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Graph:
Defined as {S, A, C}, 

where S – set of states, A – set of actions, C – costs of all (s,a) pairs.   
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where S – set of states, A – set of actions, C – costs of all (s,a) pairs.   
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Each edge is defined as:
(s, succ(s,a)) for every s in S and every action a in A
edge cost is given by c(s,a)

Each edge is defined as:
(s, succ(s,a)) for every s in S and every action a in A
edge cost is given by c(s,a)
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MDP:

Let’s assume 

50% chance of ending up on the left and 

50% ending up on the right



• Consider a path planning example

• Assume imperfect action execution and full knowledge of the state (i.e., 

perfect localization)

Graph vs. MDP vs. POMDP

Carnegie Mellon University 7

R

G

O
u
td

o
o

rs

N
o

-f
ly

 z
o

n
e

MDP:
Defined as {S, A, T, C}, where S – set of states, A – set of actions, 

T(s,a,s’) - Prob(s’ |s, a), C – costs of all (s,a) pairs
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What is an optimal policy here?
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MDP (rewards version):
Defined as {S, A, T, R}, where S – set of states, A – set of actions, 

T(s,a,s’) - Prob(s’ |s, a), R – rewards for all (s,a) pairs
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• Consider a path planning example

• Assume imperfect action execution and partial observability of the 

state (i.e., imperfect localization)
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Let’s assume 

UAV initially knows it is at S0

During execution: it can only sense 

adjacent obstacles and being at goal

After taking this action, UAV doesn’t 

know whether it is at state S1 or S2
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Let’s assume 

UAV initially knows it is at S0

During execution: it can only sense 

adjacent obstacles and being at goal

After taking this action, UAV doesn’t 
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What is an optimal policy here?
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POMDP: {S, A, T, R, Ω, O}, where S, A, T, R (or C)  – same as in 

MDP, Ω – set of all possible observation vectors o, O(s’,a,o) – Prob(o|s’,a) 

probability of seeing o after executing action a and ending up at state s’

Let’s assume 

UAV initially knows it is at S0

During execution: it can only sense 

adjacent obstacles and being at goal

After taking this action, UAV doesn’t 

know whether it is at state S1 or S2
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POMDP: {S, A, T, R, Ω, O}, where S, A, T, R (or C)  – same as in 

MDP, Ω – set of all possible observation vectors o, O(s’,a,o) – Prob(o|s’,a) 
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Causal relationship

Example of POMDP problems 

where the robot knows its own pose perfectly 

(perfect localization)? 



• Belief state b: Probability distribution over the states the robot believes it 
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Belief State Space
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)

s

a

s’

o

R

Causal relationship

Suppose the robot knows it is initially in s0.
Then initial b = [1,0,0,0,0,0,0,0]T. That is, P(s0) = 1
Suppose the robot knows it is initially in s0.
Then initial b = [1,0,0,0,0,0,0,0]T. That is, P(s0) = 1

b – a vector of size N (# of states in S)
ΣN bi = 1, and bi ≥ 0 for all i

b – a vector of size N (# of states in S)
ΣN bi = 1, and bi ≥ 0 for all i
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)

s

a

s’

o

R

Causal relationship

Suppose the robot knows it is initially in s0.
Then initial b = [1,0,0,0,0,0,0,0]T. That is, P(s0) = 1
Suppose the robot knows it is initially in s0.
Then initial b = [1,0,0,0,0,0,0,0]T. That is, P(s0) = 1

b – a vector of size N (# of states in S)
ΣN bi = 1, and bi ≥ 0 for all i

b – a vector of size N (# of states in S)
ΣN bi = 1, and bi ≥ 0 for all i

What is b after robot takes the 1st action?
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Belief State Space 

(for K actions, M possible observations)

b’: P(s’|b,a,o) for every s’ in S;   

b’(s’) = P(s’|b,a,o) = 
𝑂(𝑠′,𝑎,𝑜)  𝑠{𝑇 𝑠,𝑎,𝑠′ ∗𝑏 𝑠 }

𝑃(𝑜|𝑏,𝑎)

Here how outcome beliefs 
are computed

Here how outcome beliefs 
are computed
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(for K actions, M possible observations)

b’: P(s’|b,a,o) for every s’ in S;   

b’(s’) = P(s’|b,a,o) = 
𝑂(𝑠′,𝑎,𝑜)  𝑠{𝑇 𝑠,𝑎,𝑠′ ∗𝑏 𝑠 }

𝑃(𝑜|𝑏,𝑎)

Here how outcome beliefs 
are computed

Here how outcome beliefs 
are computed

Derivation:

P(s’|b,a,o)=
𝑃 𝑜 𝑏, 𝑎, 𝑠′ 𝑃(𝑠′|𝑏,𝑎)

