# 16-782 Fall'21 Planning & Decision-making in Robotics

Introduction; What is Planning, Role of Planning in Robots

> Maxim Likhachev Robotics Institute Carnegie Mellon University

# **Class Logistics**

• Instructor:

Maxim Likhachev – <u>maxim@cs.cmu.edu</u>

• TA:

Muhammad Suhail Saleem - <u>msaleem2@andrew.cmu.edu</u> Alex LaGrassa – <u>lagrassa@andrew.cmu.edu</u>

• Website:

http://www.cs.cmu.edu/~maxim/classes/robotplanning\_grad

- Announcements, Questions, Recorded Lectures:
  - on Piazza
  - Should have received an email with access info

## About Me

- My Research Interests:
  - Planning, Decision-making, Learning
  - Applications: planning for complex robotic systems including aerial and ground robots, manipulation platforms, small teams of heterogeneous robots
- More info:

http://www.cs.cmu.edu/~maxim

Search-based Planning Lab: <u>http://www.sbpl.net</u>



# Class Objectives at High-level

- Understand and learn how to implement most popular planning and decision-making approaches in robotics
- Understand the challenges and basic approaches to interleaving planning and execution in robotic systems
- Learn common uses of planning/decision-making in robotics
- Get a sense for doing research in the area of planning/decisionmaking in robotics

## What is Planning?

• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

# What is Planning **for Robotics**?

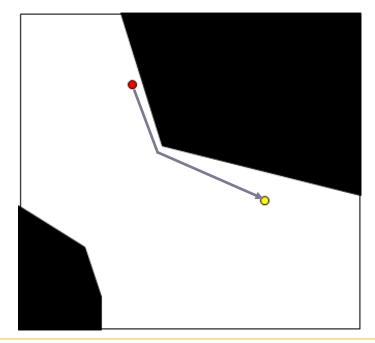
• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

• Given

- -model (states and actions) of the robot(s)  $M^R = \langle S^R, A^R \rangle$
- $-a model of the world M^{W}$
- current state of the robot  $s^{R}_{current}$
- current state of the world  $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

### • Compute a plan $\pi$ that

- -prescribes a set of actions  $a_1, ..., a_K$  in  $A^R$  the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions  $a_1, ..., a_K$


#### • Given

- -model (states and actions) of the robot(s)  $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world  $M^W$
- current state of the robot  $s^{R}_{current}$
- current state of the world  $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

#### • Compute a plan $\pi$ that

- prescribes a set of actions  $a_1, \dots a_K$  in  $A^R$  the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions  $a_1, \dots a_K$

## Planning for omnidirectional robot:



#### • Given

- -model (states and actions) of the robot(s)  $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world  $M^W$
- current state of the robot  $s^{R}_{current}$
- current state of the world  $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

#### • Compute a plan $\pi$ that

- prescribes a set of actions  $a_1, \dots a_K$  in  $A^R$  the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions  $a_1, \dots a_K$

## Planning for omnidirectional drone:

What is M<sup>R</sup>? What is M<sup>W</sup>? What is s<sup>R</sup><sub>current</sub>? What is s<sup>W</sup><sub>current</sub>? What is C? What is G?



#### MacAllister et al., 2013

#### Carnegie Mellon University

#### • Given

- -model (states and actions) of the robot(s)  $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world  $M^W$
- current state of the robot  $s^{R}_{current}$
- current state of the world  $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

#### • Compute a plan $\pi$ that

- prescribes a set of actions  $a_1, \dots a_K$  in  $A^R$  the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions  $a_l, ..., a_K$

## Planning for autonomous navigation:

What is M<sup>R</sup>? What is M<sup>W</sup>? What is s<sup>R</sup><sub>current</sub>? What is s<sup>W</sup><sub>current</sub>? What is C? What is G?



