the advantage of LPA* no
longer decreases with the size of the gridworlds. The closer the edge cost changes
are to the goal cell, the larger the advantage of LPA* in our experiments. This is an
important insight since it suggests to use LPA* when most of the edge cost changes
are close to the goal cell.

To summarize, in some situations LPA* is more efficient than A* not only in terms
of vertex expansions but also in terms of runtime. However, these situations need to

25

80 % of edge cost changes are ≤ 25 cells away from the goal

gridworld size path cost changes A* version 1 A* version 2 LPA*

#1 and #2 #1 and #2 #1 #2 #3 #4

51 × 51 13.5% 0.091 0.084 0.115 0.014 6.165× 1

76 × 76 23.9% 0.195 0.189 0.245 0.028 6.661× 1

101 × 101 33.4% 0.302 0.295 0.375 0.048 6.184× 1

126 × 126 42.5% 0.691 0.696 0.812 0.084 8.297× 1

151 × 151 48.5% 0.864 0.886 0.964 0.114 7.808× 1

176 × 176 55.7% 1.308 1.353 1.450 0.156 8.683× 1

201 × 201 59.6% 1.613 1.676 1.733 0.202 8.305× 1

80 % of edge cost changes are ≤ 50 cells away from the goal

gridworld size path cost changes A* version 1 A* version 2 LPA*

#1 and #2 #1 and #2 #1 #2 #3 #4

51 × 51 8.6% 0.092 0.086 0.115 0.017 5.138× 1

76 × 76 15.7% 0.195 0.190 0.247 0.039 4.822× 1

101 × 101 23.2% 0.310 0.304 0.378 0.072 4.235× 1

126 × 126 31.3% 0.696 0.702 0.812 0.130 5.398× 1

151 × 151 36.2% 0.875 0.896 0.959 0.173 5.166× 1

176 × 176 44.0% 1.331 1.372 1.458 0.242 5.664× 1

201 × 201 48.3% 1.636 1.689 1.742 0.313 5.398× 1

80 % of edge cost changes are ≤ 75 cells away from the goal

gridworld size path cost changes A* version 1 A* version 2 LPA*

#1 and #2 #1 and #2 #1 #2 #3 #4

76 × 76 12.1% 0.201 0.196 0.250 0.047 4.206× 1

101 × 101 17.5% 0.312 0.306 0.391 0.088 3.499× 1

126 × 126 26.0% 0.699 0.703 0.818 0.175 4.012× 1

151 × 151 28.8% 0.881 0.893 0.972 0.225 3.978× 1

176 × 176 36.8% 1.331 1.370 1.438 0.319 4.301× 1

201 × 201 40.1% 1.670 1.728 1.790 0.408 4.236× 1

Fig. 12. Experiment 3

26

get characterized better. Also, the efficiency of LPA* and A* depends on low-level
implementation and machine details, and the results of the comparison thus might
have been different for different implementations or hardware environments. For
example, LPA* needs more than one replanning episode to outperform A* if the
number of edges that get reassigned random costs before each planning episode
is less than 1.0 percent and does not outperform A* at all if the number of edges
that get reassigned random costs before each planning episode is 1.0 percent or
more in the experiment of Figure 10 when we implemented A* with buckets and
a simple FIFO tie-breaking strategy within buckets but left the implementation of
LPA* unchanged. One problem of making fair comparisons is that A* and LPA*
perform very different basic operations and thus cannot be compared using proxies,
such as the number of vertex expansions. Another problem is that the search spaces
of incremental search methods can be relatively small (for example, when searching
maps for computer gaming) and their scaling properties are thus less important than
implementation and machine details. Therefore, we are only willing to conclude
from our experiments that incremental heuristic search is a promising technology
that needs to get investigated further.

9 An Application to Symbolic Planning

Obvious applications of LPA* include search in the context of transportation or
communication networks, for example, route planning for cars under changing traf-
fic conditions and for packages on computer networks with changing load condi-
tions. For example, in “most of today’s commercial routers, this recomputation
is done by deleting the current SPT [shortest-path tree] and recomputing it from
scratch by using the well known Dijkstra algorithm” [12] although it has recently
been discovered in the networking literature that DynamicSWSF-FP can be used
to update routing tables as the congestion of links changes [12,13]. In this sec-
tion, however, we apply LPA* to more complex path-planning problems, namely
to symbolic planning problems. LPA* applies to replanning problems where edges
or vertices are added or deleted, or the costs of edges are changed, for example,
because the cost of planning operators, their preconditions, or their effects change
from one path-planning problem to the next. We first describe how to apply LPA*
to symbolic planning and then present experimental results. Our goal is not to de-
velop a full scale symbolic replanner but rather to evaluate LPA* in an additional
domain and provide some insight into its properties.

9.1 Heuristic Search-Based Replanning with Lifelong Planning A*

Heuristic search-based planners perform a heuristic forward or backward search in
the space of world states to find a path from the start vertex to a goal vertex. They

27

were introduced in [14] and [15] and are now very popular. Several of them entered
the second planning competition at AIPS-2000, including HSP 2.0 [16], FF [17],
GRT [18], and AltAlt [19].

Many heuristic search-based planners solve STRIPS-planning problems with
ground planning operators. We use LPA* in the same way. Such STRIPS-planning
problems consist of a set of propositions P that are used to describe the states and
planning operators, a set of ground planning operators O, the start state I ⊆ P ,
and the partially specified goal G ⊆ P . Each planning operator o ∈ O has a cost
cost(o) > 0, a precondition list Prec(o) ⊆ P , an add list Add(o) ⊆ P , and a
delete list Delete(o) ⊆ P . The STRIPS-planning problem induces a path-planning
problem that consists of a set of states (vertices) 2P , a start state I , a set of goal
states {X ⊆ P |G ⊆ X}, a set of actions (directed edges) {o ∈ O|Prec(o) ⊆ s}
for each state s ⊆ P where action o transitions from state s ⊆ P to state
s − Delete(o) + Add(o) ⊆ P with cost cost(o). All paths (plans) from the start
state to any goal state are solutions of the STRIPS planning problem. The shorter
the path, the higher the quality of the solution.

LPA* performs a forward search in the space of world states using the consistent
hmax-heuristic that was first developed in the context of HSP [16]. The heuristic
values are calculated by solving a relaxed version of the planning problem, where
one recursively approximates (by ignoring all delete lists) the cost of achieving each
goal proposition individually from the given state and then combines the estimates
to obtain the heuristic value of the given state. In the following, we explain the
calculation of the heuristic values in detail. We use gs(p) to denote the approximate
cost of achieving proposition p ∈ P from state s ⊆ P , and gs(o) to denote the
approximate cost of achieving the preconditions of planning operator o ∈ O from
state s ⊆ P . HSP defines these quantities recursively. It defines for all s ⊆ P ,
p ∈ P , and o ∈ O (the minimum of an empty set is defined to be infinity):

gs(p) =











0 if p ∈ s

mino∈O|p∈Add(o)[cost(o) + gs(o)] otherwise
(5)

gs(o) = max
p∈Prec(o)

gs(p). (6)

Then, the heuristic value hmax(s) of state s ∈ S can be calculated as hmax(s) =
maxp∈G gs(p). These heuristics are consistent and thus allow LPA* to find shortest
plans.

Unfortunately, LPA* cannot be used completely unchanged for heuristic search-
based replanning. There are three issues that need to be addressed, resulting in
SHERPA (Speedy HEuristic search-based RePlAnner) [20]. Figure 13 shows the
unoptimized version of SHERPA that can be optimized as outlined in Section 6.

28

The pseudocode uses the following functions to manage the priority queue: U.TopKey() returns the smallest priority of all
vertices in priority queue U . (If U is empty, then U.TopKey() returns [∞;∞].) U.Pop() deletes the vertex with the smallest
priority in priority queue U and returns the vertex. U.Insert(s, k) inserts vertex s into priority queue U with priority k.
Finally, U.Remove(s) removes vertex s from priority queue U .

The pseudocode assumes that sstart does not satisfy the goal condition (otherwise the empty plan is optimal). Furthermore,
sgoal is a special symbol that does not correspond to any vertex.

procedure CalculateKey(s)
{01”} return [min(g(s), rhs(s)) + h(s);min(g(s), rhs(s))];

procedure Initialize()
{02”} rhs(s start) = 0;
{03”} g(s start) = ∞;
{04”} h(s start) = the heuristic value of sstart;
{05”} pred(s start) = succ(sstart) = ∅;
{06”} operators = ∅;
{07”} U = ∅;
{08”} U.Insert(s start, CalculateKey(sstart));

procedure UpdateVertex(u)
{09”} if (u 6= s start) then rhs(u) = mine∈pred(u)(g(source(e)) + cost(e));
{10”} if (u ∈ U) then U.Remove(u);
{11”} if (g(u) 6= rhs(u)) then U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
{12”} while (U.TopKey() <̇CalculateKey(sgoal) OR rhs(sgoal) 6= g(sgoal))
{13”} u = U.Pop();
{14”} if (u is expanded for the first time AND u 6= sgoal) then
{15”} for all ground planning operators o whose preconditions are satisfied in u:
{16”} if (o /∈ operators) then
{17”} operators = operators ∪ {o};
{18”} edges(o) = ∅;
{19”} s = the vertex that results from applying o;
{20”} if (vertex s satisfies the goal condition) then s = sgoal;
{21”} if (s is encountered for the first time) then
{22”} rhs(s) = g(s) = ∞;
{23”} h(s) = the heuristic value of s;
{24”} pred(s) = succ(s) = ∅;
{25”} Create a new edge e;
{26”} source(e) = u;
{27”} destination(e) = s;
{28”} cost(e) = the cost of applying o;
{29”} edges(o) = edges(o) ∪ {e};
{30”} pred(s) = pred(s) ∪ {e};
{31”} succ(u) = succ(u) ∪ {e};
{32”} if (g(u) > rhs(u)) then
{33”} g(u) = rhs(u);
{34”} for all e ∈ succ(u): UpdateVertex(destination(e));
{35”} else
{36”} g(u) = ∞;
{37”} UpdateVertex(u);
{38”} for all e ∈ succ(u) with destination(e) 6= u: UpdateVertex(destination(e));

procedure Main()
{39”} Initialize();
{40”} forever
{41”} ComputeShortestPath();
{42”} Wait for changes in planning operator costs;
{43”} for all ground planning operators o ∈ operators with changed operator costs:
{44”} for all e ∈ edges(o):
{45”} cost(e) = the (new) cost of applying o;
{46”} UpdateVertex(destination(e));

Fig. 13. The SHERPA Replanner

• First, the pseudocode shown in Figure 6 initializes all vertices up front. This
is impossible for symbolic planning since the state space is too large to fit in
memory. We address this issue by initializing vertices and edges only when they

29

are encountered during the search.

• Second, the pseudocode iterates over all predecessors of a vertex to determine
its rhs-value on Line 6 in Figure 6. However, it is difficult to determine the
predecessors of vertices for symbolic planning. (Switching the search direction
does not help since LPA* and thus SHERPA sometimes needs to iterate over
all predecessors and sometimes over all successors of a vertex.) We address this
issue as follows: Whenever a vertex is expanded, SHERPA generates all of its
successors and for each of them remembers that the expanded vertex is one of
its predecessors. Thus, at any point in time, SHERPA has those predecessors of
a vertex available that have been expanded at least once already and thus have
potentially finite g-values. We then change the pseudocode to iterate only over
the cached predecessors of the vertex (instead of all of them) when it calculates
the rhs-value of the vertex. This does not change the calculated rhs-value since
the g-values of the other predecessors are infinite.

