
Anytime Dynamic A*: The Proofs

Maxim Likhachev, Dave Ferguson, Geoff Gordon,
Anthony Stentz and Sebastian Thrun a

April 2005
CMU-RI-TR-05-12

aS. Thrun is affiliated with Stanford University,
all other authors are affiliated with Carnegie Mellon University.

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper presents a thorough theoretical analysis of a recently developed
anytime incremental planning algorithm called Anytime Dynamic A* (AD*).
The analysis includes proofs for the correctness of the algorithm and as well
as the proofs for several properties of the algorithm related to its efficiency.



Keywords: search, planning, anytime planning, incremental planning,
re-planning, anytime incremental planning



1 Introduction

This paper presents a theoretical analysis of the anytime incremental plan-
ning algorithm, Anytime Dynamic A* (AD*), that is described in [3]. Mainly,
the analysis includes proofs for the correctness of the algorithm. It also, how-
ever, proves several theorems regarding the efficiency of the algorithm. For
the intuitive explanation of the algorithm as well as its empirical evaluation
please refer to [3].

The analysis is organized as follows. First, in section 2 we describe some
of the notations as well as the assumptions the algorithm makes about its
input. Next, in section 3 we give the pseudocode of AD*. In this section
we also explain some of the differences between the pseudocode of AD* as
presented here and the pseudocode of AD* as presented in [3]. Finally,
in section 4 we present the proofs of all the theorems about AD*. The
section is split into few subsections with the hope of simplifying the task
of reading the proofs. The most important and interesting theorems about
the algorithm are presented in section 4.2. The actual statements about
the correctness (ε sub-optimality) and the efficiency of the algorithm are
presented in sections 4.3 and 4.4 respectively.

2 Notation

In the following we assume AD* operates on a finite size graph. The set of
states is denoted by S. succ(s) denotes the set of successors of state s ∈ S
and pred(s) denotes the set of predecessors of state s.

For any pair of states s, s′ ∈ succ(s) the cost between the two needs to
be positive: c(s, s′) > 0. c∗(s, s′) denotes the cost of a shortest path from s
to s′. For s = s′ we define c∗(s, s′) = 0. g∗(s) denotes the cost of a shortest
path from sstart to s. The task of AD* is to maintain a path from sstart state
to sgoal state that has a cost of at most ε ∗ c∗(s, sgoal). AD* may dynamically
change ε to trade off the quality of solution with the computational expense
of computing it. We restrict the range of ε values to 1 ≤ ε < ∞.

In this paper AD* searches forward, from sstart towards sgoal. Conse-
quently, the provided heuristic values need to be forward consistent: h(s) ≤
c(s, s′) + h(s′) for any s, s′ ∈ succ(s) and h(s) = 0 for s = sgoal.

AD* maintains two estimates of start distances (the cost of a shortest
path from sstart to the state) for a state s ∈ S: g(s) and v(s). We call a state

1



s inconsistent iff v(s) 6= g(s), overconsistent iff v(s) > g(s), underconsistent
iff v(s) < g(s) and consistent iff v(s) = g(s). AD* also maintains back-
pointers, bp(s), that point to the predecessor state of s via which a currently
found path from sstart to s goes.

To make the following proofs easier to read we assume that the min
operation on an empty set returns ∞, arg min operation on the set consisting
of only infinite values returns null and any state s with undefined values (in
other words, a state that has not been visited yet) has v(s) = g(s) = ∞ and
bp(s) = null. Additionally, in the computation g(s) = v(bp(s)) + c(bp(s), s)
it is assumed that if bp(s) = null then g(s) is set to ∞.

Finally, throughout the proofs we sometimes refer to a path from sstart to
s defined by backpointers. This path is defined as a path that is computed
by tracing it backward as follows: start at s, and at any state si pick a state
si−1 = bp(si) until si−1 = sstart.

3 Pseudocode of AD*

The pseudocode somewhat differs from the one given in [3] as here we have
incorporated some of the important optimizations that were described in [1]
and were applicable to AD*. The direction of search is changed. So, AD*
as presented here searches forward, from sstart towards sgoal. We have also
changed the name of the variable g(s) (where s is a state in the input graph)
onto v(s) and the name of the variable rhs(s) onto g(s). This makes the
variable g(s) more consistent with the commonly accepted g-values used by
A* search [4]. For example, during the first search of AD* these g-values
are exact equivalents of the g-values that A* maintains. Algorithmically, the
pseudocode of AD* as presented here is the same as the pseudocode of AD*
as presented in [3] except for line 2 in figure 1 where a > sign was changed
into a ≥ sign. 1

1The use of > sign (as in [3]) still results in a correct algorithm if one only cares about
the solution and its ε sub-optimality. It may, however, violate ε sub-optimality of the
values of some other states, namely, the states that do not belong to the found solution
but should still be ε sub-optimal as one of the theorems about AD* claims.

