16-782

Planning & Decision-making in Robotics

Planning under Uncertainty: Expected Formulation, Solving MDPs

Maxim Likhachev

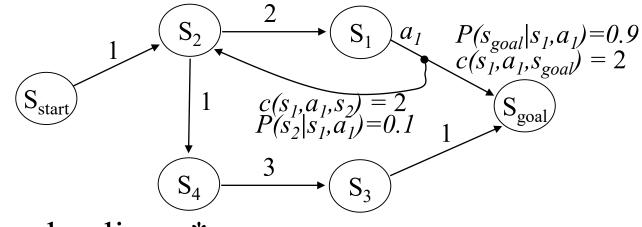
Robotics Institute

Carnegie Mellon University

Minimax Formulation is Often Too Conservative

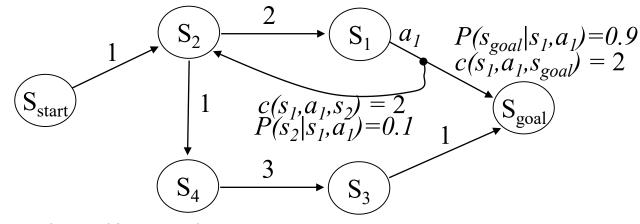
Example:

moving over the hill has 10% chance of slipping



• Optimal policy π^* : minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$

expectation over outcomes



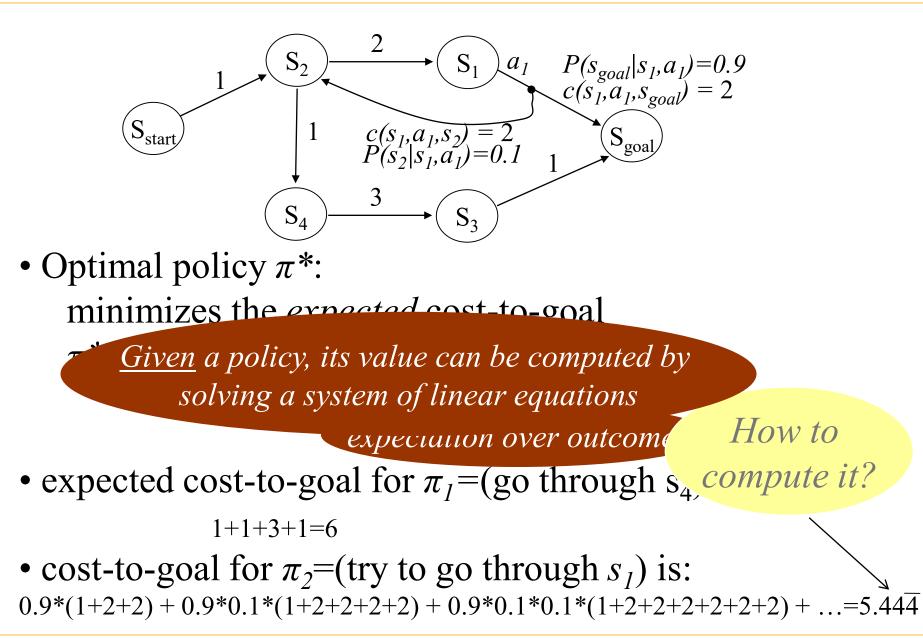
 Optimal policy π*: minimizes the *expected* cost-to-goal π* = argmin_π E{cost-to-goal}

