
A New Principle for Incremental Heuristic Search: Theoretical Results

Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

skoenig@usc.edu

Maxim Likhachev
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891

maxim+@cs.cmu.edu

Abstract

Planning is often not a one-shot task because either the
world or the agent’s knowledge of the world changes.
In this paper, we introduce a new principle that can
be used to solve a series of similar search tasks faster
with heuristic search methods than running individ-
ual searches in isolation, by updating the heuristics
over time to make them more informed and thus fu-
ture searches more focused. This principle is simple and
easy to integrate into heuristic search methods, and it is
easy to prove the correctness of the resulting heuristic
search methods.

Introduction
Planning is seldomly a one-shot task because either the
world or the agent’s knowledge of the world changes (Kott,
Saks, & Mercer 1999), in which case the current plan might
no longer apply or become very suboptimal. Examples in-
clude low-level trajectory planning and high-level evacua-
tion planning in crisis situations. It is therefore not surpris-
ing that planning researchers have studied re-planning and
plan re-use extensively, although most of this research was
conducted in the 1970s. The question is how to solve a se-
ries of similar planning tasks faster than by solving the in-
dividual planning tasks in isolation, for example, by using
experience with previous planning tasks to solve the cur-
rent planning task. Recent developments have focused on
re-planning with the heuristic search method A* (= incre-
mental heuristic search) (Koenig, Furcy, & Bauer 2002),
which has two advantages: First, incremental versions of
A* are interesting for planning researchers because many
state-of-the-art planners are now based on heuristic search
(Bonet & Geffner 2001; Hoffmann 2000). Second, incre-
mental versions of A* are able to make guarantees about the
solution quality after every re-planning episode, even after
many re-planning episodes, whereas the solution quality of
many other re-planning and plan re-use methods degrades
quickly. The existing incremental versions of A*, namely
LPA* (Koenig & Likhachev 2002b), D* Lite (Koenig &
Likhachev 2002a) and D* (Stentz 1995), are all based on
the same principle and have several disadvantages, namely

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that it is difficult to prove them correct and that there are
situations where they are slower than standard A* and thus
should not be used. In this paper, we introduce a new prin-
ciple that can also be used to solve a series of similar search
tasks faster with heuristic search methods than by running
individual searches in isolation, but the idea behind our prin-
ciple is to update the heuristics over time to make them more
informed and thus future searches more focused. This prin-
ciple is simple and easy to integrate into heuristic search
methods, and it is easy to prove the correctness of the re-
sulting heuristic search methods. We then show how our
principle can be incorporated into A*, resulting in Adap-
tive A* that expands no more states than standard A* and
thus cannot be slower than standard A* (except for a small
number of bookkeeping actions). This paper is focused on
theoretical results and complements our earlier paper on ex-
perimental results (Koenig & Likhachev 2005).

New Principle for Incremental Search
Our new principle for incremental heuristic search is simple
but powerful. Letgd[s] denote the goal distance of states (=
the cost of a cost-minimal path from states to the goal state)
andf∗ = gd[sstart] denote the cost of the cost-minimal path
found after an A* search. Lets denote any state that was
expanded during the A* search,h[s] denote the consistent
heuristic of this states (= an estimate of its goal distance)
used during the A* search, andg[s] andf [s] = g[s] + h[s]
denote its g-value and f-value, respectively, after the A*
search. Then,g[s] is the cost of a cost-minimal path from
the start state to states since states was expanded during
the A* search. The costs of cost-minimal paths satisfy the
following relationship

f∗ ≤ g[s] + gd[s]

f∗ − g[s] ≤ gd[s].

Thus,f∗ − g[s] is an admissible estimate of the goal dis-
tance of states. It can thus be used as new admissible heuris-
tic of states. We will show later that the new heuristics are
not only admissible but also consistent. Furthermore, since
states was expanded during the A* search, it holds that

f [s] ≤ f∗

g[s] + h[s] ≤ f∗

h[s] ≤ f∗ − g[s].



Thus, the new heuristicf∗ − g[s] of states is no smaller
than the old heuristich[s] of states. Consequently, the
new heuristics dominate the old heuristics, and thus any A*
search with the new heuristics cannot expand more states
than an otherwise identical A* search with the old heuris-
tics.

Adaptive A*
We now show how to incorporate these updates of the
heuristics into A*, resulting in Adaptive A*. Adaptive A*
repeatedly finds cost-minimal paths for graph search prob-
lems with the same goal vertex on given graphs whose edge
costs can increase between searches. It uses A* searches
(Nilsson 1971) to find the cost-minimal paths and updates
the heuristics over time to make them more informed and
thus future A* searches more focused.