𝑃(𝑜|𝑏,𝑎)
=
𝑃(𝑜|𝑠′,𝑎)  𝑠{𝑃 𝑠′|𝑠,𝑎 ∗𝑃 𝑠 }

𝑃(𝑜|𝑏,𝑎)

Derivation:

P(s’|b,a,o)=
𝑃 𝑜 𝑏, 𝑎, 𝑠′ 𝑃(𝑠′|𝑏,𝑎)

𝑃(𝑜|𝑏,𝑎)
=
𝑃(𝑜|𝑠′,𝑎)  𝑠{𝑃 𝑠′|𝑠,𝑎 ∗𝑃 𝑠 }

𝑃(𝑜|𝑏,𝑎)
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)

Belief State Space 

(for K actions, M possible observations)

What is Belief State Space?

It is MDP!
We just need to compute transition 

probabilities τ(b,a,b’) = P(b’|b,a) and reward 
function ρ(b,a)

It is MDP!
We just need to compute transition 

probabilities τ(b,a,b’) = P(b’|b,a) and reward 
function ρ(b,a)
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ρ(b,aK)



• Belief state b: Probability distribution over the states the robot believes it 

is currently in

Belief State Space

Carnegie Mellon University 23

R

G
O

u
td

o
o

rs

N
o

-f
ly

 z
o
n

e

S0

SG

S2S1

S4S3S5 S6

POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)

Belief State Space 

(for K actions, M possible observations)

τ(b,a,b’) = P(b’|b,a)=  𝑜 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑡𝑜 𝑏′𝑃(𝑜|𝑏, 𝑎)= 𝑜 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑡𝑜 𝑏′ 𝑠′𝑃(𝑜|𝑠′, 𝑎)  𝑠𝑃 𝑠
′ 𝑠, 𝑎 𝑏(𝑠)
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′ 𝑠, 𝑎 𝑏(𝑠)

ρ(b,a) =  𝑠𝑅(𝑠, 𝑎)𝑏(𝑠)

b

b’

b’’

P(b’|b,a1)

a1

b’’’

a2…aK

P(b’’’|b,a1)

ρ(b,a1)

ρ(b,a2)
ρ(b,aK)

So, finding an optimal policy for POMDP = 
finding an optimal policy for Belief MDP 
So, finding an optimal policy for POMDP = 
finding an optimal policy for Belief MDP 

We can even use Value Iteration you studied, can’t we?

The size of Belief MDP is infinite The size of Belief MDP is infinite 



• Belief state b: Probability distribution over the states the robot believes it 

is currently in

• Popular techniques for solving POMDPs
– by discretizing belief statespace into a finite # of states [Lovejoy, ‘91]

– by taking advantage of the geometric nature of value function [Kaelbing, Littman & Cassandra, ‘98]

– by sampling-based approximations [Pineau, Gordon & Thrun, ‘03]

Belief State Space
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)

Belief State Space 

(for K actions, M possible observations)
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Value function of horizon 1: V b, a =  𝑠𝑅 𝑠, 𝑎 𝑏 𝑠 ; V b = 𝑚𝑎𝑥𝑎  𝑠𝑅 𝑠, 𝑎 𝑏 𝑠 ;

Value Function is piecewise linear and convex
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)

Belief State Space 

(for K actions, M possible observations)
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P(b’’’|b,a1)

ρ(b,a1)
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How does this look geometrically?



Value function of horizon 1: V b, a =  𝑠𝑅 𝑠, 𝑎 𝑏 𝑠 ; V b = 𝑚𝑎𝑥𝑎  𝑠𝑅 𝑠, 𝑎 𝑏 𝑠 ;

Value function of horizon 2: V b, 𝑎𝑡=1 =  𝑠𝑅 𝑠, 𝑎𝑡=1 𝑏 𝑠 + 𝛾𝐸𝑏′{𝑉 𝑏′ }𝑏(𝑠);

Value Function is piecewise linear and convex
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)

Belief State Space 

(for K actions, M possible observations)

b

b’

b’’

P(b’|b,a1)

a1

b’’’

a2…aK

P(b’’’|b,a1)

ρ(b,a1)

ρ(b,a2)
ρ(b,aK)

Value Iteration can also be done in the space of these vectors, increasing 
horizon by 1 at each iteration:

Compute V(b,at=i) = function (V’(b,at=i-1)) done on a set of hyperplanes

Value Iteration can also be done in the space of these vectors, increasing 
horizon by 1 at each iteration:

Compute V(b,at=i) = function (V’(b,at=i-1)) done on a set of hyperplanes



• What problems should be modeled as planning on 

Graphs vs. MDPs vs. POMDPs

• How POMDPs can be transformed into a Belief MDP

• How to plan in Belief MDP

What You Should Know…
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