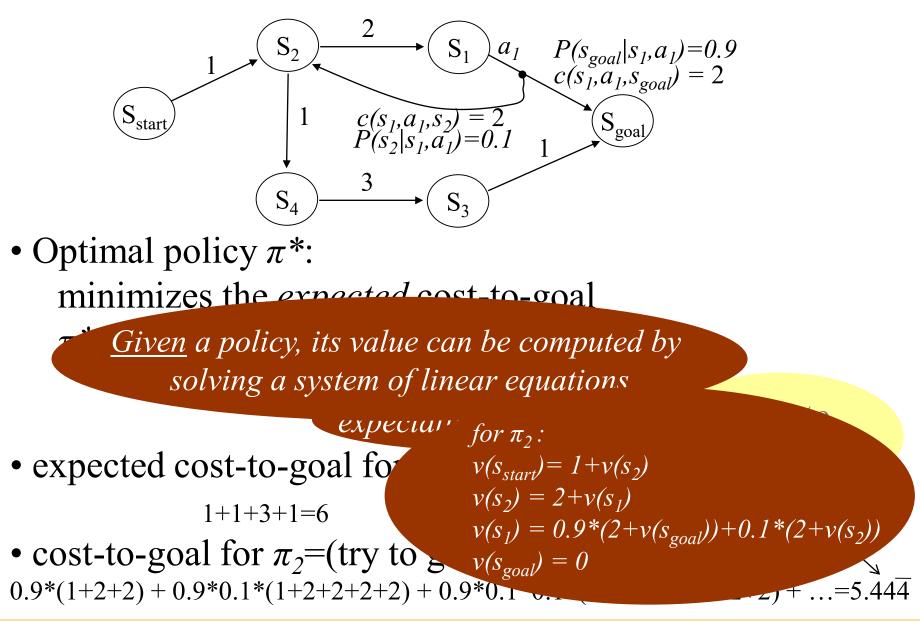
expectation over outcomes

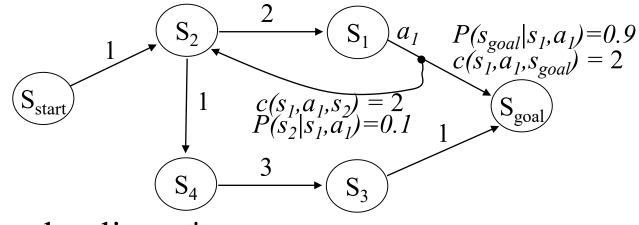
• expected cost-to-goal for π_1 =(go through s₄) is

1 + 1 + 3 + 1 = 6

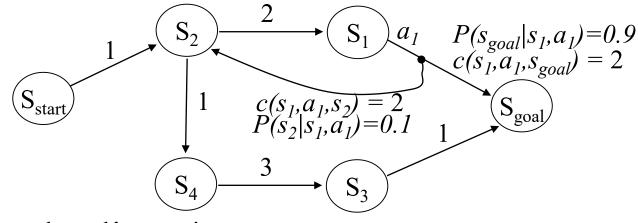
• cost-to-goal for π_2 =(try to go through s_1) is: 0.9*(1+2+2) + 0.9*0.1*(1+2+2+2+2) + 0.9*0.1*(1+2+2+2+2+2+2+2) + ...=5.444







- Optimal policy π^* : minimizes the *expected* cost-to-goal $\pi^* = argmin_{\pi} E\{cost-to-goal\}$
- Optimal expected cost policy $\pi^* = \pi_2 = (go \ through \ s_1)$

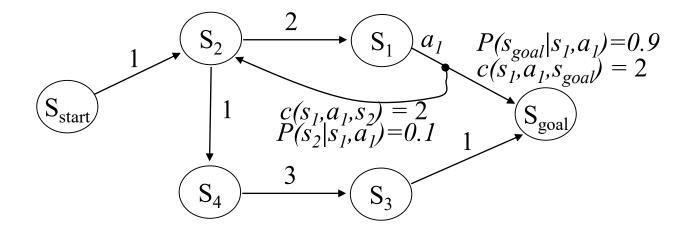


- Optimal policy π*: minimizes the *expected* cost-to-goal π* = argmin_π E{cost-to-goal}
- Optimal expected cost policy $\pi^* = \pi_2 = (go \ through \ s_1)$

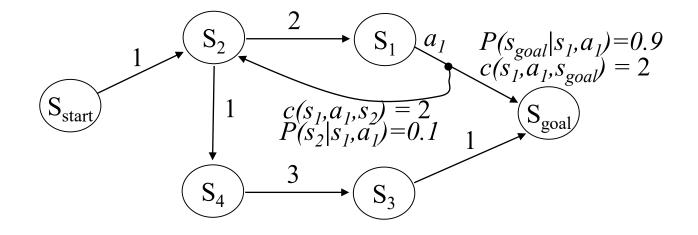
In contrast, optimal policy for minimax formulation was π_1 =(go through s₄)

Maxim Likhachev

Carnegie Mellon University

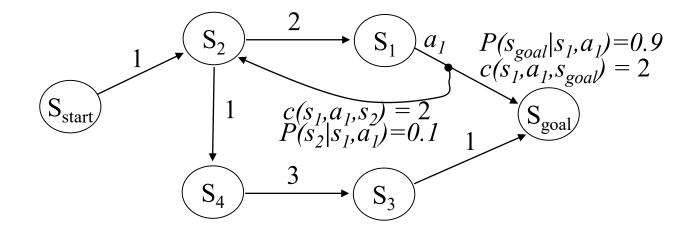


- Optimal policy π*: minimizes the *expected* cost-to-goal π* = argmin_π E{cost-to-goal}
- Let $v^*(s)$ be minimal expected cost-to-goal for state s



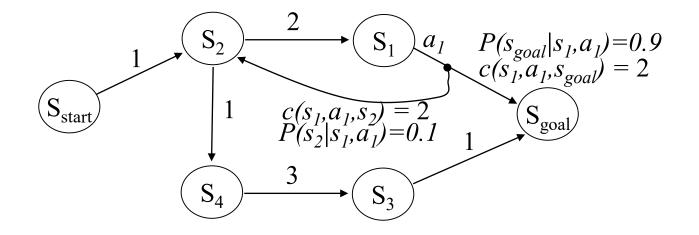
• Optimal policy π^* :

 $\pi^*(s) = \operatorname{argmin}_a E\{c(s, a, s') + v^*(s')\}$ (expectation over outcomes s' of action a executed at state s)



 Optimal expected cost-to-goal values v* satisfy: v*(s_{goal})=0 v*(s) = min_a E{c(s,a,s')+v*(s')} for all s ≠ s_{goal} (expectation over outcomes s' of action a executed at state s)