Search Tasks and Notation
We use the following notation to describe search tasks:S de-
notes the finite set of states.A(s) denotes the finite set of ac-
tions that can be executed in states ∈ S. c[s, a] > 0 denotes
the cost of executing actiona ∈ A(s) in states ∈ S, and
succ(s, a) ∈ S denotes the resulting successor state.gd[s]
denotes the goal distance of states ∈ S, that is, the cost of
a cost-minimal path from states to the goal statesgoal. The
start statesstart can change between searches, and the action
costs can increase (but not decrease) between searches. The
objective of each search is to find a cost-minimal path from
the current start state to the goal state according to the cur-
rent action costs. The user supplies initial estimatesH(s)
of the goal distances of the statess that must be consistent
but can be the completely uninformed zero heuristics if more
informed heuristics are not available.

Eager Adaptive A*
The eager version of Adaptive A* uses our principle for in-
cremental heuristic search in a straight-forward way by per-
forming an A* search and then updating the heuristics of all
statess that were expanded during the A* search (= states
that are in the CLOSED list after the A* search) by assign-
ing h[s] := f∗−g[s]. It does not update the heuristics of the
states that were generated during the A* search but remained
unexpanded (= states that are in the OPEN list after the A*
search) since their new heuristics cannot be larger than their
old heuristics (but can be smaller). Future A* searches can-
not expand more states with the new heuristics than other-
wise identical A* searches with the old heuristics but will
often expand many fewer states and thus run much faster,
which justifies the small amount of runtime required for up-
dating the heuristics of all expanded states after each A*
search. In that sense, Adaptive A* is guaranteed to improve
its runtime more and more over time and outperforms a stan-
dard version of A* that does not modify the user-supplied
heuristics.

Illustration of Eager Adaptive A*
We use a simple path-planning problem on a four-connected
gridworld to demonstrate the advantage of the eager version

81012

76323

65434

7654

81246

88368

888810

10101010

1

3

01234

12345

23456

34567

45678

71323

67312

54401

43212

5432

71557

79357

77857

77779

9999

1

3

01234

12345

23456

34567

45678

Figure 1: A*

81012

76323

65434

7654

81246

88368

888810

10101010

1876

1365

2345

01234

12345

23456

34567

45678

7123

67312

54401

43212

5432

7199

79377

77857

77779

9999

1

1365

2476

3456

01876

12365

23456

34567

45678

Figure 2: Eager Adaptive A*

of Adaptive A* over the standard version of A*. An agent
has to move from a given start cell to a given goal cell by
repeatedly moving from its current cell to an unblocked (=
white) adjacent cell in one of the four compass directions.
Every move has unit cost for the agent. We use the Man-
hattan distances as user-supplied consistent heuristics.Fig-
ures 1 and 2 show the first path-planning problem on their
left sides and a second path-planning problem on their right
sides. The black circles are the start cells. The arrows show
the planned paths from the start cells to the goal cell, which
is in the south-east corner. Some action costs increase (but
none decreases) from the first path-planning problem to the
second one since one additional cell becomes blocked. Fig-
ure 1 shows the resulting searches of the standard version
of A*, and Figure 2 shows the resulting searches of the ea-
ger version of Adaptive A*. Both search methods break ties
between cells with the same f-values in favor of cells with
larger g-values and remaining ties in the following order,
from highest to lowest priority: east, south, west and north.
All cells have their heuristic in the lower left corner. Gen-
erated cells also have their g-value in the upper left corner
and their f-value in the upper right corner. Expanded cells
are shown in grey. For the eager version of Adaptive A*, ex-
panded cells have their updated heuristic in the lower right
corner. Note that the standard version of A* re-expands the
three leftmost cells in the bottom row because the heuris-
tics are misleading and form a local minimum. The eager
version of Adaptive A* avoids these re-expansions since it
updates the heuristics.

Lazy Adaptive A*
The eager version of Adaptive A* first performs an A*
search and then updates the heuristics of the states that were
expanded during the search. It has to update the heuris-



1 procedure InitializeState(s)
2 if search[s] 6= counterAND search[s] 6= 0

3 if g[s] + h[s] < pathcost[search[s]]
4 h[s] := pathcost[search[s]] − g[s];
5 g[s] := ∞;
6 search[s] := counter;

7 procedure ComputePath()

8 whileg[sgoal] > min
s
′∈OPEN(g[s′] + h[s′])

9 delete the states with the smallest priorityg[s] + h[s] from OPEN;
10 for eacha ∈ A(s)

11 InitializeState(succ(s, a));
12 if g[succ(s, a)] > g[s] + c[s, succ(s, a)]

13 g[succ(s, a)] := g[s] + c[s, succ(s, a)];
14 tree[succ(s, a)] := s;
15 if succ(s, a) is in OPENthen delete it fromOPEN;
16 insertsucc(s, a) into OPENwith priority g[succ(s, a)]+h[succ(s, a)];