• Third, the pseudocode assumes that there is only one goal vertex. However, there
are often many goal states in symbolic planning if the goal is only partially spec-
ified. We address this issue by removing the successors of all vertices that satisfy
the goal condition and then merging all vertices that satisfy the goal condition
into one new vertex, called sgoal.

9.2 An Example of Heuristic Search-Based Replanning

In the miconic (elevator) domain, the f floors of a building are served by an
elevator. Initially, p people are either in the elevator or waiting for it on randomly
selected floors. The goal is to get each person to his or her destination floor. The el-
evator can move from any floor to any other floor in one step, whether it is empty or
not. There is no limit on the number of people that can be in the elevator at any time.

The planning domain contains the following operators:

• The elevator moves from floor fi to floor fj with i 6= j.

• Person pk boards the elevator on floor fi provided that the elevator is currently
on floor fi and floor fi is the origin of person pk.

• Person pk gets off the elevator on floor fi, provided that person pk is in the eleva-
tor, the elevator is currently on floor fi, and floor fi is the destination of person
pk.

A problem instance is defined by f , p, a start state (the initial location of each

30

g=5

h=0

rhs=5

g=1

h=3

rhs=1

g=2

h=2

rhs=2

g=2

h=2

rhs=2

g=1

h=2

rhs=1

g=3

h=2

rhs=3

g=∞

h=3

rhs=3

g=3

h=2

rhs=3

g=3

h=2

rhs=3

g=0

h=3

rhs=0

GOAL

9

876

54

3 2

1

g=∞

h=3

rhs=3

[6;3][6;3]

g=∞

h=2

rhs=4

[6;4]

g=∞

h=2

rhs=4

[6;4]

g=4

h=1

rhs=4

10

ground
operator

deleted after
the search

generated
vertex

expanded
vertex

i
order of
vertex

expansion

Fig. 14. First Search (with Search from Scratch)

person and the initial location of the elevator) and a goal condition (the destination
floor of each person). We apply SHERPA to a problem instance with p = 2 people
(Paul and Sally) and f = 3 floors. In the start state, Paul has boarded the elevator
on the third floor and Sally is waiting on the first floor. The goal condition requires
Paul to be on the first floor and Sally to be on the third floor.

Figure 14 shows the search graph generated by SHERPA when it uses search from
scratch with the hmax heuristic to solve the planning problem. Expanded vertices
are shown in grey with a solid outline in the figure. The numbers in circles indicate
the order of vertex expansions. Generated but not expanded vertices are shown in
white with a dashed outline. Keys of the locally inconsistent vertices are shown in
the lower right corner. The shortest plan is to move the elevator directly to the first
floor, let Paul exit and Sally enter the elevator (in any order), move the elevator
directly to the third floor, and let Sally exit the elevator. We now remove the ground
operator that corresponds to the elevator moving from the first floor directly to the
third floor. This deletes several edges from the state space, including one that is part
of the plan. The edges deleted from the search graph are shown dashed in the figure.
Consequently, SHERPA needs to replan. Figure 15 (left) shows the search graph
generated by SHERPA when it uses search from scratch with the same heuristic
to solve the new planning problem. The shortest plan now is to move the elevator
directly to the first floor, let Paul exit and Sally enter the elevator (in any order),
move the elevator first to the second and then to the third floor, and let Sally exit the
elevator. Figure 15 (right) shows the search graph generated by SHERPA when it
uses incremental search with the same heuristic to solve the new planning problem,
resulting in the same shortest plan. Although the incremental search expands three

31

GOAL

12

11

76

9

54

3 2

1

10

8

g=0

h=3

rhs=0

g=1

h=3

rhs=1

g=1

h=2

rhs=1

g=2

h=2

rhs=2

g=2

h=2

rhs=2

g=3

h=2

rhs=3

g=3

h=2

rhs=3

g=3

h=3

rhs=3

g=4

h=2

rhs=4

g=4

h=2

rhs=4

g=6

h=0

rhs=6

g=5

h=1

rhs=5

g=∞

h=2

rhs=5

[7;5]

g=∞

h=3

rhs=4

[7;4]

generated
vertex

expanded
vertex

i
order of
vertex

expansion

GOAL

2

1
5

4

g=0

h=3

rhs=0

g=1

h=3

rhs=1

g=1

h=2

rhs=1

g=2

h=2

rhs=2

g=2

h=2

rhs=2

g=3

h=2

rhs=3

g=3

h=2

rhs=3

g=3

h=3

rhs=3

g=4

h=2

rhs=4

g=4

h=2

rhs=4

g=6

h=0

rhs=6

g=5

h=1

rhs=5

g=∞

h=2

rhs=5

[7;5]

g=∞

h=3

rhs=4

[7;4]

6

7

3 8

untouched
vertex

generated
vertex

expanded
vertex

i
order of
vertex

expansion

Fig. 15. Second Search with Search from Scratch (left) and Incremental Search (right)

vertices twice, it performs 33 percent fewer expansions than a search from scratch.

Inadmissible heuristics allow HSP to solve search problems in large state spaces by
trading off runtime and the plan-execution cost of the resulting plan. SHERPA uses
LPA* with consistent heuristics. While we have extended LPA* to use inadmissible
heuristics and still guarantee that it expands every vertex at most twice, it turns out
to be difficult to make incremental search more efficient than search from scratch
with the same inadmissible heuristics, although we have had success in special
cases. This can be explained as follows: The larger the heuristics are, the narrower
the A* search tree and thus the more efficient A* is. On the other hand, the narrower
the A* search tree, the more likely it is that the overlap between the old and new
A* search trees is small and thus the less efficient LPA* is.

9.3 Experimental Evaluation of Heuristic Search-Based Replanning

In the following, we compare SHERPA against search from scratch. Replanners are
commonly evaluated using the savings percentage. If x and y denote the computa-
tional effort of replanning and planning from scratch respectively, then the savings
percentage is defined to be 100(y − x)/y [21]. Consequently, we use the savings

32

Domains Deleted Edges (%) Sample Average Savings

minimum maximum average Size Percentage

blocksworld (3 blocks) 5.3 25.0 7.5 348 6.3

blocksworld (4 blocks) 1.3 25.0 3.9 429 22.9

blocksworld (5 blocks) 0.4 10.0 2.1 457 26.4

blocksworld (6 blocks) 0.2 4.5 1.2 471 31.1

blocksworld (7 blocks) 0.1 2.7 0.7 486 38.0

gripper (3 balls) 1.2 22.4 8.2 340 47.5

gripper (4 balls) 0.8 21.7 7.2 349 57.0

gripper (5 balls) 0.6 21.8 5.8 367 65.1

gripper (6 balls) 0.5 21.8 5.6 361 69.4

gripper (7 balls) 0.5 21.9 5.2 358 73.4

gripper (8 balls) 0.3 22.0 4.6 368 81.0

gripper (9 balls) 0.3 21.8 4.3 374 77.7

gripper (10 balls) 0.2 21.6 4.5 356 80.0

miconic (5 floors, 1 person) 1.8 11.1 3.5 229 16.3

miconic (5 floors, 2 people) 1.7 7.0 3.5 217 51.4

miconic (5 floors, 3 people) 1.7 5.3 3.4 166 46.3

miconic (5 floors, 4 people) 1.7 4.9 3.2 162 63.1

miconic (5 floors, 5 people) 1.6 4.4 2.9 158 74.4

miconic (5 floors, 6 people) 1.5 4.2 2.8 159 80.4

miconic (5 floors, 7 people) 1.5 3.9 2.6 119 85.2

Fig. 16. Savings Percentages of SHERPA over Repeated A* Searches

percentage to evaluate SHERPA, which means that we evaluate SHERPA relative
to its own behavior in generating plans from scratch or, equivalently, relative to an
A* search with the same heuristic and tie-breaking behavior. When calculating the
savings percentage, we use the number of vertex expansions to measure the compu-
tational effort of SHERPA. This is justified because our earlier experiment showed
that both performance measures were well correlated. As before, we count two
vertex expansions if SHERPA expands the same vertex twice when it performs an
incremental search, to avoid biasing our experimental results in favor of incremen-
tal search. At this point in time, we don’t have results about the runtimes available
since we would need very clean code to obtain meaningful results but the software
system is rather large.

33

3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

Number of Blocks

S
av

in
gs

 P
er

ce
nt

ag
e

Blocksworld Domain

Fig. 17. Blocksworld: Average Savings Percentage as a Function of the Domain Size

We used the code of HSP 2.0 [16] to implement SHERPA. We used three ran-
domly chosen domains from previous AIPS planning competitions, namely the
blocksworld, gripper, and miconic (elevator) domains of different sizes. In each
of these domains, we repeated the following procedure 500 times. We randomly
generated a start state and goal description, and used SHERPA to solve this origi-
nal path-planning problem. We then randomly selected one of the ground planning
operators that were part of the returned plan and deleted it from the planning do-
main. Thus, the old plan can no longer be executed and replanning is necessary.
Note that deleting a ground planning operator deletes several edges from the state
space graph and thus changes the graph substantially. We then used SHERPA twice
to solve the resulting modified path-planning problem: one time it used incremental
search and the other time it searched from scratch. Since the hmax-heuristic depends
on the available planning operators, we decided to let SHERPA continue to use the
heuristic for the original path-planning problem when it solved the modified one
because this enables SHERPA to cache the heuristic values. Caching the heuristic
values benefits incremental search and search from scratch equally since computing
the heuristics is very time-consuming. No matter whether SHERPA used incremen-
tal search or search from scratch, it always found the same plans for the modified
path-planning problems and the plans were optimal, which is consistent with our
theoretical results about LPA*. Figure 16 lists the percentage of edges deleted from
the state space graph, the number of modified path-planning problems that were
solvable, and the savings percentages averaged over all cases where the resulting
path-planning problems were solvable and thus the original plan-construction pro-
cess could indeed be reused. Since the state spaces are large, we approximated
the percentage of edges deleted from the state space graph with the percentage of
edges deleted from the cached part of the graph. We used a paired-sample z test
at the one-percent significance level to confirm that the incremental searches of
SHERPA indeed outperform searches from scratch significantly.

In the following, we interpret the collected data to gain some insight into the be-
havior of SHERPA.

34

3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Number of Balls

S
av

in
gs

 P
er

ce
nt

ag
e

Gripper Domain

Fig. 18. Gripper: Average Savings Percentage as a Function of the Domain Size

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

Number of People

S
av

in
gs

 P
er

ce
nt

ag
e

Miconic Domain (5 floors)

Fig. 19. Miconic: Average Savings Percentage as a Function of the Domain Size

• Figures 17 to 19 show that the savings percentages tend to increase with the
size of the three domains. (Figures 20 and 21 show the same trend.) This is a
desirable property since search is time-consuming in large domains and the large
savings provided by incremental searches are therefore especially important.
The savings percentages in the gripper domain appear to level off at about eighty
percent, which is similar to the savings percentages that [21] reports for PRIAR,
a symbolic replanning method, and better than the savings percentages that [21]
reports for SPA, another symbolic replanning method. The savings percentages
in the other two domains seem to level off only for domain sizes larger than
what we used in the experiments but also reach levels of eighty percent at least
in the miconic domain.