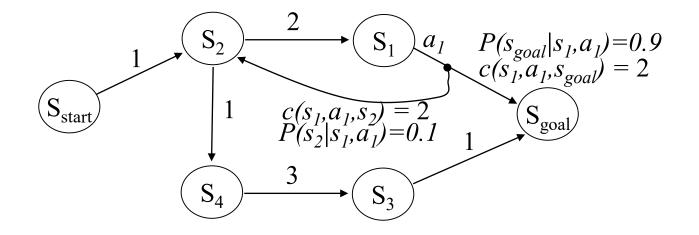
Bellman optimality equation



• Value Iteration (VI):

$$v(s_{goal}) = 0$$

$$v(s) = \min_{a} E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$



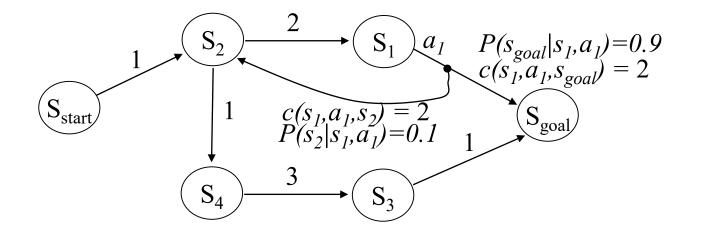
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = \min_{a} E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Bellman update equation (or backup)



• Value Iteration (VI):

best to initialize to admissible values (under-estimates of the actual costs-to-goal)

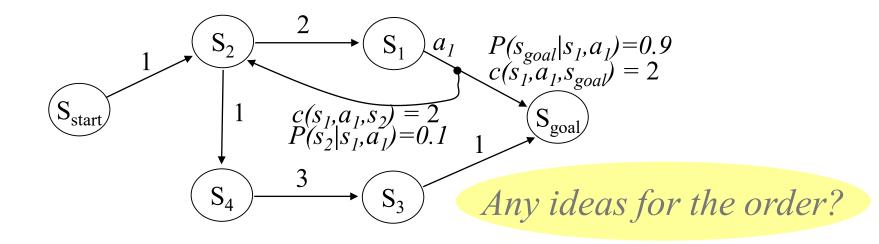
Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

converges to an optimal value function (v(s)=v*(s) for all s) for any iteration order

the speed of convergence depends on iteration order



• Value Iteration (VI):

best to initialize to admissible values (under-estimates of the actual costs-to-goal)

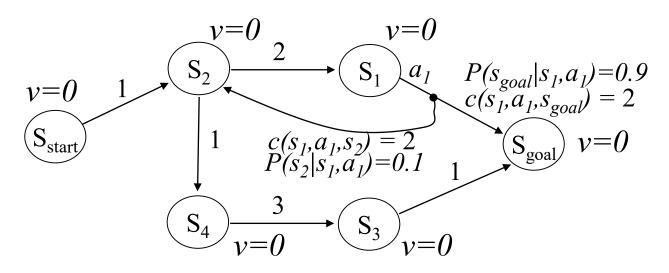
Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

converges to an optimal value function (v(s)=v*(s) for all s) for any iteration order

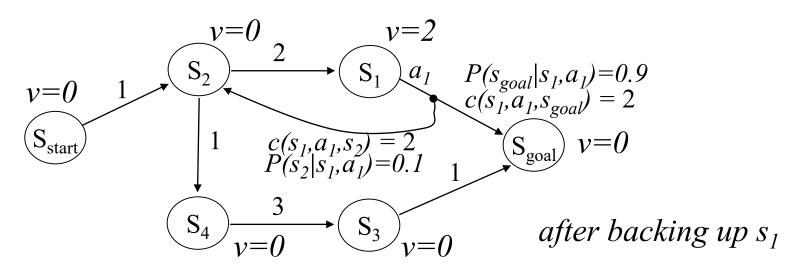
the speed of convergence depends on iteration order



• Value Iteration (VI):

$$v(s_{goal}) = 0$$

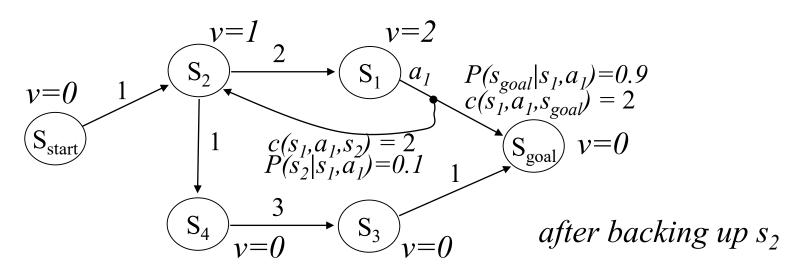
$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$



