16-350
Planning Techniques for Robotics

Interleaving Planning and Execution:
Anytime Heuristic Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Planning during Execution

* Planning 1s a repeated process!

Carnegie Mellon University

Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— imperfect execution of plans

— 1imprecise localization

ATRYV navigating
initially-unknown environment planning map and path

Carnegie Mellon University

Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

planning in dynamic environments

Carnegie Mellon University

Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

* Need to be able to re-plan fast!

» Several methodologies to achieve this:
— anytime heuristic search: return the best plan possible within T msecs
— 1ncremental heuristic search: speed up search by reusing previous efforts

— real-time heuristic search: plan few steps towards the goal and re-plan later

Carnegie Mellon University 5

Planning during Execution

* Planning 1s a repeated process!

— partially-known environments

— dynamic environments
— 1mperfect execution of plans

— 1imprecise localization

* Need to be able to re-plan fast!

» Several methodologies to achieve this: this class

/

— anytime heuristic search: return the best plan possible within T msecs

— 1ncremental heuristic search: speed up search by reusing previous efforts

— real-time heuristic search: prards the goal and re-plan later

next two classes

Carnegie Mellon University 6

Anytime Algorithms

* Anytime algorithms are algorithms that are:
— capable of returning some solution whenever they are interrupted

— 1mprove the solution over time until they are interrupted or until
convergence to an optimal solution, whichever 1s first

* Anytime Planners
— capable of returning some plans whenever they are interrupted

— 1mprove the plans over time until they are interrupted or until
convergence to an optimal plan

Carnegie Mellon University 7

Anytime Planning for an Autonomous Vehicle

 Running ARA* Search

Carnegie Mellon University

Anytime Heuristic Search: Straw Man Approach

« Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing &

Carnegie Mellon University 9

Anytime Heuristic Search: Straw Man Approach

« Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing &

=25

=15

e =1.0

13 expansions
solution=11 moves

15 expansions
solution=11 moves

Carnegie Mellon University

20 expansions
solution=10 moves

10

Anytime Heuristic Search: Straw Man Approach

« Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing &

=25

=15

e =1.0

13 expansions
solution=11 moves

e Inefficient because

15 expansions
solution=11 moves

20 expansions
solution=10 moves

— many state values remain the same between search iterations

— we should be able to reuse the results of previous searches

Carnegie Mellon University

11

Anytime Heuristic Search: Straw Man Approach

« Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing &

=25

=15

e =1.0

13 expansions
solution=11 moves

 ARA* (Anytime Repairing A*)

- efficient version of above that reuses state values between iterations

15 expansions
solution=11 moves

Carnegie Mellon University

20 expansions
solution=10 moves

12

A* with Reuse of State Values
 Alternative view of A*

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;
fot/every successor s of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) + c(s,s);
insert s * into OPEN;

Carnegie Mellon University

14

A* with Reuse of State Values
 Alternative view of A*

— v-value — the value of a state

during its expansion (infinite if

ComputePath function state was never expanded)

while(s,,,, 1s not expanded AND OPE
remove s with the smallest + h(s)] from OPEN;,
insert s into CLO

for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)

g(s’) =g(s) +e(ss);
insert s * into OPEN;

Carnegie Mellon University

A* with Reuse of State Values

e Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;

V(s)=g(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)

g(s) =g(s) tc(ss);
insert s ” into OPEN;

* g(S’) — mins”epred(s’) V(S ”) T C(S ”’S’)

Carnegie Mellon University

16

A* with Reuse of State Values
 Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)
g(s’) =g(s) +c(s,s);

insert s ” into OPEN;

overconsistent state

° g(S’) = mins " e pred(s’) V(S ”) + C(S ”,S ’ consistent state

 OPEN: a set of states with v(s) > g(s
all other states have v(s) = g(s)

Carnegie Mellon University

17

A* with Reuse of State Values
 Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(s,,,, 1s not expanded AND OPEN # 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;

V(s)=g(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)

g(s) =g(s) tc(ss);
insert s ” into OPEN;

* g(S’) — mins”epred(s’) V(S ”) T C(S ”’S’)
 OPEN: a set of states with v(s) > g(s)
all other states have v(s) = g(s)

» A* expands overconsistent states in the order of their f-values

Carnegie Mellon University 18

A* with Reuse of State Values
« Making A* reuse old values:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN) <
remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)
g(s’) =g(s) +c(s,s);
insert s ” into OPEN;

all you need to do to
ake it reuse old values!

* g(S’) — mins”epred(s’) V(S ”) T C(S ”’S’)
 OPEN: a set of states with v(s) > g(s)
all other states have v(s) = g(s)

» A* expands overconsistent states in the order of their f-values

Carnegie Mellon University

19

A* with Reuse of State Values

 Making A* reuse old Values:.

initialize OPEN with all overconsistentStates;

ComputePathwithReuse functi
while(f(s,,,,) > minimum f-value in OPEN) <
remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s such that s 'not in CLOSED
ifg(s) >g(s) + c(s,s)
g(s’) =g(s) + c(s.8);
insert s’ into OPEN;

all you need to do to
ake it reuse old values!