• Figure 20 shows how the savings percentages for the blocksworld domain
change with the position of the deleted ground planning operator in the plan for
the original path-planning problem. Note that the savings percentages become
less reliable as the distance of the deleted ground planning operator to the goal
increases because the number of shortest plans in the sample with length larger
than n quickly decreases as n increases. The savings percentages decrease as the
distance of the deleted ground planning operator to the end of the plan increases.
They even become negative when the deleted ground planning operator is too

35

0 1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

Number of Edges Between Deleted Edge in the Plan and the Goal State

S
av

in
gs

 P
er

ce
nt

ag
e

3 blocks
4 blocks
5 blocks
6 blocks
7 blocks

Fig. 20. Blocksworld: Average Savings Percentage as a Function of the Distance of the
Deleted Edge from the Goal

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Number of Deleted Ground Operators

S
av

in
gs

 P
er

ce
nt

ag
e

4 blocks
5 blocks
6 blocks
7 blocks

Fig. 21. Blocksworld: Average Savings Percentage as a Function of the Dissimilarity of the
Planning Tasks

close to the beginning of the plan, as expected, since this tends to make the old
and new search trees very different.

• Figure 21 shows that the savings percentages for the blocksworld domains de-
grade gracefully as the similarity of the original and modified planning tasks de-
creases, measured using the number of ground planning operators deleted at the
same time. In other words, SHERPA is able to reuse more of the previous plan-
construction process the more similar the original and modified planning tasks
are, as expected. We repeated the following procedure 500 times to generate the
data: We randomly generated a start state and goal description, and solved the
resulting planning task from scratch using SHERPA. We call the resulting search
graph G and the resulting plan P . We then generated a random sequence of 10
different ground operators. The first ground operator was constrained to be part
of plan P to ensure the need for replanning. For each n = 1 . . . 10, we then
deleted the first n ground operators in the sequence from the planning domain
and used SHERPA to replan using search graph G. We discarded each of the 500
runs in which the planning task became unsolvable after all 10 ground operators
had been deleted from the domain. Finally, we averaged the savings percentages
over all remaining planning problems with the same number n = 1 . . . 10 of

36

deleted ground operators. We used this experimental setup in the blocksworld
domain for each problem size ranging from 3 to 7 blocks. Note that we omit-
ted the results for planning tasks with three blocks. Because its state space is so
small, most planning tasks are unsolvable after 10 ground planning operators are
deleted.

10 Related Research

A variety of search methods from artificial intelligence, algorithm theory, and
robotics share with LPA* the fact that they find solutions to series of similar path-
planning problems potentially faster than is possible by solving each path-planning
problem from scratch. The idea of incremental search has also been studied in the
context of dynamic constraint satisfaction [22–24] and constraint logic program-
ming problems [25]. In the following, however, we focus on path-planning prob-
lems:

• Symbolic Replanning: Symbolic replanning methods from artificial intel-
ligence include case-based planning, planning by analogy, plan adaptation,
transformational planning, planning by solution replay, repair-based planning,
and learning search-control knowledge. These replanning methods have been
used as part of systems such as CHEF [26], GORDIUS [27], LS-ADJUST-PLAN
[28], MRL [29], NoLimit [30], PLEXUS [31], PRIAR [32], and SPA [21].
NoLimit, for example, accelerates a backward-chaining nonlinear planner that
uses means-ends analysis, SPA accelerates a causal-link partial-order planner,
PRIAR accelerates a hierarchical nonlinear planner, and LS-ADJUST-PLAN
accelerates a planner that uses planning graphs. A difference between LPA* and
the other replanners is that LPA* does not only remember the previous plans
but also the previous plan-construction processes. Thus, it has more information
available for replanning than even PRIAR, that stores plans together with
explanations of their correctness, or NoLimit, that stores plans together with
substantial descriptions of the decisions that resulted in the solution. Another
difference between LPA* and the other replanners is that the quality of the
plans of LPA* is as good as the plan quality achieved by using it to search
from scratch whereas the quality of the plans of the other replanners can be
worse than the plan quality achieved by using them to search from scratch. A
third difference between LPA* and some other replanners is that LPA* does not
separate replanning into two phases, namely one phase that determines where
the previous plan fails and another phase that uses slightly modified standard
search methods to replan for those parts. Instead, LPA* identifies quickly which
parts of the previous plan-construction processes cannot be reused to construct
the new plan and then uses an efficient specialized replanning method to plan
for these parts.

37

• Incremental Search: Incremental search methods solve dynamic shortest path
problems, that is, path problems where shortest paths have to be determined
repeatedly as the topology of a graph or its edge costs change [33]. Thus, they
differ from symbolic replanning methods in that they find shortest paths. A
number of incremental search methods have been suggested in the algorithms
literature [34–45] and, to a much lesser degree, the artificial intelligence litera-
ture [46]. They are all uninformed but differ in their assumptions, for example,
whether they solve single-source or all-pairs shortest path problems, which
performance measure they use, when they update the shortest paths, which kinds
of graph topology and edge costs they apply to, and how the graph topology and
edge costs are allowed to change over time [47]. If arbitrary sequences of edge
insertions, deletions, or weight changes are allowed, then the dynamic shortest
path problems are called fully dynamic shortest path problems [48]. LPA* is an
incremental search method that solves fully dynamic shortest path problems but,
different from the incremental search methods cited above, uses heuristics to
focus its search and thus combines two different techniques to reduce its search
effort.

• Incremental Heuristic Search: The incremental search method most similar to
LPA* is (focussed) D* from robotics [49]. We believe that D* is the first truly
incremental heuristic search method. It plans routes for mobile robots that move
in initially unknown terrain towards given goal coordinates by searching from the
goal coordinates towards the current coordinates of the robots. We have extended
LPA* to solve the same path-planning problems as D*, resulting in our D* Lite
[50]. This was our original motivation for developing LPA*. D* Lite implements
the same navigation strategy as D* but is simpler. For example, it has more than
thirty percent fewer lines of code (without any coding tricks), uses only one
tie-breaking criterion when comparing priorities, and does not need nested if-
statements with complex conditions that occupy up to three lines each which
makes it easier to understand, analyze, optimize, and extend. Furthermore, the
theoretical results presented in this article allow us to show a strong similarity of
D* Lite to A* and characterize its behavior much better than is currently possible
for D*, for which only its correctness has been proven.

Researchers have now started to investigate alternative ways of making A* incre-
mental and thus alternatives to LPA* (personal communication from Peter Yap in
2003), partly by extending idea that have previously been explored in the context
of uninformed search [51].

11 Conclusions

Incremental search methods find optimal solutions to series of similar path-
planning problems potentially faster than is possible by solving each path-planning

38

problem from scratch. They do this by using information from previous search
episodes to speed up later searches. In this article, we developed LPA*, an in-
cremental version of A*, and applied it to route planning and symbolic planning.
LPA* applies to path-planning problems where one needs to find shortest paths
repeatedly as edges or vertices are added or deleted, or the costs of edges are
changed, for example, because the cost of planning operators, their preconditions,
or their effects change from one path-planning problem to the next. LPA* builds
on previous results from parsing theory and theoretical computer science, namely
DynamicSWSF-FP [5]. We modified DynamicSWSF-FP to search from the start
vertex to the goal vertex and to stop immediately after it is sure that it has found
a shortest path, in which case it becomes an incremental version of breadth-first
search. LPA* and DynamicSWSF-FP then both maintain estimates of the start dis-
tances of the vertices, use a priority queue to determine in which order to update
these estimates, and compute shortest paths based on them. LPA* uses the same
notion of local consistency as DynamicSWSF-FP, which it extends by focusing the
search. Just like A*, it uses consistent heuristics in the form of approximations of
the goal distances of the vertices. Consequently, LPA* combines the advantages
of DynamicSWSF-FP (incremental search) and A* (heuristic search) and is thus
potentially more efficient than both of them individually. The simplicity of LPA*
allowed us to prove various properties about it that demonstrated its efficiency in
terms of vertex expansions and showed a strong similarity to A*, which makes it
easy to understand, easy to analyze, easy to optimize, and easy to extend. LPA*
needs more time per vertex expansion than A* but we were able to show experi-
mentally that LPA* is more efficient than A* in some situations not only in terms
of vertex expansions but also in terms of runtime, especially if the path-planning
problems change only slightly and the changes are close to the goal. We hope
that our analytical and experimental results about LPA* will eventually provide a
strong foundation for developing further incremental heuristic search methods and
speeding up various artificial intelligence methods. As a first step in this direction,
we have applied our LPA* to heuristic search-based replanning, resulting in our
SHERPA. LPA* can also be used to develop a simplified version of D* [49], a robot
navigation method for unknown terrain [50]. Besides developing a full scale sym-
bolic replanner, it is future work to understand LPA* better, characterize the exact
conditions when it is more efficient than A* in terms of runtime, and compare it to
search methods other than breadth-first search, A*, and DynamicSWSF-FP in stud-
ies similar to [52,53]. From the results presented in this paper, we are only willing
to conclude that incremental heuristic search seems to have an advantage over al-
ternative search methods in some situations and thus is a promising technology that
needs to get investigated further. Clearly, we need to improve our understanding
of incremental search, including when to prefer incremental search over alternative
search methods and which incremental search methods to use, since it is currently
unclear how its runtime depends on properties of the search problems as well as
low-level implementation and machine details and thus whether it has advantages
in situations that are important in practice.

39

Acknowledgments

Thanks to Anthony Stentz for his support. Without him, this research would not
have been possible. Thanks to Peter Yap, Rob Holte, and Jonathan Schaeffer for in-
teresting insight into the behavior of LPA*. Thanks also to Craig Tovey for helpful
discussions and to Colin Bauer for helping us to apply LPA* to symbolic plan-
ning. This research was performed while the authors were at Georgia Institute of
Technology. The Intelligent Decision-Making Group is partly supported by NSF
awards to Sven Koenig under contracts IIS-9984827, IIS-0098807, and ITR/AP-
0113881 as well as an IBM faculty partnership award. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the sponsoring
organizations, agencies, companies or the U.S. government.

40

The g-values are initialized by the user before Main() is called.

The pseudocode uses the following functions to manage the priority queue: U.TopKey() returns the smallest priority of all
vertices in priority queue U . (If U is empty, then U.TopKey() returns [∞;∞].) U.Pop() deletes the vertex with the smallest
priority in priority queue U and returns the vertex. U.Insert(s, k) inserts vertex s into priority queue U with priority k.
Finally, U.Remove(s) removes vertex s from priority queue U .

procedure CalculateKey(s)
{01} return [min(g(s), rhs(s)) + h(s);min(g(s), rhs(s))];

procedure Initialize()
{02} U = ∅;
{03} rhs(sstart) = 0;
{04} for all s ∈ S UpdateVertex(s);

procedure UpdateVertex(u)
{05} if (u 6= sstart) rhs(u) = mins′∈pred(u)(g(s′) + c(s′, u));
{06} if (u ∈ U) U.Remove(u);
{07} if (g(u) 6= rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
{08} while (U.TopKey()<̇CalculateKey(sgoal) OR rhs(sgoal) 6= g(sgoal))
{09} u = U.Pop();
{10} if (g(u) > rhs(u))
{11} g(u) = rhs(u);
{12} for all s ∈ succ(u) UpdateVertex(s);
{13} else
{14} g(u) = ∞;
{15} for all s ∈ succ(u) ∪ {u} UpdateVertex(s);

procedure Main()
{16} Initialize();
{17} forever
{18} ComputeShortestPath();
{19} Wait for changes in edge costs;
{20} for all directed edges (u, v) with changed edge costs
{21} Update the edge cost c(u, v);
{22} UpdateVertex(v);

Fig. A.1. Lifelong Planning A* (version used in the proofs)

A The Proofs

In the following, we prove the theorems stated in the article for the version of
LPA* shown in Figure A.1. All line numbers in the appendix refer to this version
of LPA*. The theorems then also hold for the unoptimized version of LPA* stated
in the main article since it is a special case where initially g(s) = ∞ for all vertices
s. This initialization allows for a more efficient implementation since the rhs-value
of the start vertex is zero, all other rhs-values are known to be infinity, and the start
vertex is known to be the only locally inconsistent vertex and thus the only vertex
in the priority queue. More importantly, this initialization allows LPA* to avoid
having to iterate over all vertices in Initialize() since the start vertex is the only
vertex in the priority queue initially and the other vertices can thus be initialized
only after they have been encountered during the search. This is important because
the number of vertices can be large and only a few of them might be reached during
the search.

