16-782

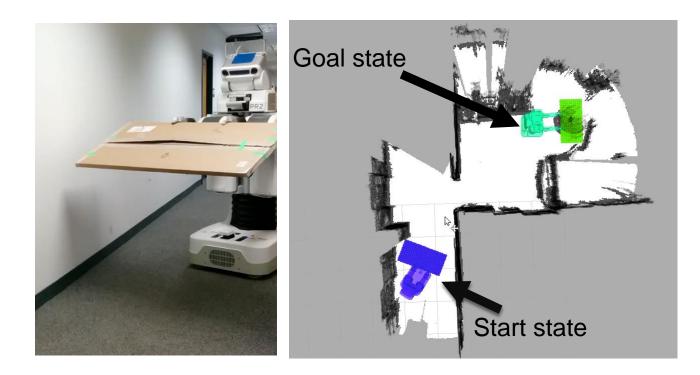
Planning & Decision-making in Robotics

Search Algorithms: Heuristic Functions, Multi-Heuristic A*

Maxim Likhachev

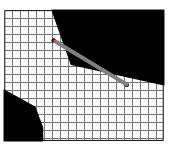
Robotics Institute

Example problem: move picture frame on the table



- Full-body planning
 - 12 Dimensions
 (3D base pose,
 1D torso height,
 6DOF object pose,
 2 redundant DOFs
 in arms)

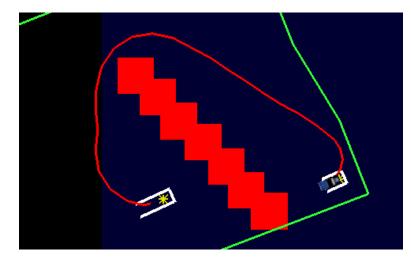
- For grid-based navigation:
 - Euclidean distance



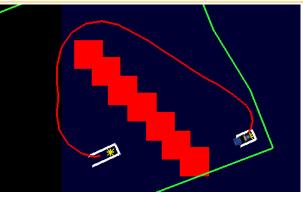
- Manhattan distance: $h(x,y) = abs(x-x_{goal}) + abs(y-y_{goal})$
- Diagonal distance: $h(x,y) = max(abs(x-x_{goal}), abs(y-y_{goal}))$
- More informed distances???

Which heuristics are admissible for 4-connected grid? 8-connected grid?

• For lattice-based 3D (x, y, Θ) navigation:

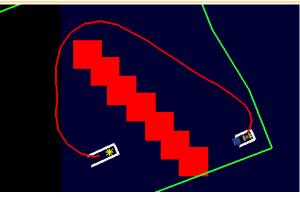


• For lattice-based 3D (x, y, Θ) navigation:



2D (x,y) distance accounting for obstacles (single Dijkstra's on 2D grid cell starting at goalcell will give us these values)

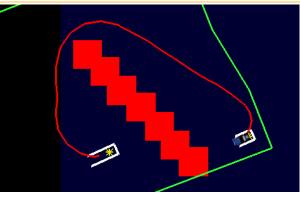
• For lattice-based 3D (x, y, Θ) navigation:



2D (x,y) distance accounting for obstacles (single Dijkstra's on 2D grid cell starting at goalcell will give us these values)

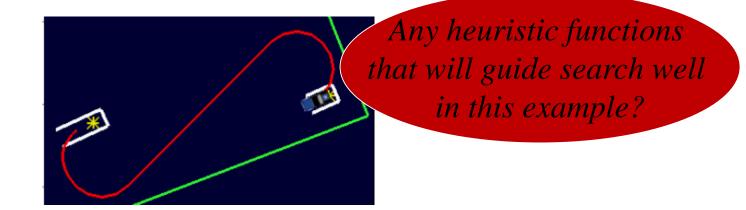
Any problems where it will be highly uninformative?