2



1 procedure key(s)

2 if (v(s) ≥ g(s))

3 return [g(s) + ε ∗ h(s); g(s)];

4 else

5 return [v(s) + h(s); v(s)];

6 procedure UpdateSetMembership(s)

7 if (v(s) 6= g(s))

8 if (s 6∈ CLOSED) insert/update s in OPENwith key(s);

9 else if (s 6∈ INCONS) insert s into INCONS ;

10 else

11 if (s ∈ OPEN) remove s from OPEN ;

12 else if (s ∈ INCONS) remove s from INCONS ;

13 procedure ComputePath()

14 while(key(sgoal) > min
s∈OPEN(key(s)) OR v(sgoal) < g(sgoal))

15 remove s with the smallest key(s) from OPEN ;

16 if (v(s) > g(s))

17 v(s) = g(s); CLOSED←CLOSED ∪ {s};

18 for each successor s′ of s

19 if s′ was not visited before then

20 v(s′) = g(s′) =∞; bp(s′) = null;

21 if g(s′) > g(s) + c(s, s′)

22 bp(s′) = s;

23 g(s′) = g(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

24 else //propagating underconsistency

25 v(s) =∞; UpdateSetMembership(s);

26 for each successor s′ of s

27 if s′ was not visited before then

28 v(s′) = g(s′) =∞; bp(s′) = null;

29 if bp(s′) = s

30 bp(s′) = arg mins′′∈Pred(s′) v(s′′) + c(s′′, s′);

31 g(s′) = v(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

Figure 1: ComputePath function in AD*

4 Proofs

The proofs are split into several subsections. The section 4.1 mostly proves
that ComputePath function in figure 1 correctly maintains its variables. The
section 4.2 is more interesting and proves the key properties of the algo-
rithm. The section 4.3 uses these key properties to quite trivially derive the
ε sub-optimality property of the algorithm. Finally, section 4.4 proves several
properties regarding the efficiency of the algorithm.

3



1 procedure Main()

2 g(sgoal) = v(sgoal) =∞; v(sstart) =∞; bp(sgoal) = bp(sstart) = null;

3 g(sstart) = 0; OPEN = CLOSED = INCONS = ∅; ε = ε0;

4 insert sstart into OPEN with key(sstart);

5 forever

6 ComputePath();

7 publish ε-suboptimal solution;

8 if ε = 1

9 wait for changes in edge costs;

10 for all directed edges (u, v) with changed edge costs

11 update the edge cost c(u, v);

12 if v 6= sstart

13 if v was not visited before then

14 v(v) = g(v) =∞; bp(v) = null;

15 bp(v) = arg mins′′∈Pred(v) v(s′′) + c(s′′, v);

16 g(v) = v(bp(v)) + c(bp(v), v); UpdateSetMembership(v);

17 if significant edge cost changes were observed

18 increase ε or re-plan from scratch (i.e., re-execute Main function);

19 else if ε > 1

20 decrease ε;

21 Move states from INCONS into OPEN ;

22 Update the priorities for all s ∈ OPEN according to key(s);

23 CLOSED = ∅;

Figure 2: Main function in AD*

4.1 Low-level Properties

Most of the theorems in this section are merely stating the correctness of
the program state variables such as v-, g-values and bp-values, and OPEN ,
CLOSED and INCONS sets.

Lemma 1 For any pair of states s and s′, ε ∗ h(s) ≤ ε ∗ c∗(s, s′) + ε ∗ h(s′).

Proof: The consistency property required of heuristics is equivalent to
the restriction that h(s) ≤ c∗(s, s′) + h(s′) for any pair of states s, s′ and
h(sgoal) = 0 ([4]). The theorem then follows by multiplying the inequality
with ε.

Theorem 2 At line 14 in ComputePath function, all v- and g-values are
non-negative, bp(sstart) = null, g(sstart) = 0 and for ∀s 6= sstart, bp(s) =
arg mins′∈pred(s)(v(s′) + c(s′, s)), g(s) = v(bp(s)) + c(bp(s), s).

4



Proof: The theorem holds the first time line 14 in ComputePath function
is executed due to the initialization performed by function Main: the g- and
v-values of all states except for sstart are infinite, and v(sstart) = ∞ and
g(sstart) = 0. Also, the bp-values of all states are equal to null. In other
words, for every state s 6= sstart, bp(s) = null and v(s) = g(s) = ∞, and for
s = sstart, bp(s) = null, g(s) = 0 and v(s) = ∞. Thus, the theorem holds
when line 14 is executed for the first time.

We will now prove that theorem continues to hold during the next execu-
tion of line 14 and thus holds by induction. Before line 14 is executed next
two mutually exclusive possibilities exist. One possibility is that the body of
the while loop in ComputePath function was executed. Another possibility
is that the code in between two calls to ComputePath function in function
Main was executed (lines 7-23).

Let us first consider the former possibility, namely another execution of
the body of the while loop in ComputePath function. The only places where
g-, v- and bp-values are changed and therefore the theorem might be affected
are lines 17, 22, 23, 25, 30, and 31. The initialization of newly visited states
on lines 20 and 28 does not change the values of states according to our
convention of assuming that all states that have not been visited so far have
infinite v- and g-values and their bp-values are equal to null. Let us now
examine each of the lines that do change the values of states.