* g(S’) - mins”epred(s’) V(S ”) T C(S ”’S’)
 OPEN: a set of states with v(s) > g(s)
all other states have v(s) = g(s)

» A* expands overconsistent states in the order of their f-values

Carnegie Mellon University 20

A* with Reuse of State Values

g=1 g=3
v=1 v=23
g=0 h=2 h=I _
SZ > V= o0
h=3 | @K h=0
@ l l | Sgoal
3 //////”
@)
CLOSED = {} g=2 g= oo
_ V= 00 V= 00
OPEN = {54800/)]

next state to expand: s,

g(S’) - IIliIlS " e pred(s’) V(S ”) + C(S ”’S’)
initially OPEN contains all overconsistent states

Carnegie Mellon University 21

A* with Reuse of State Values

g=1 g=3
v=1 v=23
g:0 h=2 N h=1 g= 5
h‘“/ 2 h=0
@ 1 S oa
(s0—@
CLOSED = {s,} g=2 g=35
OPEN = {s..s v=2 |
{ 3 goa# h:2 h:1

next state to expand: S 0al

Carnegie Mellon University 22

A* with Reuse of State Values

g=1 g=3
v=1 v=23
g:0 h=2 N h=1 g= 5
h=3 1 2 h=0
(S ! s
[L
o)——@
CLOSED = {5, 00} 87 g=>7
OPEN = {s,] V=2 V=
h=2 h=1
done

after ComputePathwithReuse terminates:
all g-values of states are equal to final A* g-values

Carnegie Mellon University 23

A* with Reuse of State Values

kin
I
w S D
[E—
= < 09
—(2)
N e~
(\©)
bﬁ%
I
~ow W
(\©)
b‘ﬁOQ
I
S Loy

17

@
~
(Y]
v

g=2 g=J
v=_2 V= 00
h=2 h=1

we can now compute a least-cost path

Carnegie Mellon University

24

A* with Reuse of State Values

« Making weighted A* reuse old values:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ ¢h(s)] from OPEN;

insert s into CLOSED;

V(s)=8(s);

for every successor s’ of s such that s 'not in CLOSED
ifg(s) > g(s) + c(s,s”)

g(s) = g(s) +c(s,s);
insert s ” into OPEN;

the exact same
thing as with A*

Carnegie Mellon University

25

A* with Reuse of State Values
« Making weighted A* reuse old values:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ ¢h(s)] from OPEN;
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s
ifg(s) > g(s) + c(s,s”)

g(s) = g(s) +c(s,s);
if s 'not in CLOSED then insert s’ into OPEN;

the exact same
thing as with A*

To maintain the invariant:
g(s’) = min, " pred(s’) v(is”) +ces”s’

Carnegie Mellon University 26

Anytime Repairing A* (ARA™)
« Efficient series of weighted A* searches with decreasing ¢:

set £to large value;
g(8..J = 0; v-values of all states are set to infinity; OPEN = {s .}
while £> 1

CLOSED = {};

ComputePathwithReuse();

publish current & suboptimal solution;

decrease &
initialize OPEN with all overconsistent states;

Carnegie Mellon University

27

ARA*
« Efficient series of weighted A* searches with decreasing ¢:

set £to large value;
g(8..J = 0; v-values of all states are set to infinity; OPEN = {s .}
while £> 1

CLOSED = {};

ComputePathwithReuse();

publish current & suboptimal solution;

decrease &
initialize OPEN with all overconsistent states;

need to keep track of those

Carnegie Mellon University 28

ARA*

« Efficient series of weighted A* searches with decreasing ¢:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ ¢h(s)] from OPEN;,
insert s into CLOSED;
V(s)=8(s);
for every successor s’ of s
ifg(s) > g(s) + c(s,s”)

g(s) = g(s) +c(s,s);
if s " not in CLOSED then insert s’ into OPEN;

Carnegie Mellon University 29

ARA*

Efficient series of weighted A* searches with decreasing e:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ ¢h(s)] from OPEN;,
insert s into CLOSED;
v(s)=g(s);
for every successor s’ of s
ifg(s’) > g(s) +c(s,s)
g(s) = g(s) +c(s.s);
if s 'not in CLOSED then insert s " into OPEN;,
otherwise insert s " into INCONS

* OPEN U INCONS = all overconsistent states

Carnegie Mellon University

30

ARA*
« Efficient series of weighted A* searches with decreasing ¢:

set £to large value;
g(8..J = 0; v-values of all states are set to infinity; OPEN = {s .}

while > 1
CLOSED = {}; INCONS = {},
ComputePathwithReuse();
publish current & suboptimal solution;

decrease &
initialize OPEN = OPEN U INCONS;

all overconsistent states
(exactly what we need!)

Carnegie Mellon University 31

ARA*

e A series of weighted A* searches
e=25 e=1.5 e=1.0

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves
e ARA¥*
=25 e=1.5 e=1.0

13 expansions 1 expansion 9 expansions
solution=11 moves solution=11 moves solution=10 moves

Carnegie Mellon University 32

ARA*

« Simple example on the board!

Carnegie Mellon University

33

What You Should Know...

Reasons for repeated planning

What are anytime algorithms, anytime planners

How ARA* operates

Theoretical properties of ARA*

Carnegie Mellon University

34