• For lattice-based 3D (x, y, Θ) navigation:

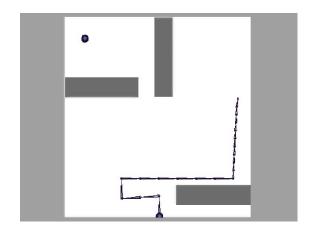


2D (x,y) distance accounting for obstacles (single Dijkstra's on 2D grid cell starting at goalcell will give us these values)

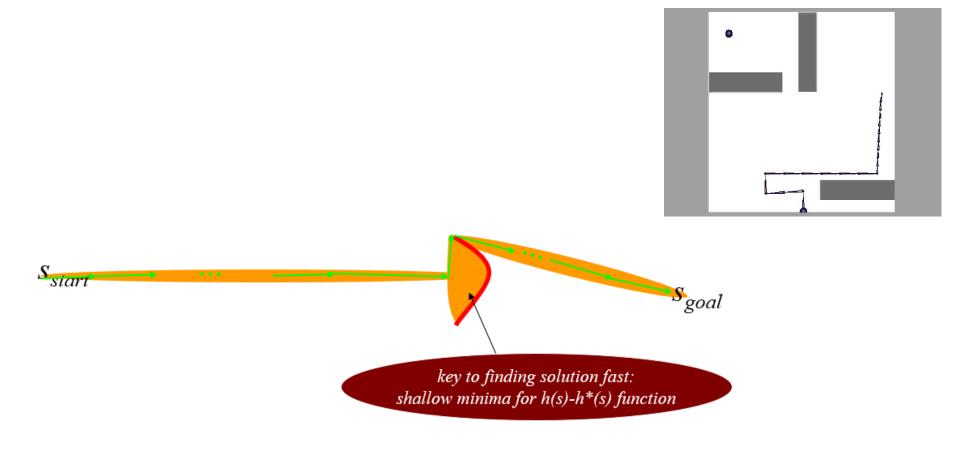
Any problems where it will be highly uninformative?



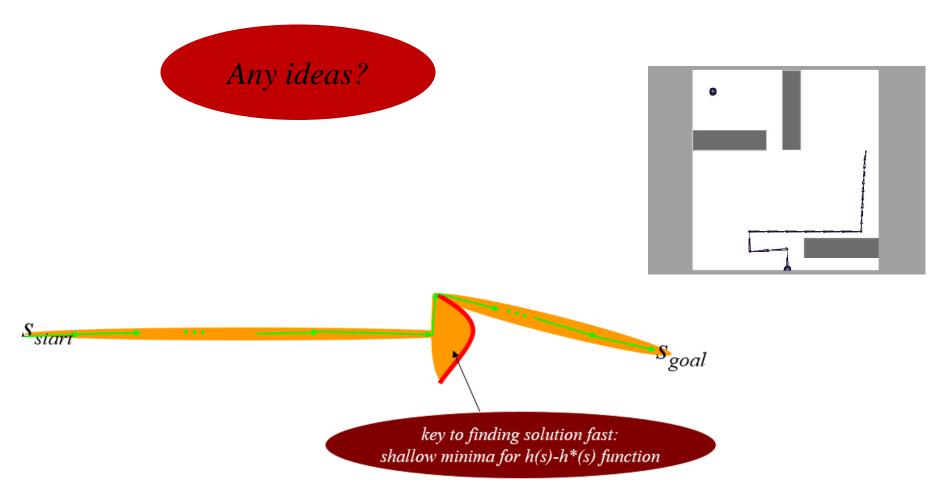
• 20DoF Planar arm planning (forget optimal A*, use weighted A*):