If v(s) is set to g(s) on line 17, then it is decreased since s is being ex-
panded as overconsistent (i.e., v(s) > g(s) before the expansion according to
the test on line 16). Thus, it may only decrease the g-values of its successors.
The test on line 21 checks this for each successor of s and updates the bp- and
g-values if necessary. Since all costs are positive bp(sstart) and g(sstart) can
never be changed: it will never pass the test on line 21, and thus is always
0. Since v(s) is set to g(s) it still remains non-negative. Consequently, when
the g-values of the successors of s are re-calculated their g-values also remain
non-negative.

If v(s) is set to ∞ on line 25, then it either stays the same or increases
since it is the “else” case of the test on line 16 (i.e., v(s) ≤ g(s) before the
expansion of s). (As we will show in later theorems the inequality will always
be strict as no consistent state is ever expanded.) Thus, it may only affect
the g- and bp− values of the successors of s if their bp-value is equal to s.
The test on line 29 checks this for each successor of s and re-computes the
bp- and g-values if necessary. Since bp(sstart) = null the test will never pass
for sstart and therefore bp(sstart) and g(sstart) can never be changed. Since

5



v(s) is set to ∞ it remains non-negative. Consequently, when the g-values of
the successors of s are re-calculated their g-values also remain non-negative.
The theorem thus holds during the next execution of line 14 if the body of
the ComputePath while loop was executed in between.

Suppose now that before the next execution of line 14 the code that
resides in between lines 7 and 23 in function Main is executed. During this
execution costs may change on line 11. The bp- and g-values, however, are
updated correctly on the following lines 15 and 16. No other code during this
execution changes any of the state values that appear in the theorem (the
initialization code on line 14 does not change state values according to our
assumption that all states that we haven’t seen before are assumed to have
infinite v- and g-values and bp-values equal to null.) Hence, independently
of the execution path the theorem holds the next time line 14 is executed,
and thus it holds always by induction.

Theorem 3 At line 14 in ComputePath function, OPEN and CLOSED are
disjoint, OPEN contains only inconsistent states, the union of OPEN and
CLOSED contains all inconsistent states (and possibly others) and INCONS
contains all and only inconsistent states that are also in CLOSED.

Proof: We will prove the theorem by induction. Consider the first execu-
tion of line 14 in ComputePath function. Due to the initialization performed
by Main function, at this point CLOSED = INCONS = ∅ and OPEN con-
tains only sstart. Because after the initialization for every state s 6= sstart,
v(s) = g(s) = ∞, and for s = sstart, v(s) = ∞ 6= 0 = g(s), OPEN contains
all and only inconsistent states and the theorem holds.

We now need to show that the theorem continues to hold the next time
line 14 in ComputePath function is executed given that the theorem held
during all the previous executions of this line. Before line 14 is executed
next the executed code could either be the body of the while loop in Com-
putePath function or the code in between two calls to ComputePath function
in function Main (lines 7-23).

Let us first consider another execution of the body of the while loop in
ComputePath function. In particular, let us examine all the lines of the body
of the while loop in ComputePath where we change v- or g-values of states
or their set membership during the following execution of ComputePath. On
line 15 we remove a state s from OPEN . This state is expanded as either
overconsistent or underconsistent.

6



If state s is overconsistent, then on line 17 we insert it into CLOSED but
since we set v(s) = g(s) on the same line, the state is consistent. The state is
thus correctly not a member of OPEN and can not be a member of INCONS
since at the last execution of line 14 it was a member of OPEN , and OPEN
and INCONS were disjoint according to the statement of the theorem. The
state s thus does not violate the theorem after line 17 is executed.

If state s is underconsistent, then on line 25 we set v(s) = ∞ but also call
UpdateSetMembership function on the same line. On all the other lines of
ComputePath where we modify either v- or g-values of states except for state
initialization (lines 20 and 28) we also call UpdateSetMembership function.
The state initialization code does not change the values of states according
to our convention of assuming that all states that have not been visited
so far have infinite v- and g-values. We therefore only need to show that
UpdateSetMembership function operates consistently with the theorem.

In UpdateSetMembership function if a state s is inconsistent and is not
in CLOSED it is inserted into OPEN , otherwise it is inserted into INCONS
(unless it is already there). Since OPEN and CLOSED were disjoint before
we called UpdateSetMemberhip, this procedure ensures that an inconsistent
state s does appear in either OPEN or CLOSED but not both and does
appear in INCONS if it also belongs to CLOSED . If a state s is consistent
and belongs to OPEN then it is correctly removed from it. It does not belong
to CLOSED since these sets were disjoint before UpdateSetMembership was
called. Consequently, s also does not belong to INCONS because it is a
subset of CLOSED . If a state s is consistent and does not belong to OPEN ,
then it may potentially belong to INCONS . We check this and remove s from
INCONS if it is there on line 12.