17 procedure Main()

18 counter:= 0;
19 for every states ∈ S

20 h[s] := H(s);
21 search[s] := 0;
22 g[s] := ∞;
23 forever
24 counter:= counter+ 1;
25 InitializeState(sstart);
26 InitializeState(sgoal);
27 g[sstart] := 0;
28 OPEN:= ∅;
29 insertsstart into OPENwith priority g[sstart] + h[sstart];
30 ComputePath();
31 pathcost[counter] := g[sgoal];
32 identify the path using thetreepointers and use it;
33 setsstart to the current start state (if changed);
34 update the increased edge costs (if any);

Figure 3: Lazy Adaptive A*

tics after the search (rather than: during the search) because
it needs to know the cost of the cost-minimal path found,
which is only known at the end of the search. A disad-
vantage of updating the heuristics of all states that were ex-
panded during the search is that one potentially updates the
heuristics of states that are not needed in future searches.
The lazy version of Adaptive A* therefore remembers some
information when a states is expanded during the search
(such as its g-valueg[s]) and some information when the
search is over (such as the costf∗ of the cost-minimal path
found), and then uses that information to compute the new
heuristich[s] := f∗−g[s] of states when it is needed during
future searches.

Figure 3 contains the pseudo code of the lazy version
of Adaptive A*. ComputePath() implements an A* search
to determine a cost-minimal path from the start state ot
the goal state.counterequalsx during thexth invocation
of ComputePath(), that is, thexth search. pathcost[x] is
the costf∗ of the cost-minimal path found during thexth
search. The value ofsearch[s] is the number of the lat-
est search during which states was generated. Whenever
a states is about to be generated for the first time during
some search on Line 11 and thus its heuristic is needed
for the first time during this search, then InitializeState(s)
checks whether new information is available to update the
heuristic of the state. This is the case if the state was

generated during a previous search (search[s] 6= 0) and
then expanded during the same search (g[s] + h[s] <
pathcost[search[s]]) but not yet generated during the current
search (search[s] 6= counter). (An expanded states with
g[s] + h[s] = pathcost[search[s]] can be ignored since an
update of its heuristic would leave the heuristic unchanged.)
If so, then InitializeState(s) calculates the new heuristic of
the state on Line 4 by subtracting the g-value of the state at
the end of the search when the state was expanded (g[s])
from the cost of the cost-minimal path found during the
same search (pathcost[search[s]]). The behavior of the A*
searches for the lazy and eager versions of Adaptive A* is
always identical since they use the same heuristics. The only
difference is when the heuristics are calculated.

Properties of Adaptive A*
We now prove two important properties of Adaptive A*,
making use of the following known properties of A*
searches with consistent heuristics (Pearl 1985): First, they
expand every state at most once. Second, the g-values of
every expanded state and the goal state are equal to the cost
of a cost-minimal path from the start state to the respective
state. Thus, one knows a cost-minimal path from the start
state to all these states. Third, the f-values of the series of
expanded states over time are monotonically nondecreasing.
Thus,f [s] ≤ f∗ for all statess that were expanded during
the A* search (= states that are in the CLOSED list after the
A* search) andf∗ ≤ f [s] for all statess that were generated
during the A* search but remained unexpanded (= states that
are in the OPEN list after the A* search). The proofs refer
to the eager version of Adaptive A*.

Theorem 1 The heuristics of the same state are monotoni-
cally nondecreasing over time and thus indeed become more
informed over time.

Proof: Assume that the heuristic of states is updated.
Then, states was expanded and it thus holds thatf [s] ≤ f∗.
Thus,h[s] = f [s]− g[s] ≤ f∗ − g[s] and the update cannot
decrease the heuristic of states since it changes the heuristic
from h[s] to f∗ − g[s].

Theorem 2 The heuristics indeed remain consistent and
thus also admissible.

Proof: We prove this property by induction on the num-
ber of A* searches performed by Adaptive A*. The initial
heuristics are provided by the user and consistent. It thus
holds thath[sgoal] = 0. This continues to hold since the goal
state is not expanded and its heuristic thus not updated. It
also holds thath[s] ≤ h[succ(s, a)]+ c[s, a] for all non-goal
statess and actionsa that can be executed in them. As-
sume that some action costs increase. Letc denote the ac-
tion costs before all increases andc′ denote the action costs
after all increases. Then,h[s] ≤ h[succ(s, a)] + c[s, a] ≤
h[succ(s, a)] + c′[s, a] and the heuristics thus remain con-
sistent. Now assume that the heuristics are updated. Leth
denote the heuristics before all updates andh′ denote the
heuristics after all updates. We distinguish three cases:

• First, boths and succ(s, a) were expanded, which im-
plies thath′[s] = f∗ − g[s] andh′[succ(s, a)] = f∗ −



g[succ(s, a)]. Also, g[succ(s, a)] ≤ g[s] + c[s, a] since
the A* search discovers a path from the current state via
states to statesucc(s, a) of cost g[s] + c[s, a] during
the expansion of states. Thus, h′[s] = f∗ − g[s] ≤
f∗ − g[succ(s, a)] + c[s, a] = h′[succ(s, a)] + c[s, a].