All theorems hold no matter how the g-values are initialized by the user before
Main() is called. Unless stated otherwise, all theorems also hold not matter whether
the termination condition of line {08} or the alternative termination condition

41

“while U is not empty” is used. The heuristics need to be nonnegative and con-
sistent.

In the following, we use k(u) as a shorthand to denote the value returned by
CalculateKey(u) and call it the key of vertex u ∈ S. We will show that the key
of any vertex in the priority queue is its priority. Thus, U.TopKey() returns the ver-
tex in the priority queue with the smallest key. However, the key is thus defined for
all vertices, while the priority is only defined for the vertices in the priority queue.
The subscript b(u) denotes the value of a variable directly before vertex u is ex-
panded, that is, directly before line {09} is executed. Similarly, the subscript a(u)
denotes the value of a variable after vertex u is expanded, that is, directly before
line {08} is executed again.

Lemma 1 The rhs-values of all vertices u ∈ S always satisfy the following rela-
tionship:

rhs(u) =











0 if u = sstart

mins′∈pred(u)(g(s′) + c(s′, u)) otherwise.

Proof: Initialize() initializes the rhs-values so that they satisfy the relationship.
The right-hand side of the relationship can then change for a vertex only when the
cost of one of its incoming edges changes or the g-value of one of its predecessors
changes. This can happen on lines {11}, {14} and {21}. In all of these cases,
UpdateVertex() updates the potentially affected rhs-values so that they continue to
satisfy the relationship.

Lemma 2 The priority queue contains exactly the locally inconsistent vertices ev-
ery time line {08} is executed.

Proof: Initialize() initializes the priority queue so that it contains exactly the locally
inconsistent vertices. The local consistency of a vertex can then only change when
its g-value or its rhs-value changes.

The rhs-value can change only on line {05}. UpdateVertex() then adds the vertex
to the priority queue or deletes it from the priority queue, as necessary, immediately
afterwards on lines {06-07}. Thus, the theorem continues to hold.

The g-value can change only on lines {11} and {14}.

Whenever ComputeShortestPath() updates the g-value of a locally overconsistent
vertex on line {11}, then the g-value of the vertex is set to its rhs-value. The vertex
thus becomes locally consistent and is correctly removed from the priority queue.
Thus, the theorem continues to hold.

42

Whenever ComputeShortestPath() updates the g-value of a locally underconsis-
tent vertex on line {14}, then the local consistency of the vertex can change.
ComputeShortestPath() then calls UpdateVertex() immediately afterwards on line
{15}, which adds the vertex to the priority queue or deletes it from the priority
queue, as necessary. Thus, the theorem continues to hold.

Lemma 3 The priority of each vertex u ∈ U is equal to k(u).

Proof: Whenever a vertex u is inserted into the priority queue, its priority equals
its key k(u). Its key can then change only when its g-value or rhs-value changes.
This can happen on lines {05}, {11} and {14}. Line {05} can update the rhs-value
of a vertex. If vertex u remains locally inconsistent, it is reinserted into the priority
queue with priority k(u). Line {11} updates the g-value of a vertex but the vertex is
no longer in the priority queue. Finally, line {14} updates the g-value of a vertex u.
Directly afterwards, line {15} calls UpdateVertex(u) which updates its rhs-value. If
the vertex remains locally inconsistent, it is reinserted into the priority queue with
priority k(u). Thus, the relationship continues to hold.

Lemma 4 Assume that vertex u has key kb(u)(u) and is selected for expansion on
line {09}. If vertex v is locally consistent at this point in time but locally incon-
sistent the next time line {08} is executed, then the new key ka(u)(v) of vertex v
satisfies ka(u)(v)>̇kb(u)(u) the next time line {08} is executed.

Proof: Assume that vertex u has key kb(u)(u) and is selected for expansion on line
{09}. Vertex v is locally consistent at this point in time but locally inconsistent the
next time line {08} is executed.

The local consistency of vertex v can only change if its g-value changes or its rhs-
value changes. Its rhs-value can change only when the cost of one of its incoming
edges changes or the g-value of one of its predecessors changes. The edge costs
do not change in ComputeShortestPath(). The g-value of vertex v does not change
either. Only the g-value of vertex u changes and the two vertices must be different
since vertex u is initially in the priority queue and thus locally inconsistent whereas
vertex v is locally consistent. Consequently, vertex u must be a predecessor of ver-
tex v, and the rhs-value of vertex v changes when the g-value of vertex u changes.
We distinguish two cases:

Case one: Vertex u was locally overconsistent. Thus, gb(u)(u) > rhsb(u)(u). The
assignment on line {11} decreases the g-value of vertex u since ga(u)(u) =
rhsb(u)(u) < gb(u)(u) ≤ ∞. This can affect the rhs-value of vertex v only if
rhsa(u)(v) = ga(u)(u) + c(u, v). In this case, the rhs-value of vertex v decreased.
Its rhs-value must now be less than its g-value since it was locally consistent before
and thus its rhs-value was equal to its g-value, which did not change. Formally,
rhsa(u)(v) < rhsb(u)(v) = gb(u)(v) = ga(u)(v). Putting it all together, it holds that

43

ka(u)(v) =̇ [min(ga(u)(v), rhsa(u)(v)) + h(v); min(ga(u)(v), rhsa(u)(v))]

=̇ [rhsa(u)(v) + h(v); rhsa(u)(v)]

=̇ [ga(u)(u) + c(u, v) + h(v); ga(u)(u) + c(u, v)]

>̇ [ga(u)(u) + h(u); ga(u)(u)]

=̇ [rhsb(u)(u) + h(u); rhsb(u)(u)]

=̇ [min(gb(u)(u), rhsb(u)(u)) + h(u); min(gb(u)(u), rhsb(u)(u))]

=̇ kb(u)(u).

We used during the derivation the fact that c(u, v)+h(v) ≥ h(u) since the heuristics
are consistent, and the fact that ga(u)(u) + c(u, v) > ga(u)(u) since the edge cost
c(u, v) is positive and the g-value ga(u)(u) is finite.

Case two: Vertex u was locally underconsistent. Thus, gb(u)(u) < rhsb(u)(u) ≤
∞. The assignment on line {14} increases the g-value of vertex u from a finite
value to infinity. This can affect the rhs-value of vertex v only if rhsb(u)(v) =
gb(u)(u) + c(u, v). In this case, the rhs-value of vertex v increased. Its rhs-value
must now be larger than its g-value since it was locally consistent before and thus
its rhs-value was equal to its g-value, which did not change. Formally, rhsa(u)(v) >
rhsb(u)(v) = gb(u)(v) = ga(u)(v). Putting it all together, it holds that

ka(u)(v) =̇ [min(ga(u)(v), rhsa(u)(v)) + h(v); min(ga(u)(v), rhsa(u)(v))]

=̇ [ga(u)(v) + h(v); ga(u)(v)]

=̇ [rhsb(u)(v) + h(v); rhsb(u)(v)]

=̇ [gb(u)(u) + c(u, v) + h(v); gb(u)(u) + c(u, v)]

>̇ [gb(u)(u) + h(u); gb(u)(u)]

=̇ [min(gb(u)(u), rhsb(u)(u)) + h(u); min(gb(u)(u), rhsb(u)(u))]

=̇ kb(u)(u).

We used during the derivation the fact that c(u, v)+h(v) ≥ h(u) since the heuristics
are consistent, and the fact that gb(u)(u) + c(u, v) > gb(u)(u) since the edge cost
c(u, v) is positive and the g-value gb(u)(u) is finite.

Lemma 5 If a locally overconsistent vertex u with key kb(u)(u) is selected for ex-
pansion on line {09}, then it is locally consistent the next time line {08} is executed
and its new key ka(u)(u) satisfies ka(u)(u) = kb(u)(u).

Proof: Assume that a locally overconsistent vertex u is selected for expansion on
line {09}. Thus, ∞ ≥ gb(u)(u) > rhsb(u)(u). Its g-value is then set to its rhs-value
on line {11} (ga(u)(u) = rhsb(u)(u)) and it thus becomes locally consistent. If u
is not a successor of itself, then its rhs-value does not change and it thus remains
locally consistent. If u is a successor of itself, then the call to UpdateVertex() on line

44

{12} does not change its rhs-value either and it thus remains locally consistent. This
follows directly from the definition of the rhs-values if vertex u is the start vertex.
Otherwise, it holds that rhsb(u)(u) = minv∈pred(u)(gb(u)(v) + c(v, u)) = gb(u)(w) +
c(w, u) for some vertex w 6= u. (Otherwise rhsb(u)(u) = gb(u)(u) + c(u, u) ≥
gb(u)(u) which would be a contradiction.) Thus, ga(u)(u) + c(u, u) = rhsb(u)(u) +
c(u, u) > rhsb(u)(u) = gb(u)(w) + c(w, u) = ga(u)(w) + c(w, u) and consequently
rhsa(u)(u) = min(ga(u)(w) + c(w, u), ga(u)(u) + c(u, u)) = ga(u)(w) + c(w, u) =
rhsb(u)(u) = ga(u)(u), which proves the first part of the theorem. Then,

ka(u)(u) =̇ [min(ga(u)(u), rhsa(u)(u)) + h(u); min(ga(u)(u), rhsa(u)(u))]

=̇ [rhsa(u)(u) + h(u); rhsa(u)(u)]

=̇ [rhsb(u)(u) + h(u); rhsb(u)(u)]

=̇ [min(gb(u)(u), rhsb(u)(u)) + h(u); min(gb(u)(u), rhsb(u)(u))]

=̇ kb(u)(u).

Lemma 6 Assume that vertex u has key kb(u)(u) and is selected for expansion on
line {09}. If vertex v is locally inconsistent at this point in time and remains locally
inconsistent the next time line {08} is executed, then the new key ka(u)(v) of vertex
v satisfies ka(u)(v)≥̇kb(u)(u) the next time line {08} is executed.

Proof: Assume that vertex u has key kb(u)(u) and is selected for expansion on
line {09}. Vertex v is locally inconsistent at this point in time and remains locally
inconsistent the next time line {08} is executed. Since vertex u is expanded instead
of vertex v, it holds that kb(u)(v)≥̇kb(u)(u). We consider four cases:

Case one: The key of vertex v does not change. Then, it holds that
ka(u)(v)=̇kb(u)(v)≥̇kb(u)(u).