Suppose now that before the next execution of line 14 in ComputePath
the code that resides in between lines 7 and 23 in function Main is executed.
During this execution state values may change on line 16 (the initialization
code on line 14 does not change state values according to our assumption
that all states that we haven’t seen before are assumed to have infinite v-
and g-values). On the same line, however, we again correctly update the set
membership by calling UpdateSetMembership function on the same line. On
line 21 we move INCONS into OPEN . Hence, INCONS becomes empty and
OPEN contains all and only inconsistent states. We then set CLOSED to
empty set on line 23. This makes the sets to be consistent with the statement
of the theorem.

7



Theorem 4 Suppose an overconsistent state s is selected for expansion on
line 15 in ComputePath. Then the next time line 14 in ComputePath is
executed v(s) = g(s), where g(s) before and after the expansion of s is the
same.

Proof: Suppose an overconsistent state s (i.e., v(s) > g(s)) is selected
for expansion. Then on line 17 in ComputePath v(s) = g(s), and it is the
only place where a v-value changes while expanding an overconsistent state.
We, thus, only need to show that g(s) does not change. It could only change
if s ∈ succ(s) and g(s) > g(s) + c(s, s) (test on line 21 in ComputePath)
which is impossible since all costs are positive.

Theorem 5 The following properties hold for any two states s, s′ ∈ S and
the definition of the procedure key as given in figure 1:

(a) if c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗
c∗(s, s′), then key(s′) > key(s);

(b) if c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) < g(s) and g(s′) ≥ v(s) +
c∗(s, s′), then key(s′) > key(s);

Proof: Consider first property (a): we are given two arbitrary states s′

and s such that c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) > g(s) and g(s′) >
g(s)+ ε∗ c∗(s, s′), and we need to show that these conditions imply key(s′) >
key(s). Given the definition of key function in figure 1 we need to show that
[g(s′) + ε ∗ h(s′); g(s′)] > [g(s) + ε ∗ h(s); g(s)]. We examine the inequality
g(s′) > g(s) + ε ∗ c∗(s, s′) and add ε ∗ h(s′), which is finite since c∗(s′, sgoal) is
finite and heuristics are consistent. We thus have g(s′)+ ε∗h(s′) > g(s)+ ε∗
c∗(s, s′)+ε∗h(s′) and from Lemma 1 we obtain g(s′)+ε∗h(s′) > g(s)+ε∗h(s)
that guarantees that the desired inequality holds.

We now prove property (b): we are given two arbitrary states s′ and s such
that c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) < g(s) and g(s′) ≥ v(s) + c∗(s, s′),
and we need to show that these conditions imply key(s′) > key(s). Given
the definition of key function in figure 1 we need to show that [g(s′) + ε ∗
h(s′); g(s′)] > [v(s) + h(s); v(s)]. Since v(s) < g(s), v(s) is finite. Consider
now the inequality g(s′) ≥ v(s) + c∗(s, s′). Because v(s) < ∞ and costs
are positive we can conclude that g(s′) > v(s). We now add ε ∗ h(s′) to
both sides of the inequality and use the consistency of heuristics as follows
g(s′)+ε∗h(s′) ≥ v(s)+c∗(s, s′)+ε∗h(s′) ≥ v(s)+c∗(s, s′)+h(s′) ≥ v(s)+h(s).

8



Hence, we have g(s′) + ε ∗ h(s′) ≥ v(s) + h(s) and g(s′) > v(s). These
inequalities guarantee that [g(s′) + ε ∗ h(s′); g(s′)] > [v(s) + h(s); v(s)].

4.2 Main Theorems

We now prove two main theorems about AD*. These theorems guarantee ε
sub-optimality of each search iteration (whatever the current value of ε is):
every time ComputePath returns it has identified a set of states s for which
a path from sstart to s as defined by backpointers is guaranteed to be of cost
no larger than g(s) which in turn is no more than a factor of ε greater than
the optimal cost g∗(s).

Single-shot optimal search algorithms such as Dijkstra’s and A* search
can often be proven based on the property that every time a state s with the
smallest priority among all candidates for expansion is selected for expansion,
all the states that lie on an optimal path from sstart to s have already been
expanded and have correct values while all the states that have not been yet
expanded have values that are bounded below by their optimal values. As a
result, when expanding a state s the predecessor of s that lies on an optimal
path from sstart to s can easily be identified as the state s′ ∈ pred(s) that
minimizes the sum of the value of s′ and the cost c(s′, s). Consequently, the
value of s during its expansion can be set to the sum of the value of s′ and
the cost c(s′, s).

In case of AD* things get a bit more complicated because ComputePath
function needs only to compute an ε sub-optimal solution and may also en-
counter states whose values are actually smaller than their respective optimal
values since costs may decrease in between search iterations. To deal with
this we introduce a set Q:

Q = {u | v(u) < g(u) ∨ (v(u) > g(u) ∧ v(u) > ε ∗ g∗(u))} (1)

The set Q contains all underconsistent states and all those overconsistent
states whose v-values are larger than a factor of ε of their optimal values, g∗-
values. Given such a set, we can now formulate a property that is equivalent
to the property that we have described above for single-shot optimal search
algorithms: if we select any overconsistent or consistent state s whose priority
is smaller than or equal to the smallest priority of states in Q, then s has a
g-value that is at most a factor of ε larger than g∗(s) and the path defined

9



by backpointers from sstart to s has a cost no larger than g(s). This is put
formally in Theorem 6.