• Second,s was expanded butsucc(s, a) was not, which
implies thath′[s] = f∗ − g[s] and h′[succ(s, a)] =
h[succ(s, a)]. Also, g[succ(s, a)] ≤ g[s] + c[s, a] for the
same reason as in the first case, andf∗ ≤ f [succ(s, a)]
since statesucc(s, a) was generated but not expanded.
Thus, h′[s] = f∗ − g[s] ≤ f [succ(s, a)] − g[s] =
g[succ(s, a)] + h[succ(s, a)] − g[s] = g[succ(s, a)] +
h′[succ(s, a)] − g[s] ≤ g[succ(s, a)] + h′[succ(s, a)] −
g[succ(s, a)] + c[s, a] = h′[succ(s, a)] + c[s, a].

• Third, s was not expanded, which implies thath′[s] =
h[s]. Also, h[succ(s, a)] ≤ h′[succ(s, a)] since the
heuristics of the same state are monotonically nondecreas-
ing over time. Thus,h′[s] = h[s] ≤ h[succ(s, a)] +
c[s, a] ≤ h′[succ(s, a)] + c[s, a].

Thus,h′[s] ≤ h′[succ(s, a)]+c[s, a] in all three cases and
the heuristics thus remain consistent.

These properties trivially imply the correctness of Adap-
tive A*. The proof of the correctness of LPA* in (Koenig,
Likhachev, & Furcy 2004), on the other hand, is 18 pages
long.

Experimental Results
We performed experiments in randomly generated four-
connected mazes of size201 × 201 that were solvable. We
generated their random corridor structure with a depth-first
search and then removed 750 walls. Adaptive A* expanded
more than 20 percent fewer cells than the standard version
of A* but needed about 10 percent more time per cell expan-
sion. Overall, Adaptive A* ran more than 10 percent faster
than the standard version of A*. Additional results are re-
ported in (Koenig & Likhachev 2005). We have been able
to achieve even larger improvements in different kinds of
domains. Note, however, that all of these results are imple-
mentation, compiler, and computer dependent.

Conclusions
In this paper, we introduced a new principle for incremen-
tal heuristic search, namely to update the heuristics over
time to make them more informed and thus future searches
more focused. This principle is simple and easy to inte-
grate into heuristic search methods, and it is easy to prove
the correctness of the resulting heuristic search methods.
We demonstrated that our new principle for incremental
heuristic search can be incorporated into the heuristic search
method A*, resulting in Adaptive A*. In future work,
we intend to explore additional applications of our princi-
ple. For example, a previous incremental heuristic search
method (LPA*) has already been applied to symbolic re-
planning problems, resulting in the SHERPA planning sys-
tem (Koenig, Furcy, & Bauer 2002). We intend to use Adap-
tive A* in a similar way to solve symbolic re-planning prob-
lems.

Acknowledgments
This research has been partly supported by an NSF award
to Sven Koenig under contract IIS-0350584. The views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the sponsoring
organizations, agencies, companies or the U.S. government.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1):5–33.
Hoffmann, J. 2000. FF: The fast-forward planning systems.
Artificial Intelligence Magazine22(3):57–62.
Koenig, S., and Likhachev, M. 2002a. D* Lite. InProceed-
ings of the National Conference on Artificial Intelligence,
476–483.
Koenig, S., and Likhachev, M. 2002b. Incremental A*.
In Dietterich, T.; Becker, S.; and Ghahramani, Z., eds.,
Advances in Neural Information Processing Systems 14.
Cambridge, MA: MIT Press.
Koenig, S., and Likhachev, M. 2005. Adaptive A* [poster
abstract]. InProceedings of the International Conference
on Autonomous Agents and Multi-Agent Systems, 1311–
1312.
Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic
search-based replanning. InProceedings of the Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling, 294–301.
Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
Planning A*. Artificial Intelligence155(1-2):93–146.
Kott, A.; Saks, V.; and Mercer, A. 1999. A new technique
enables dynamic replanning and rescheduling of aeromed-
ical evacuation.Artificial Intelligence Magazine20(1):43–
53.
Nilsson, N. 1971.Problem-Solving Methods in Artificial
Intelligence. McGraw-Hill.
Pearl, J. 1985.Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Stentz, A. 1995. The focussed D* algorithm for real-time
replanning. InProceedings of the International Joint Con-
ference on Artificial Intelligence, 1652–1659.