Likhachev & Ferguson, '09; part of Tartanracing team from CMU for the Urban Challenge 2007 race

#### • Given

- -model (states and actions) of the robot(s)  $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world  $M^W$
- current state of the robot  $s^{R}_{current}$
- current state of the world  $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

#### • Compute a plan $\pi$ that

- prescribes a set of actions  $a_1, \dots a_K$  in  $A^R$  the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions  $a_1, \dots a_K$

## Planning for autonomous flight among people :

Narayanan et al., 2012



#### • Given

- -model (states and actions) of the robot(s)  $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world  $M^W$
- current state of the robot  $s^{R}_{current}$
- current state of the world  $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

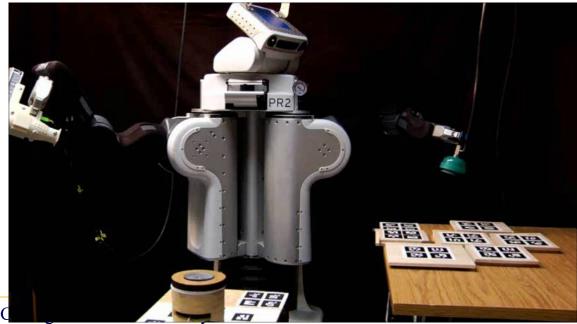
#### • Compute a plan $\pi$ that

- prescribes a set of actions  $a_1, \dots a_K$  in  $A^R$  the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions  $a_l, ..., a_K$

## Planning for a mobile manipulator robot opening a door:

Gray et al., 2013




#### • Given

- -model (states and actions) of the robot(s)  $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world  $M^W$
- current state of the robot  $s^{R}_{current}$
- current state of the world  $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

#### • Compute a plan $\pi$ that

- prescribes a set of actions  $a_1, \dots a_K$  in  $A^R$  the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions  $a_l, \dots a_K$

## Planning for a mobile manipulator robot assembling a birdcage: Cohen et al., 2015



#### • Given

- -model (states and actions) of the robot(s)  $M^{R} = \langle S^{R}, A^{R} \rangle$
- -a model of the world  $M^{W}$
- current state of the robot  $s^{R}_{current}$
- current state of the world  $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

#### • Compute a plan $\pi$ that

- prescribes a set of actions  $a_1, \dots a_K$  in  $A^R$  the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions  $a_l, ..., a_K$