Case two: The key of vertex v changes, and v = u. Vertex u = v was locally under-
consistent. (Had it been locally overconsistent, then it would have been locally con-
sistent after its expansion according to Lemma 5, which violates our assumptions.)
The g-value of vertex v = u is then set to infinity and thus ga(u)(u) ≥ gb(u)(u).
Since no other g-value changes, the rhs-value can only change if vertex v = u is a
successor of itself. However, it is guaranteed not to decrease since the g-value does
not decrease. Thus, it holds that rhsa(u)(u) ≥ rhsb(u)(u). Putting it all together,

ka(u)(v) =̇ ka(u)(u)

=̇ [min(ga(u)(u), rhsa(u)(u)) + h(u); min(ga(u)(u), rhsa(u)(u))]

≥̇ [min(gb(u)(u), rhsb(u)(u)) + h(u); min(gb(u)(u), rhsb(u)(u))]

=̇ kb(u)(u).

45

Case three: The key of vertex v changes, v 6= u, and vertex u was locally
overconsistent. The g-value of vertex v does not change since v 6= u. Thus,
ga(u)(v) = gb(u)(v). Since the key of vertex v changes, its rhs-value changes and
thus vertex v is a successor of vertex u. Vertex u was locally overconsistent and
thus gb(u)(u) > rhsb(u)(u). The assignment on line {11} decreases the g-value of
vertex u since ga(u)(u) = rhsb(u)(u) < gb(u)(u) ≤ ∞.

This decrease can affect the rhs-value of vertex v only if rhsa(u)(v) = ga(u)(u) +
c(u, v) = rhsb(u)(u) + c(u, v) = min(gb(u)(u), rhsb(u)(u)) + c(u, v). This equal-
ity implies both that rhsa(u)(v) ≥ min(gb(u)(u), rhsb(u)(u)) (since c(u, v) >
0) and rhsa(u)(v) + h(v) = min(gb(u)(u), rhsb(u)(u)) + c(u, v) + h(v) ≥
min(gb(u)(u), rhsb(u)(u)) + h(u). (We used during the derivation of the last in-
equality the fact that c(u, v) + h(v) ≥ h(u) since the heuristics are consistent.)
Putting it all together, it holds that

[rhsa(u)(v) + h(v); rhsa(u)(v)]

≥̇ [min(gb(u)(u), rhsb(u)(u)) + h(u); min(gb(u)(u), rhsb(u)(u))]

=̇ kb(u)(u). (A.1)

It also holds that

[ga(u)(v) + h(v); ga(u)(v)]

=̇ [gb(u)(v) + h(v); gb(u)(v)]

≥̇ [min(gb(u)(v), rhsb(u)(v)) + h(v); min(gb(u)(v), rhsb(u)(v))]

=̇ kb(u)(v)

≥̇ kb(u)(u). (A.2)

Then,

ka(u)(v) =̇ [min(ga(u)(v), rhsa(u)(v)) + h(v); min(ga(u)(v), rhsa(u)(v))]

≥̇ kb(u)(u).

This follows directly from Inequality A.1 if ga(u)(v) ≥ rhsa(u)(v) and from In-
equality A.2 if ga(u)(v) ≤ rhsa(u)(v).

Case four: The key of vertex v changes, v 6= u, and vertex u was locally un-
derconsistent. The g-value of vertex v does not change since v 6= u. Thus,
ga(u)(v) = gb(u)(v). Since the key of vertex v changes, its rhs-value changes and
thus it is a successor of vertex u. However, its rhs-value is guaranteed not to de-

46

crease since the g-value of vertex u is set to infinity on line {14} and thus does not
decrease. Thus, rhsa(u)(v) ≥ rhsb(u)(v). Putting it all together,

ka(u)(v) =̇ [min(ga(u)(v), rhsa(u)(v)) + h(v); min(ga(u)(v), rhsa(u)(v))]

≥̇ [min(gb(u)(v), rhsb(u)(v)) + h(v); min(gb(u)(v), rhsb(u)(v))]

=̇ kb(u)(v)

≥̇ kb(u)(u).

Theorem 1 The keys of the vertices that ComputeShortestPath() selects for
expansion on line {09} are monotonically nondecreasing over time until
ComputeShortestPath() terminates.

Proof: Assume that vertex u is selected for expansion on line {09}. At this point,
its key kb(u)(u) is a smallest key of all vertices in the priority queue, that is, of
all locally inconsistent vertices according to Lemma 2. If a locally consistent ver-
tex v becomes locally inconsistent due to the expansion of vertex u, then its new
key ka(u)(v) satisfies ka(u)(v)>̇kb(u)(u) according to Lemma 4. If a locally incon-
sistent vertex v remains locally inconsistent, then its new key ka(u)(v) satisfies
ka(u)(v)≥̇kb(u)(u) according to Lemma 6. Thus, when the next vertex is selected
for expansion on line {09}, its key is at least as large as kb(u)(u).

Theorem 2 Let k = U.TopKey() during the execution of line {08}. If vertex u is lo-
cally consistent at this point in time with k(u)≤̇k, then it remains locally consistent
until ComputeShortestPath() terminates.

Proof by contradiction: If U is empty, then U.TopKey() returns [∞;∞] and thus
U.TopKey()≥̇k(sgoal). Also rhs(sgoal) = g(sgoal) since all vertices are locally con-
sistent. Consequently, the termination condition is satisfied and thus the theorem
is trivial. (Similarly, the termination condition is satisfied trivially if the alternative
termination condition “while U is not empty” is used.) Thus, we assume that U is
not empty.

Assume that vertex u is locally consistent during the execution of line {08}. Let
g(u), rhs(u), and k(u) be the g-value, rhs-value, and key of vertex u (respectively)
at this point in time. Then, g(u) = rhs(u) since vertex u is locally consistent.
Similarly, k=̇U.TopKey() at this point in time. Assume that k(u)≤̇k and that u
becomes locally inconsistent later during the expansion of some vertex v. When v is
chosen for expansion, it must be locally inconsistent since only locally inconsistent
vertices are expanded. Thus, v 6= u. Then, ka(v)(u)>̇kb(v)(v) according to Lemma 4
and kb(v)(v)≥̇k according to Theorem 1. Consequently,

47

[min(ga(v)(u), rhsa(v)(u)) + h(u); min(ga(v)(u), rhsa(v)(u))]

=̇ ka(v)(u)

>̇ kb(v)(v)

≥̇ k

≥̇ k(u)

=̇ [min(g(u), rhs(u)) + h(u); min(g(u), rhs(u))]

=̇ [g(u) + h(u); g(u)]

and thus ga(v)(u) ≥ min(ga(v)(u), rhsa(v)(u)) > g(u). However, ga(v)(u) = g(u)
since vertex u has been locally consistent all the time and thus could not have been
assigned a new g-value, which is a contradiction. Consequently, u remains locally
consistent until ComputeShortestPath() terminates.

Theorem 3 If a locally overconsistent vertex is selected for expansion on line
{09}, then it is locally consistent the next time line {08} is executed and remains
locally consistent until ComputeShortestPath() terminates.

Proof: If a locally overconsistent vertex u is selected for expansion on line {09},
then it becomes locally consistent according to Lemma 5. Let k = U.TopKey()
during the execution of line {08} before u is selected for expansion on line {09},
and k′ = U.TopKey() during the execution of line {08} after u is selected for ex-
pansion on line {09}. Then, ka(u)(u)=̇kb(u)(u) according to Lemma 5, kb(u)(u)=̇k
since u was selected for expansion, k≤̇k′ according to Theorem 1 if the priority
queue is not empty during the execution of line {08} after u is selected for ex-
pansion on line {09}, and k≤̇k′ if the priority queue is empty since k′=̇[∞;∞].
Putting everything together, it holds that ka(u)(u)≤̇k′. To summarize, vertex u is
locally consistent during the next execution of line {08} after u is selected for ex-
pansion on line {09} with ka(u)(u)≤̇k′. Consequently, it remains locally consistent
until ComputeShortestPath() terminates, according to Theorem 2.

Lemma 7 If line {08} is changed to “while U is not empty,” then
ComputeShortestPath() expands each vertex at most twice, namely at most once
when it is locally underconsistent and at most once when it is locally overcon-
sistent. The g-values of all vertices after termination equal their respective start
distances.

Proof: Assume that line {08} is changed to “while U is not empty.” Then,
ComputeShortestPath() terminates when all vertices are locally consistent. When
a locally overconsistent vertex is selected for expansion, it becomes locally con-
sistent and remains locally consistent according to Theorem 3. Thus, every vertex
is expanded at most once when it is locally overconsistent. Similarly, when a lo-
cally underconsistent vertex is selected for expansion, its g-value is set to infinity

48

and the vertex can thus only be either locally consistent or overconsistent before
it is expanded again. (It cannot be locally underconsistent because its g-value is
infinity and cannot be changed before its next expansion.) Thus, if the vertex is
expanded again, it must be locally overconsistent. (Locally consistent vertices are
not expanded.) As already shown, it then becomes locally consistent and remains
locally consistent. To summarize, every vertex is expanded at most twice before all
vertices are locally consistent, namely at most once when it is locally underconsis-
tent and at most once when it is locally overconsistent, and ComputeShortestPath()
thus terminates.

When all vertices are locally consistent, then g(s) = rhs(s) = 0 if s = sstart

and g(s) = rhs(s) = mins′∈pred(s)(g(s′) + c(s′, s)) otherwise. Thus, the g-values
satisfy Equations 1 and thus are equal to the start distances.

Lemma 8 Let k = U.TopKey() during the execution of line {08}. If vertex u is
locally consistent at this point in time with k(u)≤̇k, then the g-value of state u
equals its start distance and one can trace back a shortest path from sstart to u by
always moving from the current vertex s, starting at u, to any predecessor s′ that
minimizes g(s′) + c(s′, s) until sstart is reached (ties can be broken arbitrarily).

Proof: If U is empty, then the theorem follows from Lemma 7. Thus, we assume
that U is not empty.

Assume that vertex u is locally consistent during the execution of line {08} with
k(u)≤̇k. Let g(s), rhs(s), and k(s) be the g-value, rhs-value, and key of any vertex
s (respectively) at this point in time. Then, g(u) = rhs(u) since state u is locally
consistent, and k(u)≤̇k.

We first show by contradiction that g(u) < ∞. Assume that g(u) =
∞. Then, g(u) = rhs(u) = ∞ since u is locally consistent. Thus,
k(u)=̇[min(g(u), rhs(u)) + h(u); min(g(u), rhs(u))]=̇[∞;∞]. Consequently,
k=̇[∞;∞] since k(u)≤̇k. Let v be a locally inconsistent vertex with key k. Such
a vertex exists since we assume that U is not empty. Then, g(v) = rhs(v) = ∞.
Thus, vertex v must be locally consistent, which is a contradiction. Consequently,
it holds that g(u) < ∞.

If u = sstart then g(u) = rhs(u) = 0 since vertex u is locally consistent and
rhs(u) = 0 per definition. Thus, g(u) = g∗(u). Furthermore, one can trivially trace
back a shortest path from sstart to u by always moving from the current vertex
s, starting at u, to any predecessor s′ that minimizes g(s′) + c(s′, s) until sstart

is reached (ties can be broken arbitrarily). Thus, we assume in the following that
u 6= sstart.

Let w be any predecessor of vertex u that minimizes g(w)+ c(w, u). We now show
that vertex w is locally consistent during the execution of line {08} with k(w)≤̇k.