Theorem 7 builds on this result by showing that OPEN is always a super-
set of Q, and therefore any overconsistent or consistent state s whose priority
is smaller than or equal to the smallest priority of states in OPEN has a g-
value that is at most a factor of ε larger than g∗(s) and the path defined by
backpointers from sstart to s has a cost no larger than g(s). This property
can be used to explain the operation of AD* quite simply. When selecting
for expansion a state s as a state with the smallest priority among all the
states in OPEN , AD* guarantees to handle s correctly: if s is overconsistent,
then setting v(s) = g(s) makes v(s) at most ε sub-optimal and thus removes
s from set Q, while if s is underconsistent, then setting v(s) = ∞ forces s to
become overconsistent and the next time it is selected for expansion it will
be overconsistent.

Theorem 6 At line 14 in ComputePath, let Q be defined according to the
definition 1. Then for any state s with (c∗(s, sgoal) < ∞ ∧ v(s) ≥ g(s) ∧
key(s) ≤ key(u) ∀u ∈ Q), it holds that (i) g(s) ≤ ε ∗ g∗(s), (ii) the cost of
the path from sstart to s defined by backpointers is no larger than g(s).

Proof: (i) We first prove statement (i). We prove by contradiction.
Suppose there exists an s such that (c∗(s, sgoal) < ∞∧v(s) ≥ g(s)∧key(s) ≤
key(u) ∀u ∈ Q), but g(s) > ε ∗ g∗(s). The latter implies that g∗(s) < ∞.
We also assume that s 6= sstart since otherwise g(s) = 0 = ε ∗ g∗(s) from
Theorem 2.

Consider a least-cost path from sstart to s, π(s0 = sstart, ..., sk = s). The
cost of this path is g∗(s). Such path must exist since g∗(s) < ∞. We will
now show that such path must contain a state s′ that is overconsistent and
whose v-value overestimates g∗(s′) by more than ε. As a result, such state is
a member of Q. We will then show that its key, on the other hand, must be
strictly smaller than the key of s. This, therefore, becomes a contradiction
since s according to the theorem assumptions has a key smaller than or equal
to the key of any state in Q.

Our assumption that g(s) > ε ∗ g∗(s) means that there exists at least one
si ∈ π(s0, ..., sk−1), namely sk−1, whose v(si) > ε ∗ g∗(si). Otherwise,

g(s) = g(sk) = min
s′∈pred(s)

(v(s′) + c(s′, sk)) ≤

v(sk−1) + c(sk−1, sk) ≤

10



ε ∗ g∗(sk−1) + c(sk−1, sk) ≤

ε ∗ (g∗(sk−1) + c(sk−1, sk)) = ε ∗ g∗(sk) = ε ∗ g∗(s)

Let us now consider si ∈ π(s0, ..., sk−1) with the smallest index i ≥ 0
(that is, the closest to sstart) such that v(si) > ε ∗ g∗(si). We will first show
that ε ∗ g∗(si) ≥ g(si). It is clearly so when i = 0 according to Theorem 2
which says that g(si) = g(sstart) = 0. For i > 0 we use the fact that v(si−1) ≤
ε ∗ g∗(si−1) from the way si was chosen,

g(si) = min
s′∈pred(si)

(v(s′) + c(s′, si)) ≤

v(si−1) + c(si−1, si) ≤

ε ∗ g∗(si−1) + c(si−1, si) ≤

ε ∗ g∗(si)

We thus have v(si) > ε ∗ g∗(si) ≥ g(si), which also implies that si ∈ Q.
We now show that key(s) > key(si), and therefore arrive at a contradic-

tion. According to our assumption

g(s) > ε ∗ g∗(s) =

ε ∗ (c∗(s0, si) + c∗(si, sk)) =

ε ∗ g∗(si) + ε ∗ c∗(si, sk) ≥

g(si) + ε ∗ c∗(si, s)

Hence, we have g(s) > g(si) + ε ∗ c∗(si, s), v(si) > ε ∗ g∗(si) ≥ g(si),
v(s) ≥ g(s) and c∗(s, sgoal) < ∞ from theorem assumptions. Thus, from
Theorem 5, property (a), it follows that key(s) > key(si). This inequality,
however, implies that si /∈ Q since key(s) ≤ key(u) ∀u ∈ Q. But this
contradicts to what we have proven earlier.

(ii) Let us now prove statement (ii). We assume that g(s) < ∞ for
otherwise the statement holds trivially. Suppose we start following the back-
pointers starting at s. We need to show that we will reach sstart at the
cumulative cost of the transitions less than or equal to g(s) (we assume that
if we encounter a state with bp-value equal to null before sstart is reached
then the cumulative cost is infinite).