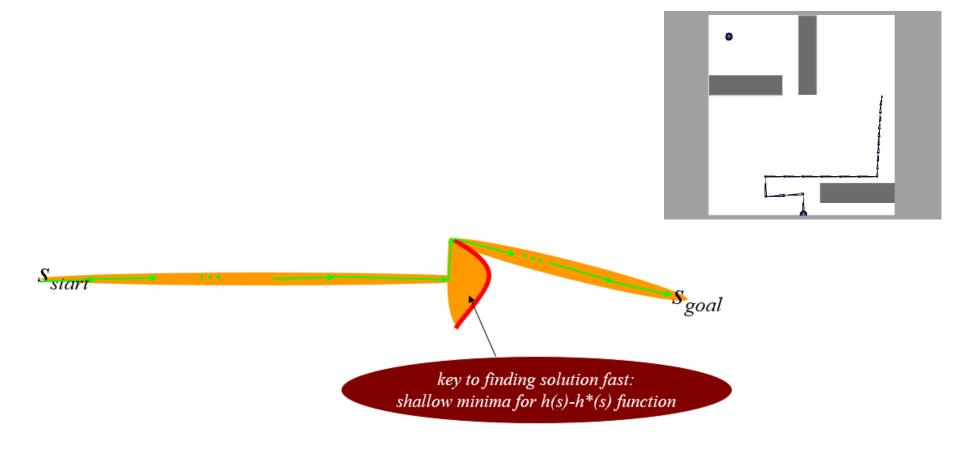
• 20DoF Planar arm planning (forget optimal A*, use weighted A*):



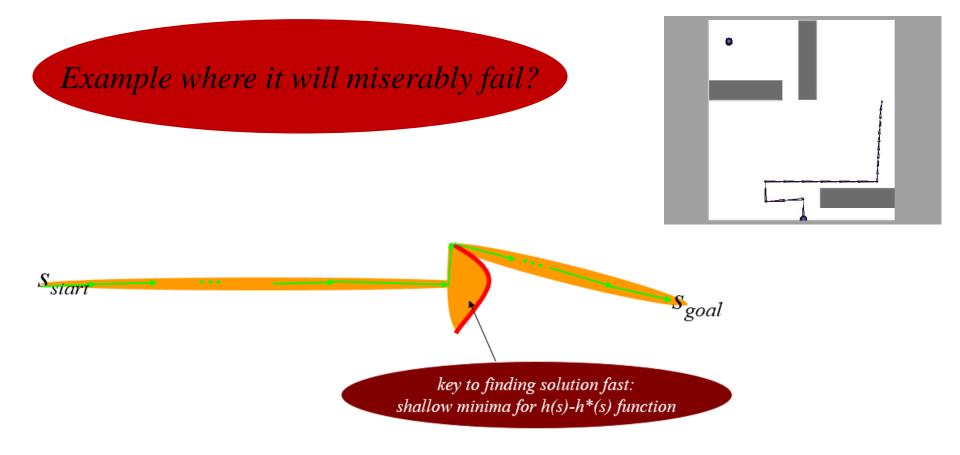
• 20DoF Planar arm planning (forget optimal A*, use weighted A*):



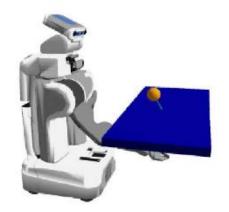
- 20DoF Planar arm planning (forget optimal A*, use weighted A*):
 - 2D end-effector distance accounting for obstacles

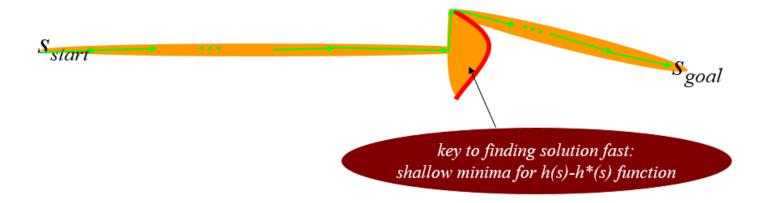


- 20DoF Planar arm planning (forget optimal A*, use weighted A*):
 - 2D end-effector distance accounting for obstacles



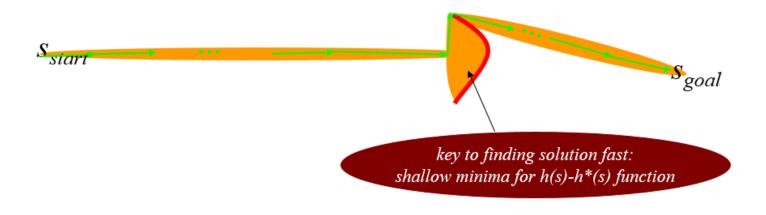
• Arm planning in 3D:





• Arm planning in 3D: Any ideas?