• Value Iteration (VI):

$$v(s_{goal}) = 0$$

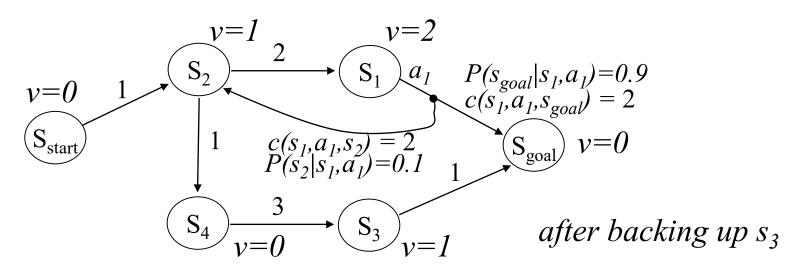
$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$



• Value Iteration (VI):

$$v(s_{goal}) = 0$$

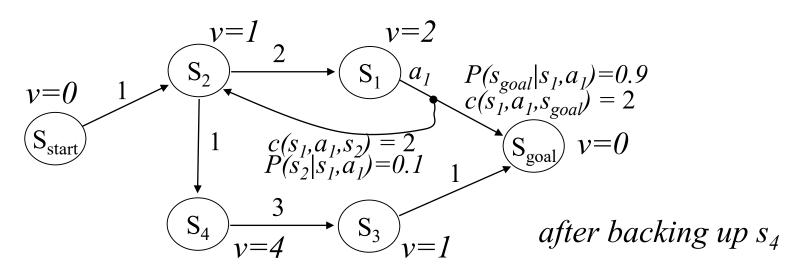
$$v(s) = \min_{a} E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$



• Value Iteration (VI):

$$v(s_{goal}) = 0$$

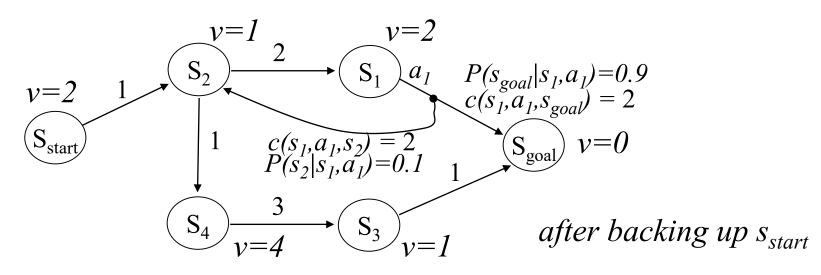
$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$



• Value Iteration (VI):

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$



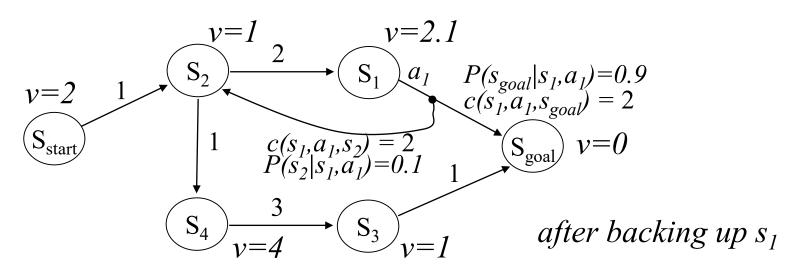
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



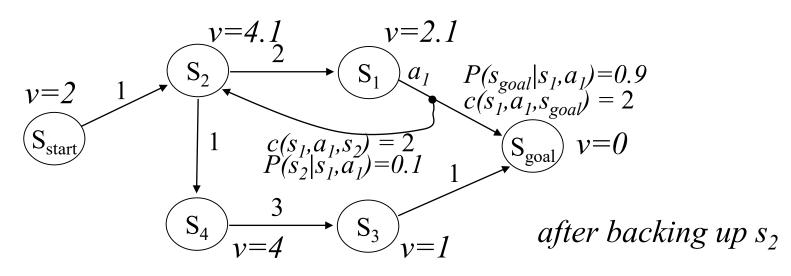
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



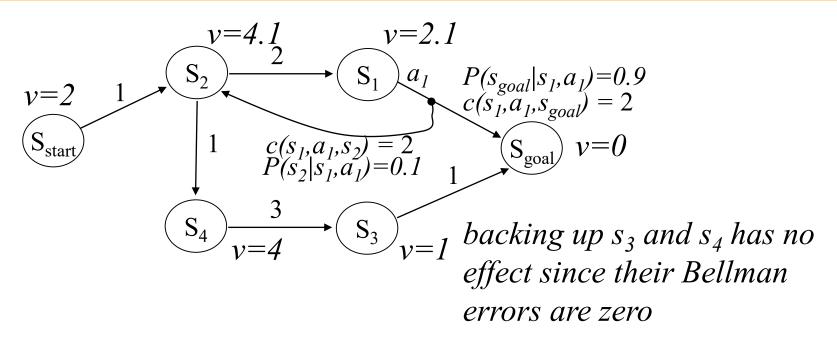
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