We first show that we are guaranteed not to encounter an underconsistent
state or a state with bp-value equal to null before sstart is reached. Once we
have this property proven, we will be able to show that the cost of the path

11



is bounded above by g(s) simply from the fact that at each backtracking
step in the path the g-value can only be larger than or equal to the sum
of the g-value of the state the backpointer points to and the cost of the
transition. Consequently, the g-value can never underestimate the cost of
the remaining part of the path. The property that we are guaranteed not
to encounter an underconsistent state or a state with bp-value equal to null

before sstart is reached is based on the fact that any such state will have a key
strictly smaller than the key of s or have an infinite g-value. The first case is
impossible because key(s) is smaller than or equal to the key of any state in
Q and this set already contains all underconsistent states. The second case
can also be shown to be impossible quite trivially.

We thus first prove by contradiction the property that we are guaran-
teed not to encounter an underconsistent state or a state with bp-value equal
to null before sstart is reached while following backpointers from s to sstart.
Suppose the sequence of backpointer transitions leads us through the states
{s0 = s, s1, . . . , si} where si is the first state that is either underconsistent or
has bp(si) = null (or both). It could not have been state s since v(s) ≥ g(s)
from the assumptions of the theorem and g(s) < ∞ implies bp(s) 6= null ac-
cording to Theorem 2 (except when s = sstart in which case the theorem holds
trivially). We now show that si can not be underconsistent. Since all the
states before si are not underconsistent and have defined backpointer values
we have g(s) = v(s1)+c(s1, s) ≥ g(s1)+c(s1, s) = v(s2)+c(s2, s1)+c(s1, s) ≥
. . . ≥ v(si) +

∑
k=1..i c(sk, sk−1) ≥ v(si) + c∗(si, s). If si was underconsistent,

then we would have had c∗(s, sgoal) < ∞, v(s) ≥ g(s), v(si) < g(si) and
g(s) ≥ v(si)+c∗(si, s), and this, according to Theorem 5 property (b), would
imply that key(s) > key(si) which means that si /∈ Q and therefore can
not be underconsistent according to the definition of Q. We will now show
that bp(si) can not be equal to null either. Since si is not underconsis-
tent v(si) ≥ g(si). From our assumption that g(s) < ∞ and the fact that
g(s) ≥ v(si) + c∗(si, s) it then follows that g(si) is finite. As a result, from
Theorem 2 bp(si) 6= null unless si = sstart. Hence, as we backtrack from s to
sstart the path defined by backpointers we are guaranteed to have states that
are not underconsistent and whose bp-values are not equal to null except for
sstart.

We are now ready to show that the cost of the path from sstart to s
defined by backpointers is no larger than g(s). Let us denote such path as:
s0 = sstart, s1, ..., sk = s. Since all states on this path are either consistent
or overconsistent and their bp-values are defined (except for sstart), for any i,

12



k ≥ i > 0, we have g(si) = v(si−1) + c(si−1, si) ≥ g(si−1) + c(si−1, si) from
Theorem 2. For i = 0, g(si) = g(sstart) = 0 from the same theorem. Thus,
g(s) = g(sk) ≥ g(sk−1) + c(sk−1, sk) ≥ g(sk−2) + c(sk−2, sk−1) + c(sk−1, sk) ≥
... ≥

∑
j=1..k c(sj−1, sj). That is, g(s) is at least as large as the cost of the

path from sstart to s as defined by backpointers.

Theorem 7 At line 14 in ComputePath, for any state s with (c∗(s, sgoal) <
∞ ∧ v(s) ≥ g(s) ∧ key(s) ≤ key(u) ∀u ∈ OPEN), it holds that (i) g(s) ≤
ε ∗ g∗(s), (ii) the cost of the path from sstart to s defined by backpointers is
no larger than g(s).

Proof: Let Q be defined according to the definition 1. To prove the
theorem we will show that Q is a subset of OPEN and then appeal to Theo-
rem 6. We will show that Q is a subset of OPEN by induction. We will first
show that it holds initially because OPEN contains all inconsistent states
initially and set Q is a subset of those. Afterwards, we will show that any
state s ∈ CLOSED always remains either consistent or overconsistent but
with v(s) ≤ ε∗g∗(s). Given that the union of OPEN and CLOSED contains
all inconsistent states, it is then clear that OPEN contains at least all those
(and possibly other) inconsistent states that are in Q.

We now prove the theorem. From the definition of set Q it is clear that
for any state u ∈ Q it holds that u is inconsistent (that is, v(u) 6= g(u)). Ac-
cording to Theorem 3 and the fact that right before ComputePath is called
CLOSED is always empty (lines 3 and 23 in function Main) when the Com-
putePath function is called OPEN contains all inconsistent states. Therefore
Q ⊆ OPEN, because as we have just said any state u ∈ Q is also inconsistent.
Thus, if any state s has key(s) ≤ key(u) ∀u ∈ OPEN , it is also true that
key(s) ≤ key(u) ∀u ∈ Q. From the direct application of Theorem 6 it then
follows that the first time line 14 in ComputePath is executed the theorem
holds.

