16-350
Planning Techniques for Robotics

Planning Representations: Lattice-based Graphs

Maxim Likhachev
Robotics Institute
Carnegie Mellon University
Beyond Planning for Omnidirectional Robots

What’s wrong with using Grid-based Graphs when planning for non-omnidirectional robots?
Beyond Planning for Omnidirectional Robots

What’s wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

“Can’t turn in place”

e.g., constraints on the minimum turning radius (still kinematic planning)

e.g., constraints on turning rate (rate of change in wheel orientation) and inertial constraints (kinodynamic planning)
Beyond Planning for Omnidirectional Robots

What’s wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

“Can’t turn in place”

- e.g., constraints on the minimum turning radius (still *kinematic* planning)
- e.g., constraints on turning rate (rate of change in wheel orientation) and inertial constraints (*kinodynamic* planning)

Kinodynamic planning:
Planning representation includes \(\{X, \dot{X}\} \), where \(X \)-configuration and \(\dot{X} \)-derivative of \(X \) (dynamics of \(X \))
Beyond Planning for Omnidirectional Robots

(x,y,θ,v) planning

with Anytime D^* (Anytime Incremental A^*) on Lattice Graphs
Beyond Planning for Omnidirectional Robots

\((x, y, \Theta)\) planning with ARA*-based algorithm on Lattice Graphs

Joint work with V. Kumar (Upenn), I. Kaminer (NPS) and V. Dobrokhodov (NPS)
[thakur et al., ‘13]
Lattice Graphs

• Graph \(\{V, E\} \) where

 - \(V \): centers of the grid-cells
 - \(E \): motion primitives that connect centers of cells via short-term \textit{feasible} motions

\textit{each transition is feasible (typically, constructed beforehand)}

\textit{motion primitives}

\textit{outcome state is the center of the corresponding cell in a grid}
Lattice Graphs

- Graph \(\{V, E\} \) where
 - \(V \): centers of the grid-cells
 - \(E \): motion primitives that connect centers of cells via short-term feasible motions

motion primitives

replicate it during planning to generate lattice graph
Lattice Graphs

- Graph \(\{V, E\} \) where
 - \(V \): centers of the grid-cells
 - \(E \): motion primitives that connect centers of cells via short-term feasible motions

How do edge costs get assigned?

motion primitives

replicate it during planning to generate lattice graph
Lattice Graphs

- Graph \(\{V, E\} \) where
 - \(V \): centers of the grid-cells
 - \(E \): motion primitives that connect centers of cells via short-term feasible motions

How do edgecosts get assigned?

Are lattice-based graphs typically used as explicit or implicit graphs?

replicate it during planning to generate lattice graph
Lattice Graphs

• Board example for \((x, y, \theta)\) planning for a unicycle model (minimum turning radius)
What You Should Know…

• What are Lattice graphs and how they get constructed