49

It holds that g(u) = rhs(u) = mins′∈pred(u)(g(s′) + c(s′, u)) = g(w) + c(w, u).
Thus, g(w) < g(u) since g(u) < ∞ and c(w, u) > 0. Furthermore, g(w)+h(w) ≤
g(u) − c(w, u) + c(w, u) + h(u) = g(u) + h(u) since the heuristics are consistent
and thus h(w) ≤ c(w, u) + h(u). Consequently,

k(w) =̇ [min(g(w), rhs(w)) + h(w); min(g(w), rhs(w))]

≤̇ [g(w) + h(w); g(w)]

<̇ [g(u) + h(u); g(u)]

=̇ [min(g(u), rhs(u)) + h(u); min(g(u), rhs(u))]

=̇ k(u)

≤̇ k.

Thus, k(w)<̇k. This shows that vertex w is locally consistent during the execution
of line {08} with k(w)≤̇k since k is the smallest key of any locally inconsistent
vertex.

We now show that g(u) = g∗(u) and g(w) = g∗(w) during the execution of line
{08}. Both vertices are locally consistent and their keys are less than or equal to the
smallest key of any locally inconsistent vertex. Thus, they remain locally consistent
and thus their g-values are not updated until ComputeShortestPath() terminates
even if line {08} is changed to “while U is not empty,” according to Theorem 2.
Furthermore, the g-values of vertices u and w equal their respective start distances
after termination if line {08} is changed to “while U is not empty,” according to
Lemma 7. Thus, g(u) = g∗(u) and g(w) = g∗(w) during the execution of line {08}.
These relationships must also hold for the termination condition actually used by
LPA* since the values that LPA* assigns to the g-values of vertices do not depend
on the termination condition.

We now show that the edge from u to w is the last edge of a shortest path from
sstart to u. This is indeed the case since g∗(u) = g(u) = g(w)+ c(w, u) = g∗(w)+
c(w, u). Finally, we can repeatedly apply this property to show that one can trace
back a shortest path from sstart to u by always moving from the current vertex
s, starting at u, to any predecessor s′ that minimizes g(s′) + c(s′, s) until sstart is
reached (ties can be broken arbitrarily) since vertex w is again locally consistent
with k(w)≤̇k.

Theorem 4 and Theorem 5 ComputeShortestPath() expands a vertex at most
twice, namely at most once when it is locally underconsistent and at most once
when it is locally overconsistent, and thus terminates. After ComputeShortestPath()
terminates, one can trace back a shortest path from sstart to sgoal by always moving
from the current vertex u, starting at sgoal, to any predecessor u′ that minimizes
g(u′) + c(u′, u) until sstart is reached (ties can be broken arbitrarily).

50

Proof: ComputeShortestPath() terminates after it has expanded every vertex at
most twice, namely at most once when it is locally underconsistent and at most
once when it is locally overconsistent according to Lemma 7 if line {08} is changed
to “while U is not empty.” It continues to terminate at least when U is empty
even if line {08} is not changed because U.TopKey() then returns [∞;∞] and
thus U.TopKey()≥̇k(sgoal) and because rhs(sgoal) = g(sgoal) since all vertices are
locally consistent. Thus, the termination condition is satisfied. Because the termi-
nation condition does not affect which vertices are expanded and in which order
they are expanded, ComputeShortestPath() will terminate after it has expanded ev-
ery vertex at most twice, namely at most once when it is locally underconsistent
and at most once when it is locally overconsistent, if it does not already terminate
earlier.

k≥̇k(sgoal) and rhs(sgoal) = g(sgoal) after termination according to the termination
condition, where k = U.TopKey() during the execution of line {08}. Consequently,
sgoal satisfies the conditions of Lemma 8 after termination. The theorem then fol-
lows directly from Lemma 8.

The following theorems show some additional properties of LPA*, including its
similarity to a version of A* that always breaks ties among vertices with the same
f-values in favor of vertices s that minimize the start distance. (We have also de-
veloped a version of LPA* that is similar to a version of A* that always breaks ties
among vertices with the same f-values in favor of vertices that maximize the start
distance.) These theorems only hold for the termination condition on line {08}.
We assume in the proofs that A* terminates when its priority queue is empty, it
expands sgoal, or it is about to expand a vertex with an infinite f-value. We make
use of the following properties (for consistent h-values): First, A* expands every
vertex at most once. Second, it expands sgoal if its f-value is finite, it expands all
vertices u with both [f(u); g∗(u)]<̇[f(sgoal); g

∗(sgoal)] and f(u) < ∞, and it possi-
bly expands some or all vertices u with both [f(u); g∗(u)]=̇[f(sgoal); g

∗(sgoal)] and
f(u) < ∞. Third, it expands vertices u in monotonically nondecreasing order of
[f(u); g∗(u)]. Fourth, it can expand vertices u with the same [f(u); g∗(u)] in any
order. Fifth, the g-value and f-value of any vertex u expanded by an A* search are
g(u) = g∗(u) and f(u) = g(u) + h(u) = g∗(u) + h(u). In the following, we thus
refer to the f-value f(u) of any vertex u as a shorthand for g∗(u)+h(u). The above
properties simply follow from the following known properties of A*: The g-values
of all expanded vertices equal their start distances. The f-values of all vertices on
the same branch of the search tree of A* are monotonically nondecreasing and their
g-values are strictly increasing. Consequently, whenever A* expands a vertex u, its
successors on the search tree have f-values that are equal to or larger than the f-
value of u and their start distances are larger than the start distance of u. Vertices
u with the same [f(u); g∗(u)] are on different branches of the search tree and thus
can be expanded by A* in any order desired.

51

Theorem 6 Whenever ComputeShortestPath() selects a locally overconsistent ver-
tex u for expansion on line {09}, then kb(u)(u)=̇[f(u); g∗(u)].

Proof: Whenever ComputeShortestPath() selects a locally overconsistent vertex u
for expansion, then it becomes locally consistent according to Lemma 5 and thus
ga(u)(u) = rhsa(u)(u). It holds that kb(u)(u)=̇ka(u)(u) according to Lemma 5. Fur-
thermore, vertex u remains locally consistent until ComputeShortestPath() termi-
nates according to Theorem 3 and thus its g-value is not updated. The g-value of
vertex u equals its start distance after termination if line {08} is changed to “while
U is not empty,” according to Lemma 7. Thus, ga(u)(u) = g∗(u). This relationship
must also hold for the termination condition actually used by LPA* since the val-
ues that LPA* assigns to the g-values of vertices do not depend on the termination
condition. Put together,

kb(u)(u) =̇ ka(u)(u)

=̇ [min(ga(u)(u), rhsa(u)(u)) + h(u); min(ga(u)(u), rhsa(u)(u))]

=̇ [ga(u)(u) + h(u); ga(u)(u)]

=̇ [g∗(u) + h(u); g∗(u)]

=̇ [f(u); g∗(u)].

Theorem 10 ComputeShortestPath() does not expand any vertices whose g-values
were equal to their respective start distances before ComputeShortestPath() was
called.

Proof by contradiction: We prove the theorem under the assumption that line {08}
is changed to “while U is not empty.” If line {08} is not changed, then Com-
puteShortestPath() can only terminate earlier and expands no more vertices than
if line {08} is changed. Thus, the theorem continues to hold even if line {08} re-
mains unchanged.

Now assume that ComputeShortestPath() expands vertex u even though its g-value
ginit(u) before the call to ComputeShortestPath() equals its start distance. Thus,
ginit(u) = g∗(u).

Consider the first time ComputeShortestPath() expands vertex u. The indices b(u)
and a(u) refer to this expansion. Then, gb(u)(u) = ginit(u). Since vertex u is lo-
cally inconsistent when ComputeShortestPath() selects it for expansion, it holds
that gb(u)(u) 6= rhsb(u)(u). It cannot be the case that vertex u is locally overcon-
sistent (gb(u)(u) > rhsb(u)(u)) because otherwise kb(u)(u)=̇[f(u); g∗(u)] accord-
ing to Theorem 6 and thus rhsb(u)(u) = min(gb(u)(u), rhsb(u)(u)) = g∗(u) =
ginit(u) = gb(u)(u), which is a contradiction. Thus, it must be the case that
vertex u is locally underconsistent (gb(u)(u) < rhsb(u)(u)), which also implies
g∗(u) = ginit(u) = gb(u)(u) < rhsb(u)(u) ≤ ∞ and thus g∗(u) < ∞. When

52

expanding a locally underconsistent vertex, ComputeShortestPath sets its g-value
to infinity. Thus, ga(u)(u) = ∞ > g∗(u). Thus, ComputeShortestPath() needs to ex-
pand vertex u again at a later time because the g-value of vertex u after termination
equals its start distance according to Lemma 7.

Now consider the second time ComputeShortestPath() expands vertex u. The in-
dices b′(u) and a′(u) refer to this expansion. Vertex u is locally overconsistent
when ComputeShortestPath() selects it again for expansion according to Lemma 7,
implying that gb′(u)(u) > rhsb′(u)(u). Also, according to Theorem 6, it holds that
rhsb′(u)(u) = g∗(u). Thus,

kb′(u)(u) =̇ [min(gb′(u)(u), rhsb′(u)(u)) + h(u); min(gb′(u)(u), rhsb′(u)(u))]

=̇ [rhsb′(u)(u) + h(u); rhsb′(u)(u)]

=̇ [g∗(u) + h(u); g∗(u)]

=̇ [gb(u)(u) + h(u); gb(u)(u)]

=̇ [min(gb(u)(u), rhsb(u)(u)) + h(u); min(gb(u)(u), rhsb(u)(u))]

=̇ kb(u)(u).

Note that rhsb(u)(u) > gb(u)(u) = g∗(u) = rhsb′(u)(u). Thus, the rhs-value of
vertex u decreased between its expansions. This must be due to the g-value of
some vertex v that decreased between the expansions of vertex u with rhsb′(u)(u) =
gb′(u)(v) + c(v, u). Consequently, gb(u)(v) > gb′(u)(v) and ComputeShortestPath()
expands vertex v at least once between the expansions of vertex u since the g-values
of vertices change only when they are expanded and v 6= u since gb′(u)(u) = ∞
(gb′(u)(u) is infinite) but gb′(u)(v) < gb′(u)(v) ≤ ∞ (gb′(v)(u) is finite).

Now consider the last time ComputeShortestPath() expands vertex v before it ex-
pands vertex u the second time. Thus, ga(v)(v) = gb′(u)(v). Since the keys of the
vertices that are selected for expansion on line {09} are monotonically nondecreas-
ing over time according to Theorem 1, it must be that kb(u)(u)≤̇kb(v)(v)≤̇kb′(u)(u).
Since kb(u)(u)=̇kb′(u)(u), it must be that kb(u)(u)=̇kb(v)(v)=̇kb′(u)(u). However, we
now show that this is impossible.