Also, because during the first execution of line 14 CLOSED = ∅ (lines 3
and 23 in function Main), the following statement, denoted by (*), trivially
holds when line 14 is executed for the first time within any particular call
to ComputePath function: for any state v ∈ CLOSED it holds that g(v) ≤
v(v) ≤ ε ∗ g∗(v) and g(v) < v(s′) + c∗(s′, v) ∀s′ ∈ {s′′ | v(s′′) < g(s′′)}.
We will later prove that this statement always holds and thus all states
v ∈ CLOSED are either consistent or overconsistent but ε sub-optimal (i.e.,
v(v) ≤ ε ∗ g∗(v)).

13



We will now show by induction that the theorem continues to hold for
the subsequent executions of line 14 within the current call to ComputePath.
Suppose the theorem and the statement (*) held during all the previous exe-
cutions of line 14, and they still hold when a state s is selected for expansion
on line 15. We need to show that the theorem holds the next time line 14 in
ComputePath is executed.

We first prove that the statement (*) still holds during the next execution
of line 14. Suppose first we select an overconsistent state s to be expanded.
Because it is added to CLOSED immediately afterwards, we need to show
that it does not violate statement (*). Since when s is selected for expansion
on line 15 key(s) = min

u∈OPEN(key(u)), we have key(s) ≤ key(u) ∀u ∈
OPEN. According to the assumptions of our induction then g(s) ≤ ε ∗
g∗(s). From Theorem 4 it then also follows that the next time line 14 is
executed g(s) = v(s) ≤ ε ∗ g∗(s). To show that g(s) < v(s′) + c∗(s′, s)∀s′ ∈
{s′′ | v(s′′) < g(s′′)} after s is expanded we show that this is true right
before s is expanded and therefore since v-values of all states except for
s do not change during the expansion of s and g(s) does not change either
(Theorem 4) it still holds afterwards. To show that the inequality held before
the expansion of s we note that according to our assumptions CLOSED
contained no underconsistent states and they were all therefore in OPEN
(Theorem 3); from the way s was selected from OPEN it then followed that
key(s) ≤ key(s′)∀s′ ∈ {s′′ | v(s′′) < g(s′′)}; finally, the fact that s was
overconsistent (v(s) > g(s)) implies that g(s) < v(s′) + c∗(s′, s)∀s′ ∈ {s′′ |
v(s′′) < g(s′′)} because otherwise c∗(s, sgoal) < ∞, v(s) > g(s), v(s′) < g(s′)
and g(s) ≥ v(s′) + c∗(s′, s) would imply key(s) > key(s′) according to the
Theorem 5, property(b). As for the rest of the states the statement (*)
follows from the following observations: only v-value of s was changed and s
is not underconsistent after its expansion (it is in fact consistent according
to Theorem 4); since g(s) decreased during the expansion of s the g-values of
its successors could only decrease implying that they could not have violated
the statement (*); and finally no other changes to either v- or g-values were
done and no operations except for insertion of s were done on CLOSED .

Suppose now an underconsistent state s is selected for expansion. Because
it is not added to CLOSED , we only need to show that statement (*) remains
to hold true for all the states that were in CLOSED prior to the expansion
of s. Since only v-value of s has been changed, none of the v-values of
states in CLOSED are changed. We will now show that none of their g-
values could have changed either. Since prior to the expansion of s, s was

14



underconsistent and statement (*) held by our induction assumptions, it was
true that for any state v ∈ CLOSED, g(v) < v(s)+ c∗(s, v). This means that
bp(v) 6= s (Theorem 2) and therefore the test on line 29 will not pass and
g(v) will not change during the expansion of s. Finally, we will now show
that the newly introduced underconsistent states could not have violated
the statement (*) either. The v-values of states that were underconsistent
before s was expanded were not changed (v-value of only s was changed and
s could not remain underconsistent as its v-value was set to ∞). Suppose
some state s′ became underconsistent as a result of expanding s. We need
to show that after the expansion of s, for any state v ∈ CLOSED it holds
that g(v) < v(s′) + c∗(s′, v). Since s′ became underconsistent as a result
of expanding s it must be the case that before the expansion of s v(s′) ≥
g(s′) and bp(s′) = s (in order for g(s′) to change). Consequently before the
expansion of s, v(s′) ≥ g(s′) = v(s)+ c(s, s′). Since before the expansion of s
statement (*) held, for any state v ∈ CLOSED g(v) < v(s)+c∗(s, v). We thus
had g(v) < v(s) + c∗(s, v) ≤ v(s) + c(s, s′) + c∗(s′, v) ≤ v(s′) + c∗(s′, v). This
continues to hold after the expansion of s since neither v(s′) nor g(v) changes
during the expansion of s as we have just shown. Hence the statement (*)
continues to hold the next time line 14 in ComputePath is executed.