## Planning/decision-making for a mobile manipulator unloading a truck:





## Assuming Infinite Computational Resources...



## Assuming Infinite Computational Resources...

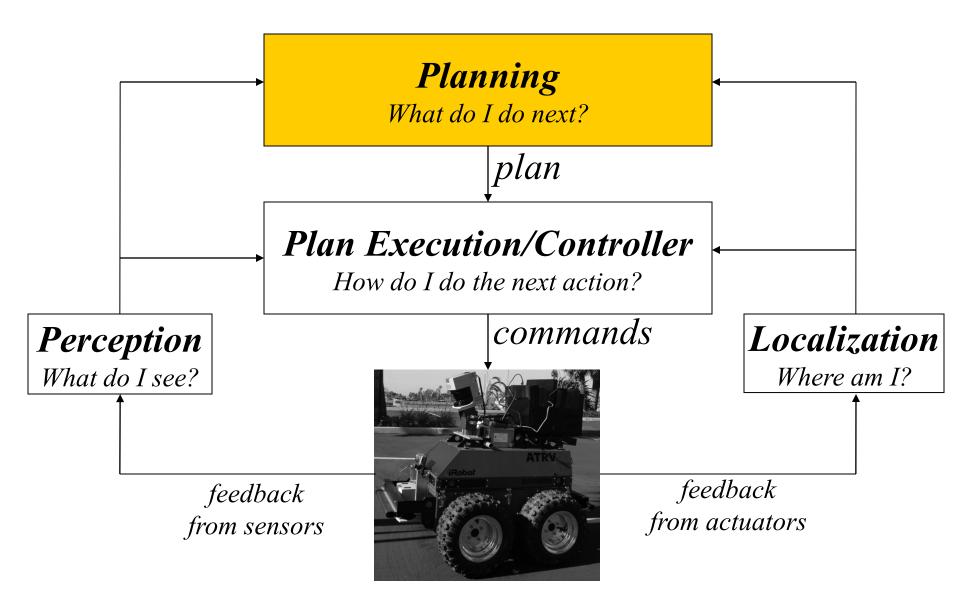


# Reliance on the knowledge/accuracy of the model!

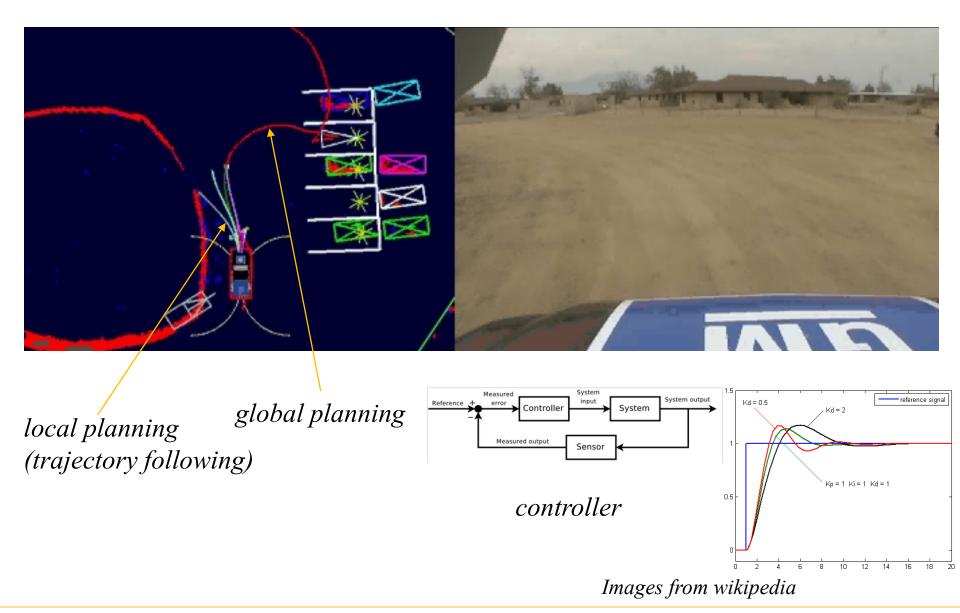


# Planning vs. Learning

## Model-based approach


Learning models M<sup>R</sup>, M<sup>W</sup> and cost function C models  $M^R$ ,  $M^W$ and cost function C

Planning using models M<sup>R</sup>, M<sup>W</sup> and cost function C


## Model-free approach

Learning the mapping from "what robot sees" onto "what to do next" using rewards received by the robot (Reinforcement Learning) or demonstrations (Behavior Cloning)

## Planning within a Typical Autonomy Architecture



# Planning vs. Trajectory Following vs. Control



# **Class Logistics**

- Books (optional):
- Planning Algorithms *by Steven M. LaValle*
- Heuristic Search, Theory and Applications by Stefan Edelkamp and Stefan Schroedl
- Principles of Robot Motion, Theory, Algorithms, and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun
- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig

- Knowledge of programming (e.g., C, C++)
- Working knowledge of data structures & basic Computer Science algorithms (e.g., graphs, linked lists, priority queues, BFS/DFS, etc.)
- Prior exposure to robotics

# **Class Objectives**

- Understand and learn how to implement most popular planning algorithms in robotics including heuristic search-based planning algorithms, sampling-based planning algorithms, task planning, planning under uncertainty and multi-robot planning
- Learn basic principles behind the design of planning representations
- Understand core theoretical principles that many planning algorithms rely on and learn how to analyze theoretical properties of the algorithms
- Understand the challenges and basic approaches to interleaving planning and execution in robotic systems
- Learn common uses of planning in robotics
- Get a sense for doing research in the area of planning/decision-making in robotics