It holds that gb′(u)(v) < rhsb′(u)(u) since gb′(u)(v) + c(v, u) = rhsb′(u)(u) =
g∗(u) < ∞ and c(v, u) > 0. When expanding a locally underconsistent ver-
tex, ComputeShortestPath() sets its g-value to infinity but ga(v)(v) = gb′(u)(v) <
rhsb′(u)(u) < ∞ and the g-value is thus set to a finite value. Thus, vertex v is
locally overconsistent when ComputeShortestPath() selects it for expansion, im-
plying that gb(v)(v) > rhsb(v)(v). When expanding a locally overconsistent vertex,
ComputeShortestPath() sets its g-value to its rhs-value. Thus, ga(v)(v) = rhsb(v)(v).
Put together,

kb(v)(v) =̇ [min(gb(v)(v), rhsb(v)(v)) + h(v); min(gb(v)(v), rhsb(v)(v))]

53

=̇ [rhsb(v)(v) + h(v); rhsb(v)(v)]

=̇ [ga(v)(v) + h(v); ga(v)(v)]

˙6= [rhsb′(u)(u) + h(u); rhsb′(u)(u)]

=̇ [min(gb′(u)(u), rhsb′(u)(u)) + h(u); min(gb′(u)(u), rhsb′(u)(u))]

=̇ kb′(u)(u),

where we use the fact that ga(v)(v) 6= rhsb′(u)(u). This is a contradiction with
kb(v)(v)=̇kb′(u)(u). Consequently, the theorem holds.

Lemma 9 Whenever ComputeShortestPath() selects a vertex u for expansion on
line {09}, then kb(u)(u)≤̇[f(sgoal); g

∗(sgoal)]=̇[g∗(sgoal); g
∗(sgoal)].

Proof by contradiction: The theorem is trivial if g∗(sgoal) = ∞ since then
f(sgoal) = ∞ and thus kb(u)(u)≤̇[f(sgoal); g

∗(sgoal)] = [∞;∞] for all ver-
tices u. Thus, we assume in the following that g∗(sgoal) < ∞. Assume that
ComputeShortestPath() expands a vertex u with kb(u)(u)>̇[f(sgoal); g

∗(sgoal)].

Let k = U.TopKey() during the execution of line {08} before u is selected for
expansion on line {09}. Thus, k=̇kb(u)(u). We distinguish two cases:

Case one: It holds that kb(u)(sgoal)<̇kb(u)(u)=̇k. In this case, sgoal must be locally
consistent according to Lemma 2. ComputeShortestPath() terminates if sgoal is lo-
cally consistent with kb(u)(sgoal)≤̇k, which is a contradiction.

Case two: It holds that kb(u)(sgoal)≥̇kb(u)(u). In this case, it holds that

[gb(u)(sgoal); gb(u)(sgoal)]

=̇ [gb(u)(sgoal) + h(sgoal); gb(u)(sgoal)]

≥̇ [min(gb(u)(sgoal), rhsb(u)(sgoal)) + h(sgoal); min(gb(u)(sgoal), rhsb(u)(sgoal))]

=̇ kb(u)(sgoal)

≥̇ kb(u)(u)

>̇ [f(sgoal); g
∗(sgoal)]

=̇ [g∗(sgoal) + h(sgoal); g
∗(sgoal)]

=̇ [g∗(sgoal); g
∗(sgoal)].

Thus, gb(u)(sgoal) > g∗(sgoal). Since the g-value of sgoal after termination equals
g∗(sgoal) according to Lemma 8 and its g-value can only change when it is ex-
panded, there exists an expansion of sgoal during (if sgoal = u) or after the expan-
sion of u where the g-value of sgoal is set to g∗(sgoal) and thus ga(sgoal)(sgoal) =
g∗(sgoal) < ∞. If sgoal was locally underconsistent directly before this expansion,
its g-value would be set to infinity. Thus, sgoal is locally overconsistent directly

54

before this expansion. Then, ka(sgoal)(sgoal)=̇kb(sgoal)(sgoal) and ga(sgoal)(sgoal) =
rhsa(sgoal)(sgoal), both according to Lemma 5. Thus,

kb(sgoal)(sgoal)

=̇ ka(sgoal)(sgoal)

=̇ [min(ga(sgoal)(sgoal), rhsa(sgoal)(sgoal)) + h(sgoal); min(ga(sgoal)(sgoal), rhsa(sgoal)(sgoal))]

=̇ [ga(sgoal)(sgoal) + h(sgoal); ga(sgoal)(sgoal)]

=̇ [g∗(sgoal) + h(sgoal); g
∗(sgoal)]

=̇ [f(sgoal); g
∗(sgoal)]

<̇ kb(u)(u).

Since kb(sgoal)(sgoal)<̇kb(u)(u), the expansion of sgoal cannot coincide with the ex-
pansion of u. On the other hand, the expansion of sgoal after the expansion of u
contradicts Theorem 1. Thus, ComputeShortestPath() expands at most those ver-
tices u with kb(u)(u)≤̇[f(sgoal); g

∗(sgoal)].

Theorem 8 ComputeShortestPath() expands at most those locally overconsistent
vertices u with [f(u); g∗(u)]≤̇[f(sgoal); g

∗(sgoal)].

Proof: According to Theorem 6 whenever ComputeShortestPath() selects a lo-
cally overconsistent vertex u for expansion, then kb(u)(u)=̇[f(u); g∗(u)]. On the
other hand, Lemma 9 states that kb(u)(u)≤̇[f(sgoal); g

∗(sgoal)]. It, thus, follows that
[f(u); g∗(u)]≤̇[f(sgoal); g

∗(sgoal)].

Theorem 11 ComputeShortestPath() expands at most those vertices u with
[f(u); g∗(u)]≤̇[f(sgoal); g

∗(sgoal)] or [fold(u); gold(u)]≤̇[f(sgoal); g
∗(sgoal)], where

gold(u) is the g-value and fold(u) = gold(u)+h(u) is the f-value of vertex u directly
before the call to ComputeShortestPath().

Proof: When ComputeShortestPath() selects a vertex u for expansion on line {09},
the vertex is locally inconsistent according to Lemma 2. We distinguish two cases:

Case one: It holds that gb(u)(u) > rhsb(u)(u), that is, vertex u is locally over-
consistent. Then, [f(u); g∗(u)]≤̇[f(sgoal); g

∗(sgoal)] according to Theorem 8, which
proves the theorem.

Case two: It holds that gb(u)(u) < rhsb(u)(u), that is, vertex u is locally undercon-
sistent. Since kb(u)(u)≤̇[f(sgoal); g

∗(sgoal)] according to Lemma 9, it follows that
[gb(u)(u) + h(u); gb(u)(u)]≤̇[f(sgoal); g

∗(sgoal)]. Below we show that it must be the
case that vertex u is expanded for the first time. Thus, gold(u) = gb(u)(u) and it fol-

55

lows that [gold(u) + h(u); gold(u)]≤̇[f(sgoal); g
∗(sgoal)], which proves the theorem.

It remains to be shown that, when a locally underconsistent vertex is expanded, it
is the first time that it is expanded. If a locally overconsistent vertex is expanded
then it becomes locally consistent and remains locally consistent according to The-
orem 3 and thus cannot be expanded again, and a vertex can only be expanded once
as locally underconsistent according to Theorem 4. This implies that a vertex that
has already been expanded one or more times cannot be expanded again as locally
underconsistent.

Theorem 7 ComputeShortestPath() expands locally overconsistent vertices with
finite f-values in the same order as A* (possibly except for vertices u with the same
keys), provided that A* always breaks ties among vertices with the same f-values in
favor of vertices with smaller start distances and, in case of remaining ties, expands
sgoal last.

Proof: ComputeShortestPath() expands locally overconsistent vertices u in
monotonically nondecreasing order of their keys [f(u); g∗(u)] according
to Theorems 1 and 6. Furthermore, it expands at most those locally
overconsistent vertices u with [f(u); g∗(u)]≤̇[f(sgoal); g

∗(sgoal)] according to
Theorem 8. A* also expands vertices u in monotonically nondecreas-
ing order of [f(u); g∗(u)] and therefore also expands all vertices u with
[f(u); g∗(u)]≤̇[f(sgoal); g

∗(sgoal)]. Thus, if ComputeShortestPath() first expands
locally overconsistent vertex u1 and then locally overconsistent vertex u2

and both vertices have finite f-values with [f(u1); g
∗(u1)] ˙6=[f(u2); g

∗(u2)], then
[f(u1); g

∗(u1)]<̇[f(u2); g
∗(u2)]≤̇[f(sgoal); g

∗(sgoal)]. Thus, A* also first expands
vertex u1 and then vertex u2.

Theorem 9 LPA* shares with A* the following property for sgoal

and all vertices u that A* expands (possibly except for vertices with
[f(u); g∗(u)]=̇[f(sgoal); g

∗(sgoal)]), provided that A* always breaks ties among
vertices with the same f-values in favor of vertices with the smallest start distances
and its g-values are assumed to be infinity if A* has not calculated them: The
g-values of these vertices u equal their respective start distances after termination
and one can trace back a shortest path from sstart to them by always moving
from the current vertex s, starting at u, to any predecessor s′ that minimizes
g(s′) + c(s′, s) until sstart is reached (ties can be broken arbitrarily).

Proof: The statement is true for A*. In the following, we prove it for LPA*.

If U is empty after termination, then the g-values of all vertices after termination
equal their respective start distances according to Lemma 7 and the second part of
the theorem follows immediately. Thus, we assume that U is not empty.

56

Let k = U.TopKey() when ComputeShortestPath() terminates. Furthermore, let
g(u), rhs(u), and k(u) be the g-value, rhs-value, and key of any vertex u (respec-
tively) after termination. We first show that g(sgoal) = rhs(sgoal) = g∗(sgoal).
It holds that g(sgoal) = rhs(sgoal) since sgoal is locally consistent after termina-
tion according to the termination criterion. Furthermore, k(sgoal)≤̇k according to
the termination condition. Thus, g(sgoal) = rhs(sgoal) = g∗(sgoal) according to
Lemma 8.

We now show by contradiction that k<̇[∞;∞]. Assume that this relationship does
not hold and consider any vertex u ∈ U . It holds that k(u)≥̇k=̇[∞;∞]. However,
k(u)=̇[∞;∞] implies that min(g(u), rhs(u)) = ∞, which in turn implies that
g(u) = rhs(u) and thus u /∈ U according to Lemma 2. This is a contradiction and
thus it holds that k<̇[∞;∞].

We now show that g∗(sgoal) < ∞. This relationship holds because
k(sgoal)≤̇k<̇[∞;∞] implies that g(sgoal) = rhs(sgoal) = g∗(sgoal) < ∞.

We now show by contradiction that every vertex u with
[f(u); g∗(u)]<̇[f(sgoal); g

∗(sgoal)] also satisfies g(u) = g∗(u). Assume that
[f(u); g∗(u)]<̇[f(sgoal); g

∗(sgoal)] but g(u) 6= g∗(u). If line {08} is changed to
“while U is not empty” then there must be some later expansion of u so that
ga(u)(u) = g∗(u) according to Lemma 7. ga(u)(u) is finite since

[ga(u)(u) + h(u); ga(u)(u)]

=̇ [g∗(u) + h(u); g∗(u)]

=̇ [f(u); g∗(u)]

<̇ [f(sgoal); g
∗(sgoal)]

≤̇ [∞;∞].

Thus, u could not have been locally underconsistent when it was selected for ex-
pansion on line {09} because then its g-value would have been set to infinity and
thus ga(u)(u) = ∞. Thus, u was locally overconsistent when it was selected for
expansion on line {09} and thus gb(u)(u)>̇rhsb(u)(u). Consequently, its g-value is
set to its rhs-value during its expansion and thus rhsb(u)(u) = g∗(u), which implies
that min(gb(u)(u), rhsb(u)(u)) = rhsb(u)(u) = g∗(u). Thus,

kb(u)(u) =̇ [min(gb(u)(u), rhsb(u)(u)) + h(u); min(gb(u)(u), rhsb(u)(u))]

=̇ [g∗(u) + h(u); g∗(u)]

=̇ [f(u); g∗(u)]

<̇ [f(sgoal); g
∗(sgoal)]

=̇ [g∗(sgoal) + h(sgoal); g
∗(sgoal)]

=̇ [min(g(sgoal), rhs(sgoal)) + h(sgoal); min(g(sgoal), rhs(sgoal))]

57

=̇ k(sgoal)

≤̇ k.