We now prove that after s is expanded the theorem itself also holds.
We prove it by showing that Q continues to be a subset of OPEN the
next time line 14 is executed. According to Theorem 3 OPEN set con-
tains all inconsistent states that are not in CLOSED . Since, as we have
just proved, the statement (*) holds the next time line 14 is executed, all
states s in CLOSED set have g(s) ≤ v(s) ≤ ε ∗ g∗(s). Thus, any state
s that is inconsistent and has either g(s) > v(s) or v(s) > ε ∗ g∗(s) (or
both) is guaranteed to be in OPEN . Now consider any state u ∈ Q. As
we have shown earlier such state u is inconsistent, and either g(u) > v(u)
or v(u) > ε ∗ g∗(u) (or both) according to the definition of Q. Thus,
u ∈ OPEN. This shows that Q ⊆ OPEN. Consequently, if any state s
has c∗(s, sgoal) < ∞∧ v(s) ≥ g(s) ∧ key(s) ≤ key(u) ∀u ∈ OPEN, it is also
true that c∗(s, sgoal) < ∞∧ v(s) ≥ g(s) ∧ key(s) ≤ key(u) ∀u ∈ Q, and the
statement of the theorem holds from Theorem 6. This proves that the theo-
rem holds during the next execution of line 14 in ComputePath, and proves
the whole theorem by induction.

15



4.3 Correctness

The corollaries in this section show how the theorems in the previous section
lead quite trivially to the correctness of AD*.

Corollary 8 Every time ComputePath function exits the following holds for
any state s with (c∗(s, sgoal) < ∞∧v(s) ≥ g(s)∧key(s) ≤ mins′∈OPEN(key(s′))):
the cost of the path from sstart to s defined by backpointers is no larger than
ε ∗ g∗(s).

Proof: The corollary follows directly from Theorem 7 after we combine
the statements (i) and (ii) of the theorem together.

Corollary 9 Every time ComputePath function exits the following holds:
the cost of the path from sstart to sgoal defined by backpointers is no larger
than ε ∗ g∗(sgoal).

Proof: According to the termination condition of the ComputePath func-
tion, upon its exit (v(sgoal) ≥ g(sgoal) ∧ key(sgoal) ≤ min

s′∈OPEN(key(s′))).
The proof then follows from Corollary 8 noting that c∗(sgoal, sgoal) = 0.

4.4 Efficiency

Several theorems in this section provide some theoretical guarantees about
the efficiency of AD*. We do not prove it here, but it can also be shown
(see [2]) that when AD* calls the ComputePath function to (re-)compute
an optimal solution (in other words, with ε = 1), no state whose v-value is
already equal to its g∗-value is expanded.

Theorem 10 Within any particular execution of ComputePath function once
a state is expanded as overconsistent it can never be expanded again (inde-
pendently of it being overconsistent or underconsistent).

Proof: Suppose a state s is selected for expansion as overconsistent for
the first time during the execution of the ComputePath function. Then, it is
removed from OPEN set on line 15 and inserted into CLOSED set on line 17.
It can then never be inserted into OPEN set again unless the ComputePath
function exits since any state that is about to be inserted into OPEN set is

16



checked against membership in CLOSED on line 8. Because only the states
from OPEN set are selected for expansion, s can therefore never be expanded
second time.

Theorem 11 No state is expanded more than once as underconsistent within
any particular execution of ComputePath function.

Proof: Once a state is expanded as underconsistent its v-value is set
to ∞. As a result, unless the state is expanded as overconsistent this state
can never become underconsistent again. This is so because for a state to be
underconsistent it needs to have its v-value strictly less than its g-value, which
implies that the v-value needs to be finite. The only way for a v-value to
change its value onto a finite value, on the other hand, is during the expansion
of the state as an overconsistent state. However, if the state is expanded as
overconsistent then according to Theorem 10 the state is never expanded
again. Thus, a state can be expanded at most once as underconsistent.

Corollary 12 No state is expanded more than twice within any particular
execution of ComputePath function.

Proof: According to theorems 10 and 11 each state can be expanded
at most once as underconsistent and at most once as overconsistent. Since
there are no other ways to expand states, this leads to the desired result:
each state is expanded at most twice.

Theorem 13 A state s is expanded by ComputePath only if either it was
inconsistent right before ComputePath was called or its v-value was altered
by ComputePath at some point during its current execution.

Proof: Let us pick a state s such that right before a call to ComputePath
function it was consistent and during the execution of ComputePath its v-
value has never been altered. Then it means that vafterComputePath(s) =
vbeforeComputePath(s) = gbeforeComputePath(s). Since only states from OPEN are
selected for expansion and OPEN contains only inconsistent states, then in
order for s to have been selected for expansion, it should have had v(s) 6= g(s).
Because the v-value of s remains the same throughout the ComputePath
function execution, it has to be the case that the g-value of s has changed
since the beginning of ComputePath. If s is expanded as overconsistent then

17



v(s) is changed by setting it to g(s), whereas if s is expanded as underconsis-
tent then v(s) is increased by setting it to ∞ (it could not have been equal
to ∞ before since it was underconsistent, i.e., v(s) < g(s) ≤ ∞). Both cases
contradict to our assumption that v(s) remained the same throughout the
execution of ComputePath.

References

[1] S. Koenig and M. Likhachev. Incremental A*. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems (NIPS) 14. Cambridge, MA: MIT Press, 2002.

[2] M. Likhachev. Search-based Planning for Large Dynamic Environments.
PhD thesis, Carnegie Mellon University, 2005. In Preparation.

[3] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Any-
time Dynamic A*: An Anytime, Replanning Algorithm. In Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), 2005.

[4] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

18