#### TENTATIVE SCHEDULE FOR Planning and Decision-making in Robotics CLASS Fall 2021

| Date   | Day | Торіс                                                                                                              | HW out | HW due |
|--------|-----|--------------------------------------------------------------------------------------------------------------------|--------|--------|
| 30-Aug | Mon | Introduction; What is Planning?                                                                                    |        |        |
| 1-Sep  | Wed | planning representations: explicit vs. implicit graphs, skeletonization, cell decomposition & lattice-based graphs |        |        |
| 6-Sep  | Mon | LABOR DAY - NO CLASS                                                                                               |        |        |
| 8-Sep  | Wed | search algorithms: A*, Multi-goal A*, Weighted A*, Backward A*                                                     |        |        |
| 13-Sep | Mon | search algorithms: Heuristic functions, Multi-Heuristic A*                                                         | HW1    |        |
| 15-Sep | Wed | interleaving planning and execution: Anytime heuristic search, Incremental heuristic search                        |        |        |
| 20-Sep | Mon | interleaving planning and execution: Real-time heuristic Search                                                    |        |        |
| 22-Sep | Wed | case study: planning for autonomous driving                                                                        |        |        |
| 27-Sep | Mon | planning representations: PRM for continuous spaces                                                                |        | HW1    |
| 29-Sep | Wed | planning representations/search algorithms: RRT, RRT-Connect, RRT*                                                 | HW2    |        |
| 4-Oct  | Mon | case study: planning for mobile manipulators and legged robots                                                     |        |        |
| 6-Oct  | Wed | search algorithms: Markov Property, dependent vs. independent variables, Dominance                                 |        |        |
| 11-Oct | Mon | case study: planning for coverage, mapping and surveillance tasks                                                  |        |        |
| 13-Oct | Wed | planning representations: state-space vs. symbolic representation for task planning                                |        |        |
| 18-Oct | Mon | search algorithms: planning on symbolic representations                                                            |        | HW2    |
| 20-Oct | Wed | planning under uncertainty: Minimax formulation, Minimax Backward A*                                               | HW3    |        |
| 25-Oct | Mon | planning under uncertainty: Markov Decision Processes, Value Iteration, RTDP                                       |        |        |
| 27-Oct | Wed | planning under uncertainty: Markov Decision Processes, Value Iteration, RTDP (cont'd)                              |        |        |
| 1-Nov  | Mon | final project proposal presentations                                                                               |        |        |
| 3-Nov  | Wed | planning under uncertainty: Partially-Observable Markov Decision Processes                                         |        |        |
| 8-Nov  | Mon | planning under uncertainty: Partially-Observable Markov Decision Processes (cont'd)                                |        | HW3    |
| 10-Nov | Wed | multi-robot planning                                                                                               |        |        |
| 15-Nov | Mon | multi-robot planning (cont'd)                                                                                      |        |        |
| 17-Nov | Wed | exam                                                                                                               |        |        |
| 22-Nov | Mon | planning representations/search algorithms: Planning via Trajectory Optimization                                   |        |        |
| 24-Nov | Wed | THANKSGIVING - NO CLASS                                                                                            |        |        |
| 29-Nov | Mon | learning in planning                                                                                               |        |        |
| 1-Dec  | Wed | final project presentations                                                                                        |        |        |

- <u>All homeworks are individual</u> (no groups)
- Final projects is a group project (3-5 people per group)
- Homeworks are programming assignments based on the material
- Final project is a research-like project
  - For example: to develop and implement a planner for a robot planning problem of your choice
  - Or: to extend a particular planning algorithm to improve its running time or to handle additional conditions
  - Two presentations (proposal and final) and meetings with groups

## **Class Structure**

• Grading

| Three homeworks      | 33% |
|----------------------|-----|
| Exam                 | 20% |
| In-class pop quizzes | 10% |
| Final project        | 32% |
| Participation        | 5%  |

- Exam is tentatively scheduled for Nov. 17
- Late Policy
  - 3 free late days
  - No late days may be used for the final project!
  - Each additional late day will incur a 10% penalty

## Questions about the class?