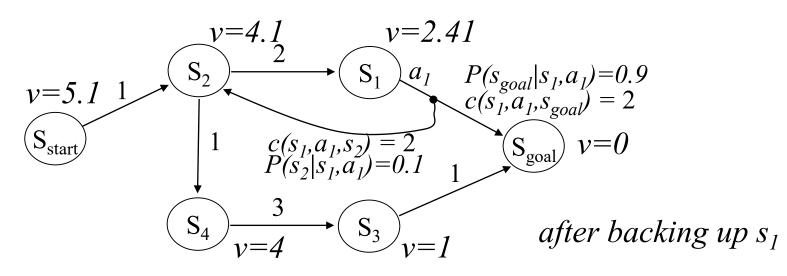
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



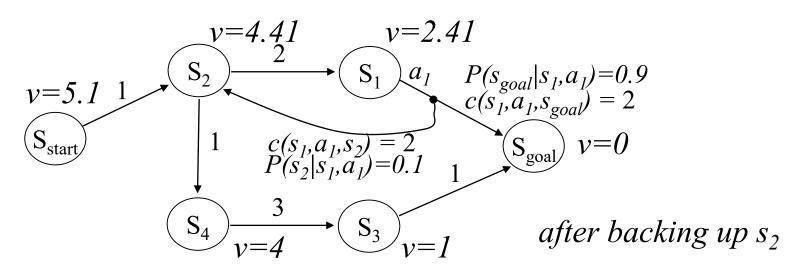
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



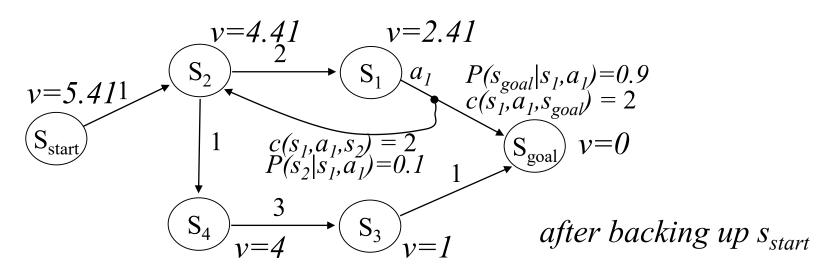
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



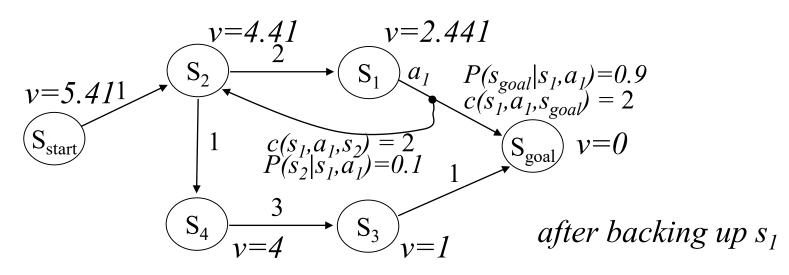
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



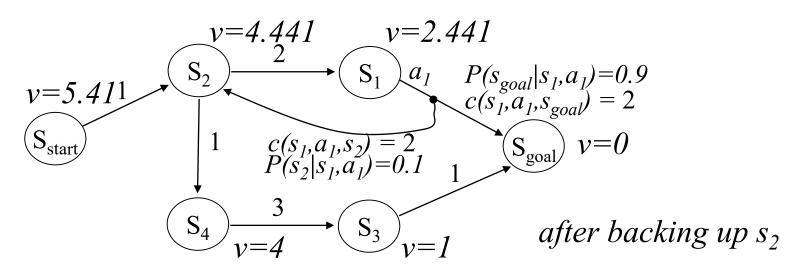
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



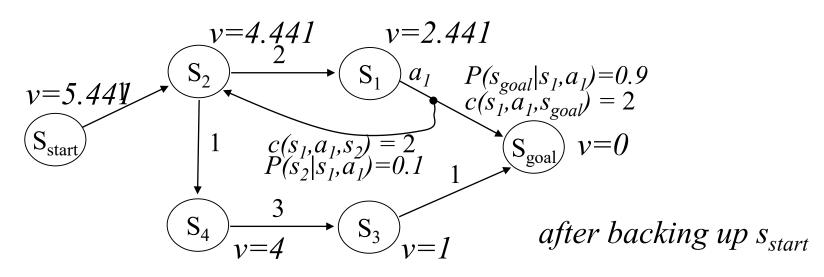
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



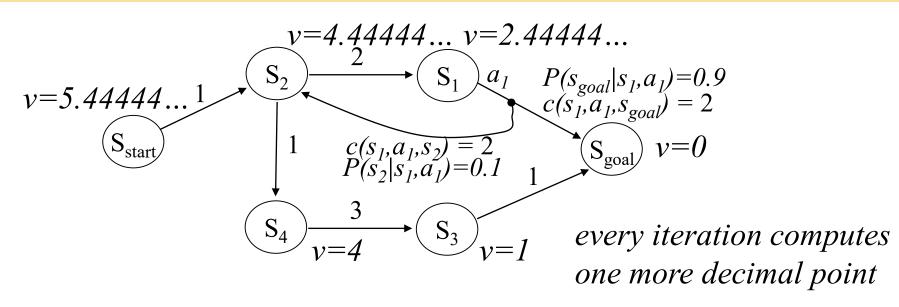
• Value Iteration (VI):

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



At convergence...