Since line {08} was changed to “while U is not empty,” ComputeShortestPath()
will first expand a vertex with priority k and later vertex u with key kb(u)(u). Since
kb(u)(u)<̇k, the expansion of the vertices cannot coincide. This, however, contra-
dicts Theorem 1. Thus, every vertex with [f(u); g∗(u)]<̇[f(sgoal); g

∗(sgoal)] also
satisfies g(u) = g∗(u).

We now show that every vertex u with [f(u); g∗(u)]<̇[f(sgoal); g
∗(sgoal)] also sat-

isfies k(u)<̇k(sgoal), as follows:

k(u) =̇ [min(g(u), rhs(u)) + h(u); min(g(u), rhs(u))]

≤̇ [g(u) + h(u); g(u)]

=̇ [g∗(u) + h(u); g∗(u)]

=̇ [f(u); g∗(u)]

<̇ [f(sgoal); g
∗(sgoal)]

=̇ [g∗(sgoal) + h(sgoal); g
∗(sgoal)]

=̇ [min(g(sgoal), rhs(sgoal)) + h(sgoal); min(g(sgoal), rhs(sgoal))]

=̇ k(sgoal).

Finally, every vertex u with [f(u); g∗(u)]<̇[f(sgoal); g
∗(sgoal)] also satisfies k(u)<̇k

since k(u)<̇k(sgoal) and k(sgoal)≤̇k according to the termination condition. Thus,
k(u)<̇k and g(u) = rhs(u) according to Lemma 2.

If A* breaks ties among vertices with the same f-values in favor of
vertices with smaller start distances then it expands all vertices u with
[f(u); g∗(u)]<̇[f(sgoal); g

∗(sgoal)] and does not expand the vertices u with
[f(u); g∗(u)]>̇[f(sgoal); g

∗(sgoal)]. We have shown that g(u) = rhs(u) and k(u)<̇k
if [f(u); g∗(u)]<̇[f(sgoal); g

∗(sgoal)]. We have also shown that sgoal is locally con-
sistent with k(sgoal)≤̇k. Thus, the theorem follows directly from Lemma 8.

58

References

[1] M. desJardins, E. Durfee, C. Ortiz, M. Wolverton, A survey of research in distributed,
continual planning, Artificial Intelligence Magazine 20 (4) (1999) 13–22.

[2] A. Kott, V. Saks, A. Mercer, A new technique enables dynamic replanning and
rescheduling of aeromedical evacuation, Artificial Intelligence Magazine 20 (1) (1999)
43–53.

[3] K. Myers, CPEF: A continuous planning and execution framework, Artificial
Intelligence Magazine 20 (4) (1999) 63–69.

[4] J. Pemberton, R. Korf, Incremental search algorithms for real-time decision making,
in: Proceedings of the International Conference on Artificial Intelligence Planning
Systems, 1994, pp. 140–145.

[5] G. Ramalingam, T. Reps, An incremental algorithm for a generalization of the
shortest-path problem, Journal of Algorithms 21 (1996) 267–305.

[6] N. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, 1971.

[7] S. Thrun, Lifelong learning algorithms, in: S. Thrun, L. Pratt (Eds.), Learning To
Learn, Kluwer Academic Publishers, 1998.

[8] M. Likhachev, S. Koenig, Speeding up the parti-game algorithm, in: S. Becker,
S. Thrun, K. Obermayer (Eds.), Advances in Neural Information Processing Systems
15, MIT Press, Cambridge, MA, 2002.

[9] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison-Wesley, 1985.

[10] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

[11] B. Nebel, J. Koehler, Plan reuse versus plan generation: A theoretical and empirical
analysis, Artificial Intelligence 76 (1–2) (1995) 427–454.

[12] P. Narváez, K. Siu, H. Tzeng, New dynamic algorithms for shortest path tree
computation, IEEE/ACM Transactions on Networking 8 (6) (2000) 734–746.

[13] L. Buriol, M. Resende, C. Ribeiro, M. Thorup, A memetic algorithm for OSPF routing,
in: Proceedings of the INFORMS Telecommunications Conference, 2002, pp. 187–
188.

[14] D. McDermott, A heuristic estimator for means-ends analysis in planning, in:
Proceedings of the International Conference on Artificial Intelligence Planning and
Scheduling, 1996, pp. 142–149.

[15] B. Bonet, G. Loerincs, H. Geffner, A robust and fast action selection mechanism, in:
Proceedings of the National Conference on Artificial Intelligence, 1997, pp. 714–719.

[16] B. Bonet, H. Geffner, Heuristic search planner 2.0, Artificial Intelligence Magazine
22 (3) (2000) 77–80.

59

[17] J. Hoffmann, FF: The fast-forward planning systems, Artificial Intelligence Magazine
22 (3) (2000) 57–62.

[18] I. Refanidis, I. Vlahavas, GRT: a domain-independent heuristic for STRIPS worlds
based on greedy regression tables, in: Proceedings of the European Conference on
Planning, 1999, pp. 346–358.

[19] B. Srivastava, X. Nguyen, S. Kambhampati, M. Do, U. Nambiar, Z. Nie, R. Niganda,
T. Zimmerman, AltAlt: Combining graphplan and heuristic state search, Artificial
Intelligence Magazine 22 (3) (2000) 88–90.

[20] S. Koenig, D. Furcy, C. Bauer, Heuristic search-based replanning, in: Proceedings of
the International Conference on Artificial Intelligence Planning and Scheduling, 2002,
pp. 294–301.

[21] S. Hanks, D. Weld, A domain-independent algorithm for plan adaptation, Journal of
Artificial Intelligence Research 2 (1995) 319–360.

[22] R. Dechter, A. Dechter, Belief maintenance in dynamic constraint networks, in:
Proceedings of the National Conference on Artificial Intelligence, 1988, pp. 37–42.

[23] G. Verfaillie, T. Schiex, Solution reuse in dynamic constraint satisfaction problems, in:
Proceedings of the National Conference on Artificial Intelligence, 1994, pp. 307–312.

[24] S. Mittal, B. Falkenhainer, Dynamic contraint satisfaction problems, in: Proceedings
of the National Conference on Artificial Intelligence, 1990, pp. 25–32.

[25] I. Miguel, Q. Shen, Extending FCSP to support dynamically changing problems, in:
Proceedingfs of IEEE International Fuzzy Systems Conference, 1999, pp. 1615–1620.

[26] K. Hammond, Explaining and repairing plans that fail, Artificial Intelligence 45 (1990)
173–228.

[27] R. Simmons, A theory of debugging plans and interpretations, in: Proceedings of the
National Conference on Artificial Intelligence, 1988, pp. 94–99.

[28] A. Gerevini, I. Serina, Fast plan adaptation through planning graphs: Local and
systematic search techniques, in: Proceedings of the International Conference on
Artificial Intelligence Planning and Scheduling, 2000, pp. 112–121.

[29] J. Koehler, Flexible plan reuse in a formal framework, in: C. Bäckström, E. Sandewall
(Eds.), Current Trends in AI Planning, IOS Press, 1994, pp. 171–184.

[30] M. Veloso, Planning and Learning by Analogical Reasoning, Springer, 1994.

[31] R. Alterman, Adaptive planning, Cognitive Science 12 (3) (1988) 393–421.

[32] S. Kambhampati, J. Hendler, A validation-structure-based theory of plan modification
and reuse, Artificial Intelligence 55 (1992) 193–258.

[33] G. Ramalingam, T. Reps, On the computational complexity of dynamic graph
problems, Theoretical Computer Science 158 (1–2) (1996) 233–277.

[34] G. Ausiello, G. Italiano, A. Marchetti-Spaccamela, U. Nanni, Incremental algorithms
for minimal length paths, Journal of Algorithms 12 (4) (1991) 615–638.

60

[35] S. Even, Y. Shiloach, An on-line edge deletion problem, Journal of the ACM 28 (1)
(1981) 1–4.

[36] S. Even, H. Gazit, Updating distances in dynamic graphs, Methods of Operations
Research 49 (1985) 371–387.

[37] E. Feuerstein, A. Marchetti-Spaccamela, Dynamic algorithms for shortest paths in
planar graphs, Theoretical Computer Science 116 (2) (1993) 359–371.

[38] P. Franciosa, D. Frigioni, R. Giaccio, Semi-dynamic breadth-first search in digraphs,
Theoretical Computer Science 250 (1–2) (2001) 201–217.

[39] D. Frigioni, A. Marchetti-Spaccamela, U. Nanni, Fully dynamic output bounded
single source shortest path problem, in: Proceedings of the Symposium on Discrete
Algorithms, 1996, pp. 212–221.

[40] S. Goto, A. Sangiovanni-Vincentelli, A new shortest path updating algorithm,
Networks 8 (4) (1978) 341–372.

[41] G. Italiano, Finding paths and deleting edges in directed acyclic graphs, Information
Processing Letters 28 (1) (1988) 5–11.

[42] P. Klein, S. Subramanian, Fully dynamic approximation schemes for shortest path
problems in planar graphs, in: Proceedings of the International Workshop on
Algorithms and Data Structures, 1993, pp. 443–451.

[43] C. Lin, R. Chang, On the dynamic shortest path problem, Journal of Information
Processing 13 (4) (1990) 470–476.

[44] H. Rohnert, A dynamization of the all pairs least cost path problem, in: Proceedings
of the Symposium on Theoretical Aspects of Computer Science, 1985, pp. 279–286.

[45] P. Spira, A. Pan, On finding and updating spanning trees and shortest paths, SIAM
Journal on Computing 4 (1975) 375–380.

[46] S. Edelkamp, Updating shortest paths, in: Proceedings of the European Conference on
Artificial Intelligence, 1998, pp. 655–659.

[47] D. Frigioni, A. Marchetti-Spaccamela, U. Nanni, Semidynamic algorithms for
maintaining single source shortest path trees, Algorithmica 22 (3) (1998) 250–274.

[48] D. Frigioni, A. Marchetti-Spaccamela, U. Nanni, Fully dynamic algorithms for
maintaining shortest paths trees, Journal of Algorithms 34 (2) (2000) 251–281.

[49] A. Stentz, The focussed D* algorithm for real-time replanning, in: Proceedings of the
International Joint Conference on Artificial Intelligence, 1995, pp. 1652–1659.

[50] S. Koenig, M. Likhachev, Improved fast replanning for robot navigation in unknown
terrain, in: Proceedings of the International Conference on Robotics and Automation,
2002, pp. 968–975.

[51] M. Al-Ansari, Efficient reinforcement learning in continuous environments, Ph.D.
thesis, College of Computer Science, Northeastern University, Boston (Massachusetts)
(2001).

61

[52] C. Demetrescu, D. Frigioni, A. Marchetti-Spaccamela, U. Nanni, Maintaining shortest
paths in digraphs with arbitrary arc weights: An experimental study, in: Proceedings
of the Workshop on Algorithm Engineering, 2000, pp. 218–229.

[53] G. Proietti, Dynamic maintenance versus swapping: an experimental study on shortest
paths trees, in: Proceedings of the Workshop on Algorithm Engineering, 2000, pp.
207–217.

62

