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Graph vs. MDP vs. POMDP

«  Consider a path planning example

« Assume perfect action execution and full knowledge of the state (i.e.,
perfect localization)
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Graph:
Defined as {S, A, C},
where S — set of states, A — set of actions, C — costs of all (s,a) pairs.
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Graph vs. MDP vs. POMDP

«  Consider a path planning example

« Assume perfect action execution and full knowledge of the state (i.e.,
perfect localization)
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Each edge is defined as:
(s, succ(s,a)) for every s in S and every action a in A
NG Iedge cost is given by c(s,a)

Graph:
Defined as {S, A, C},
where S — set of states, A — set of actions, C — costs of all (s,a) pairs.

_—

Carnegie Mellon University



Graph vs. MDP vs. POMDP

«  Consider a path planning example

 Assume imperfect action execution and full knowledge of the state (i.e.,
perfect localization)

Let’s assume
50% chance of ending up on the left and

50% ending up on the right
—
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Graph vs. MDP vs. POMDP

«  Consider a path planning example

 Assume imperfect action execution and full knowledge of the state (i.e.,
perfect localization)
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Defined as {S, A, T, C}, where S — set of states, A — set of actions,
1(s,a,s’) - Prob(s’ s, a), C — costs of all (s,a) pairs
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Graph vs. MDP vs. POMDP

 Assume imperfect action execution and full knowledge of the state (i.e.,
perfect localization)
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MDP:

Defined as {S, A, T, C}, where S — set of states, A — set of actions,
I(s,a,s’) - Prob(s’|s, a), C — costs of all (s,a) pairs
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Graph vs. MDP vs. POMDP

«  Consider a path planning example

 Assume imperfect action execution and full knowledge of the state (i.e.,
perfect localization)

@
©
MDP (rewards version):

Defined as {S, A, T, R}, where S — set of states, A — set of actions,
I(s,a,s’) - Prob(s’|s, a), R — rewards for all (s,a) pairs
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Graph vs. MDP vs. POMDP

«  Consider a path planning example

«  Assume imperfect action execution and partial observability of the
state (i.c., imperfect localization)

K@ @ @ Lets assume

UAV initially knows it is at S,
During execution: it can only sense
adjacent obstacles and being at goal
After taking this action, UAV doesn t
@ know whether it is at state S, or S,

POMDP:
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Graph vs. MDP vs. POMDP

«  Consider a path planning example

«  Assume imperfect action execution and partial observability of the
state (i.c., imperfect localization)
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l@ @ @ Lets assume

UAV initially knows it is at S,
During execution: it can only sense
adjacent obstacles and being at goal
After taking this action, UAV doesn t
@ know whether it is at state S, or S,

POMDP: {S, A, T R, Q, O}, where S, A, T, R (or C) —same as in
MDP, Q — set of all possible observation vectors o, O(s’,a,0) — Prob(o|s’,a)
probability of seeing o after executing action a and ending up at state s’
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Graph vs. MDP vs. POMDP

«  Consider a path planning example

«  Assume imperfect action execution and partial observability of the
state (i.c., imperfect localization)

Causal relationship
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POMDP: {S, A, T R, Q, O}, where S, A, T, R (or C) —same as in
MDP, Q — set of all possible observation vectors o, O(s’,a,0) — Prob(o|s’,a)
probability of seeing o after executing action a and ending up at state s’
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Graph vs. MDP vs. POMDP

«  Assume imperfect action execution and partial observability of the
state (i.c., imperfect localization)

Causal relationship

O

Q’G

&
lf‘
Outdoor )

No-fly zone

POMDP: {S, A, T R, Q, O}, where S, A, T, R (or C) —same as in
MDP, Q — set of all possible observation vectors o, O(s’,a,0) — Prob(o|s’,a)
probability of seeing o after executing action a and ending up at state s’
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Belietf State Space

* Belief state b: Probability distribution over the states the robot believes it
1s currently in

