
16-350

Planning Techniques for Robotics

Interleaving Planning and Execution:

Anytime Heuristic Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Carnegie Mellon University 2

Planning during Execution

• Planning is a repeated process!

Reasons?

Carnegie Mellon University 3

Planning during Execution

ATRV navigating

initially-unknown environment planning map and path

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

Carnegie Mellon University 4

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

planning in dynamic environments

Carnegie Mellon University 5

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

Carnegie Mellon University 6

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

this class

next two classes

7

Anytime Algorithms

• Anytime algorithms are algorithms that are:

– capable of returning some solution whenever they are interrupted

– improve the solution over time until they are interrupted or until

convergence to an optimal solution, whichever is first

• Anytime Planners

– capable of returning some plans whenever they are interrupted

– improve the plans over time until they are interrupted or until

convergence to an optimal plan

Carnegie Mellon University

Carnegie Mellon University 8

Anytime Planning for an Autonomous Vehicle

• Running ARA* Search

9

Anytime Heuristic Search: Straw Man Approach

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

Carnegie Mellon University

Any ideas?

10

Anytime Heuristic Search: Straw Man Approach

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

Carnegie Mellon University

11

Anytime Heuristic Search: Straw Man Approach

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

• Inefficient because

– many state values remain the same between search iterations

– we should be able to reuse the results of previous searches

Carnegie Mellon University

12

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

• ARA* (Anytime Repairing A*)

- efficient version of above that reuses state values between iterations

Carnegie Mellon University

Anytime Heuristic Search: Straw Man Approach

Carnegie Mellon University 14

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

all v-values initially are infinite;

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 15

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

v-value – the value of a state

during its expansion (infinite if

state was never expanded)

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 16

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 17

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

overconsistent state

consistent state

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 18

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

• A* expands overconsistent states in the order of their f-values

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 19

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

• A* expands overconsistent states in the order of their f-values

initialize OPEN with all overconsistent states;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

all you need to do to

make it reuse old values!

• Making A* reuse old values:

A* with Reuse of State Values

Carnegie Mellon University 20

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

• A* expands overconsistent states in the order of their f-values

initialize OPEN with all overconsistent states;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

all you need to do to

make it reuse old values!

• Making A* reuse old values:

A* with Reuse of State Values

Why do we need this change?

Carnegie Mellon University 21

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 
h=02

S4 S3

3

g= 2

v= 
h=2

g= 
v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

initially OPEN contains all overconsistent states

CLOSED = {}

OPEN = {s4,sgoal}

next state to expand: s4

A* with Reuse of State Values

Carnegie Mellon University 22

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 
h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

CLOSED = {s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* with Reuse of State Values

Carnegie Mellon University 23

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

after ComputePathwithReuse terminates:

all g-values of states are equal to final A* g-values

CLOSED = {s4,sgoal}

OPEN = {s3}

done

A* with Reuse of State Values

Carnegie Mellon University 24

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

we can now compute a least-cost path

A* with Reuse of State Values

Carnegie Mellon University 25

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

the exact same

thing as with A*

• Making weighted A* reuse old values:

A* with Reuse of State Values

Carnegie Mellon University 26

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

v(s)=g(s);

the exact same

thing as with A*

• Making weighted A* reuse old values:

A* with Reuse of State Values

To maintain the invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

Carnegie Mellon University 27

• Efficient series of weighted A* searches with decreasing ε:

Anytime Repairing A* (ARA*)

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart};

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;

Carnegie Mellon University 28

• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart};

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;

need to keep track of those

Carnegie Mellon University 29

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

v(s)=g(s);

• Efficient series of weighted A* searches with decreasing ε:

ARA*

Does OPEN contain ALL overconsistent states

(i.e., states s’ whose v(s’) > g(s’))?

Carnegie Mellon University 30

• Efficient series of weighted A* searches with decreasing ε:

ARA*

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

otherwise insert s’ into INCONS

v(s)=g(s);

• OPEN U INCONS = all overconsistent states

Carnegie Mellon University 31

• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart};

while  ≥ 1

CLOSED = {}; INCONS = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN = OPEN U INCONS;

all overconsistent states

(exactly what we need!)

Carnegie Mellon University 32

• A series of weighted A* searches

• ARA*

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

ε =2.5

13 expansions

solution=11 moves

ε =1.5

1 expansion

solution=11 moves

ε =1.0

9 expansions

solution=10 moves

ARA*

33

ARA*

• Simple example on the board!

Carnegie Mellon University

Carnegie Mellon University 34

What You Should Know…

• Reasons for repeated planning

• What are anytime algorithms, anytime planners

• How ARA* operates

• Theoretical properties of ARA*