Initialize *v*-values of all states to finite values; Iterate over all *s* in MDP and re-compute until convergence:

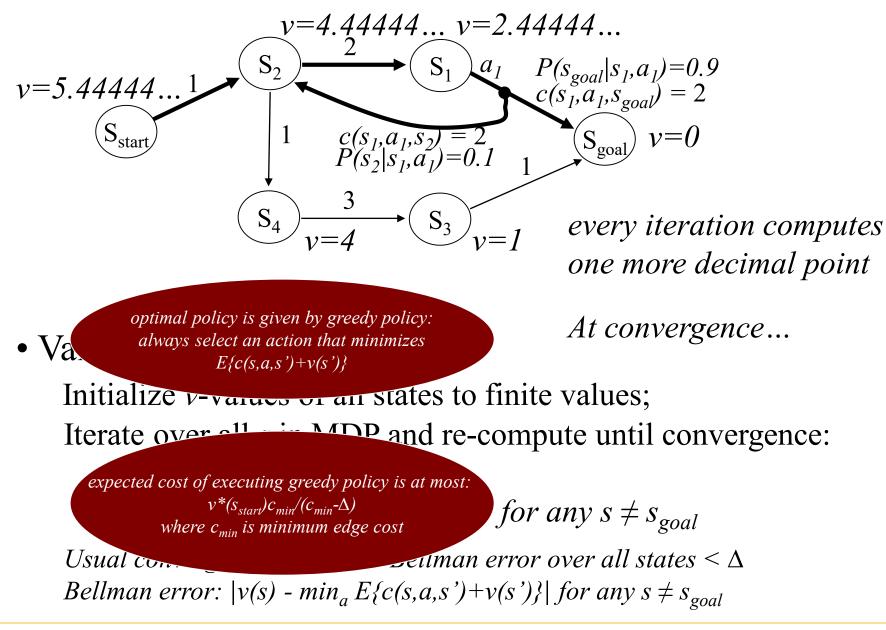
$$v(s_{goal}) = 0$$

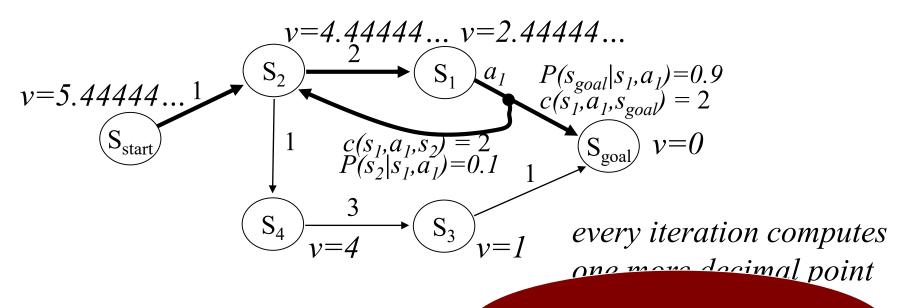
$$v(s) = \min_{a} E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$

Maxim Likhachev

• Value Iteration (VI):





VI converges in finite number of iterations (assuming goal is reachable from every state)

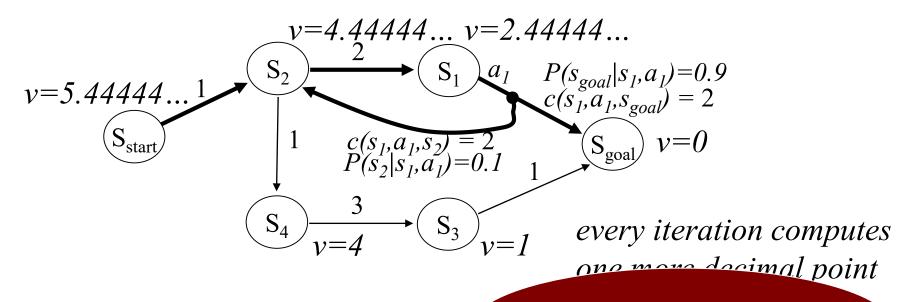
• Value Iteration (VI):

Initialize *v*-values of all states to f^{*} *Why condition?* Iterate over all *s* in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$

$$v(s) = min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}$$

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$

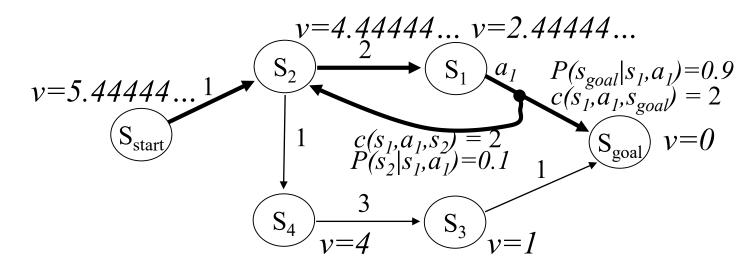


VI converges in finite number of iterations (assuming goal is reachable from every state)