Causal relationship
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POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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is currently in
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Belietf State Space

* Belief state b: Probability distribution over the states the robot believes it

15 Currenﬂy n b — a vector of size N (# of states in S)

Nb,=1, and b; 2 0 for all i

Suppose the robot knows it is initially in s,
Then initial b = [1,0,0,0,0,0,0,0]". That is, P(so) =1

Causal relatzonsth
O ©
o ,a
(@) ()

POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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Belietf State Space

* Belief state b: Probability distribution over the states the robot believes it
1s currently in

LK

POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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Belietf State Space

* Belief state b: Probability distribution over the states the robot believes it

1s currently in
Here how outcome beliefs

b’: P(s’|b,a,0) for every s’in S; - are computed
e , 0(s",,0) Es(T(5,a5"):b(s)) ?
b’(s’) = P(s’|b,a,0) = Polba)

Belief State Space
(for K actions, M possible observations)

Outdaa
No-fly zone

LK

POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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Belief State Space

« Belief state b: Probability distribution over the states the robot believes it
is currently in

b(s) = P(s ba,0) = LA L) D) /.

b’: P(s’|b,a,0) for every s’in S
P(o|b,a)

§ I(

POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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Belietf State Space

* Belief state b: Probability distribution over the states the robot believes it

e | medsae
It is MDP!

We just need to compute transition

probabilities t(b,a,b’) = P(b’|b,a) and reward Belief State Space
function p(b,a)

LK

POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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Belietf State Space

* Belief state b: Probability distribution over the states the robot believes it
1s currently in

t(b,a,b’) = P(b’|b,a)= ), leading to p P(0|b,0)=), leading to br YsP(o]s’,a) Xs P(s'[s, a)b(s)

LK

POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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Belietf State Space
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Belietf State Space

* Belief state b: Probability distribution over the states the robot believes it
1s currently in

t(b,a,b’) = P(b’|b,a)= ), leading to p P(0|b,0)=), leading to br YsP(o]s’,a) Xs P(s'[s, a)b(s)

p(b.a) = s R(s,a)b(s)

=]

The size of Belief MIDP is infinite &

[ & |

Belief State Space
(for K actions, M possible observations)

utdOO
No-fly zone

So, finding an optimal policy for POMDP =
finding an optimal policy for Belief MDP ©

POMDRR
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Belietf State Space

* Belief state b: Probability distribution over the states the robot believes it
1s currently in

*  Popular techniques for solving POMDPs
— by discretizing belief statespace into a finite # of states [Lovejoy, ‘91]
— by taking advantage of the geometric nature of value function [Kaelbing, Littman & Cassandra, ‘98]
— by sampling-based approximations [Pineau, Gordon & Thrun, ‘0_2

LK

POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’

elief State Space
(for K actions, M possible observations)

Outdaa
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, R(s,a), O(s’,a,0) = Prob(o
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Value Function is piecewise linear and convex

Value function of horizon 1: V(b,a) = X R(s,a)b(s); V(b) = max, Y, R(s,a)b(s);

Belief State Space

(for K actions, M possible observations)
POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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Value Function is piecewise linear and convex
Value function of horizon 1: V(b,a) = X R(s,a)b(s); V(b) = max, Y, R(s,a)b(s);

Value function of horizon 2: V(b, a;=1) = Y. R(s, a;=1)b(s) + YE,,{V(b')}b(s);

Value Iteration can also be done in the space of these vectors, increasing
horizon by 1 at each iteration:
Compute V(b,a,_) = function (V’(b,a,.; ;)) done on a set of hyperplanes

(Jor K actions, M possible observations)

POMDP: {S, A, T R, Q, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,0) = Prob(ol|s’,a)
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What You Should Know...

What problems should be modeled as planning on
Graphs vs. MDPs vs. POMDPs

How PO

Ps can be transformed into a Belief MDP

How to plan in Belief MDP
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