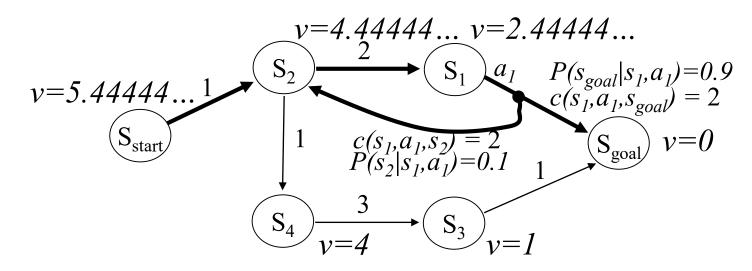
• Value Iteration (VI):

Initialize *v*-values of all states to finite *How many backups* Iterate over all *s* in MDP and r $v(s_{goal}) = 0$ $v(s) = min_a E\{c(s,a,s')+v(s')\}$ Jo, stochastic actions?

Usual convergence condition: Bellman error over all states $< \Delta$ *Bellman error:* $|v(s) - min_a E\{c(s,a,s')+v(s')\}|$ for any $s \neq s_{goal}$



- Real-time Dynamic Programming (RTDP)
 - very popular alternative to Value Iteration
 - does NOT compute values of all states
 - focusses computations on states that are relevant
 - typically, much more efficient than Value Iteration



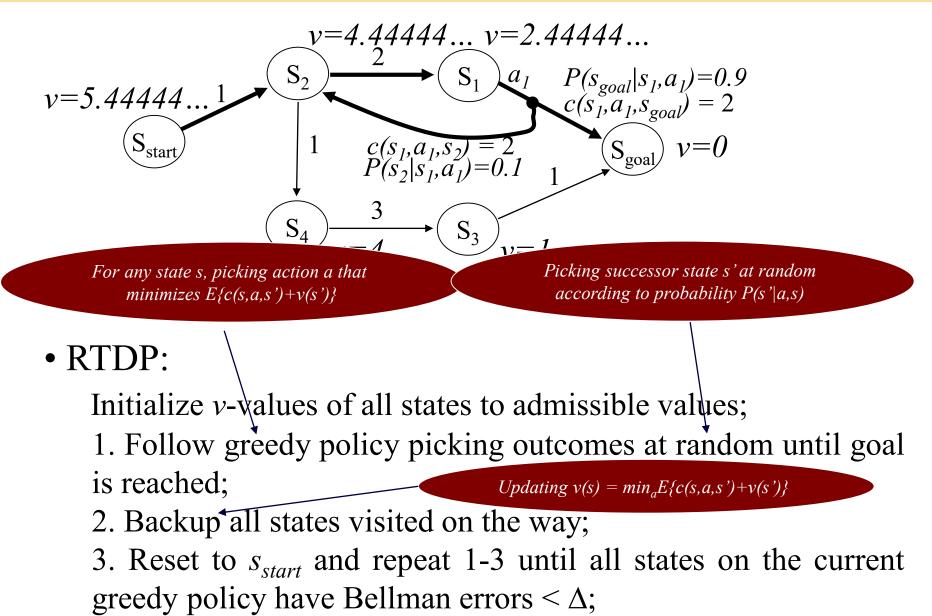
• RTDP:

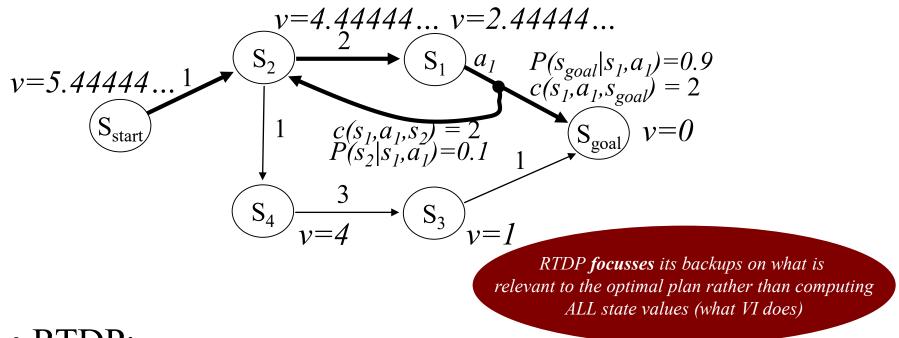
Initialize *v*-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;

2. Backup all states visited on the way;

3. Reset to s_{start} and repeat 1-3 until all states on the current greedy policy have Bellman errors $< \Delta$;



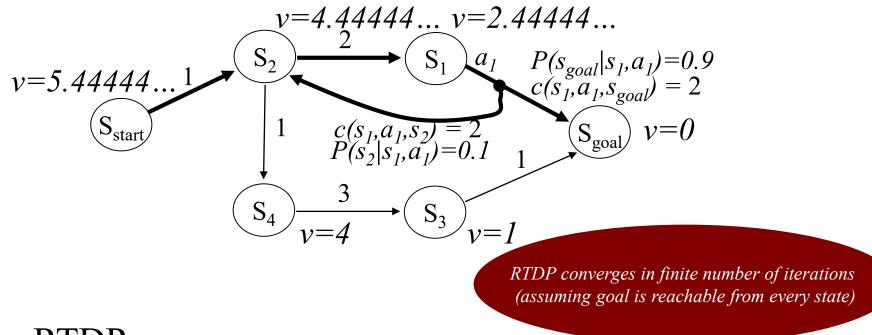


• RTDP:

Initialize *v*-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;

- 2. Backup all states visited on the way;
- 3. Reset to s_{start} and repeat 1-3 until all states on the current greedy policy have Bellman errors $< \Delta$;

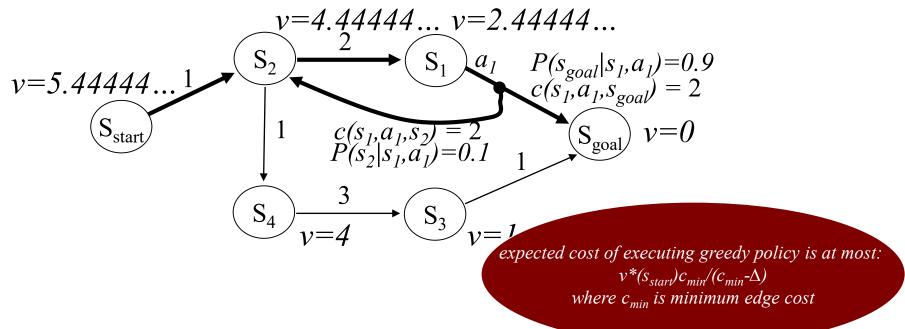


• RTDP:

Initialize *v*-values of all states to admissible values;

1. Follow greedy policy picking outcomes at random until goal is reached;

- 2. Backup all states visited on the way;
- 3. Reset to s_{start} and repeat 1-3 until all states on the current greedy policy have Bellman errors $< \Delta$;



• RTDP:

Initialize *v*-values of all states to admissible values;

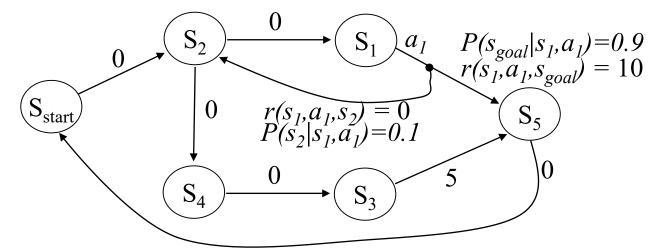
1. Follow greedy policy picking outcomes at random until goal is reached;

- 2. Backup all states visited on the way;
- 3. Reset to s_{start} and repeat 1-3 until all states on the current greedy policy have Bellman errors $< \Delta$;

Rewards version of MDPs

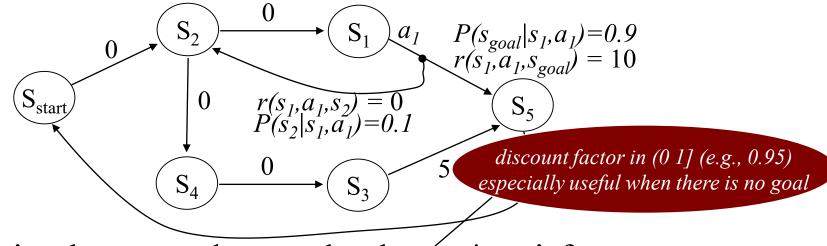
- Suppose we have a Trash Collecting robot
 - its task is to go around the room and pick-up trash
 - if battery is dead, it can't move anymore
 - available actions:
 - Look for trash (takes 1 min) and discovers trash with probability 0.4
 - Pick-up trash (takes 1 min), and receive reward of 100 units
 - Re-charge (takes 1 min). Battery level goes back to full 3 mins if successful with probability 0.9 (there is a chance that re-charge is not successful)

Markov Decision Processes, REWARDS version



- Optimal expected reward values v* satisfy:
 v*(s) = max_a E{r(s,a,s')+γv*(s')} for all s
 (expectation over outcomes s' of action a executed at state s)
- Optimal policy π^* : $\pi^*(s) = argmax_a E\{r(s,a,s') + \gamma v^*(s')\}$
- Computing optimal v*-values via value iteration (VI): re-compute v(s) = max_a E{r(s,a,s')+ γv(s')} until convergence

Markov Decision Processes, REWARDS version



- Optimal expected reward values v^* satisfy: $v^*(s) = \max_a E\{r(s, a, s') + \gamma v^*(s')\}$ for all s (expectation over outcomes s' of action a executed at state s)
- Optimal policy π^* : $\pi^*(s) = argmax_a E\{r(s,a,s') + \gamma v^*(s')\}$
- Computing optimal v*-values via value iteration (VI): re-compute v(s) = max_a E{r(s,a,s')+ γv(s')} until convergence

- Pros and Cons of solving Expected Cost formulation (rather than Minimax formulation)
- The operation of Value Iteration
- The operation of RTDP
- Rewards formulation of MDPs and when it should be used