- 3D (*x*,*y*,*z*) end-effector distance accounting for obstacles



Few Properties of Heuristic Functions

• Useful properties to know:

- $h_1(s)$, $h_2(s)$ - consistent, then: $h(s) = max(h_1(s), h_2(s))$ - consistent

- if A* uses ε -consistent heuristics:

 $h(s_{goal}) = 0$ and $h(s) \le \varepsilon c(s, succ(s)) + h(succ(s) \text{ for all } s \neq s_{goal},$ then A* is ε -suboptimal:

 $cost(solution) \le \varepsilon cost(optimal solution)$

- weighted A* is A* with ε-consistent heuristics

- $h_1(s)$, $h_2(s)$ – consistent, then: $h(s) = h_1(s) + h_2(s) - \varepsilon$ -consistent

Few Properties of Heuristic Functions

• Useful properties to know:

- $h_1(s)$, $h_2(s)$ - consistent, then: $h(s) = max(h_1(s), h_2(s))$ - consistent

- if A* uses ε -consistent heuristics:

 $h(s_{goal}) = 0$ and $h(s) \le \varepsilon c(s, succ(s)) + h(succ(s) \text{ for all } s \neq s_{goal},$ then A* is ε -suboptimal:

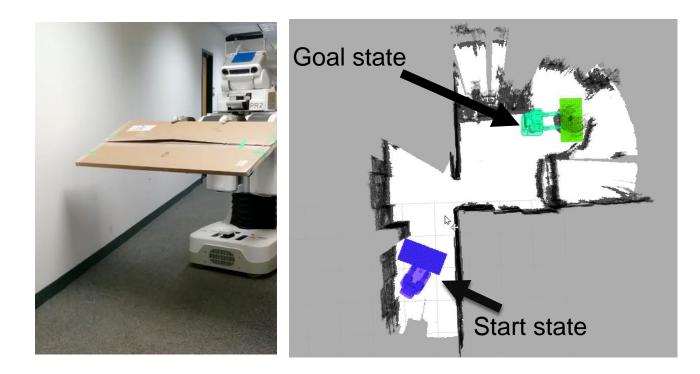
 $cost(solution) \leq \varepsilon cost(optimal solution)$

- weighted A^* is A^* with ϵ -consistent heuristics

What is ε ? *Proof*?

- $h_1(s)$, $h_2(s)$ - consistent, then: $h(s) = h_1(s) + h_2(s) - \varepsilon$ -consistent

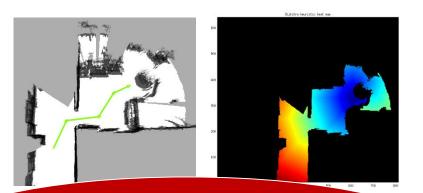
Example problem: move picture frame on the table

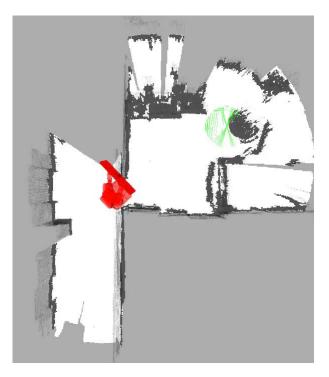


- Full-body planning
 - 12 Dimensions
 (3D base pose,
 1D torso height,
 6DOF object pose,
 2 redundant DOFs
 in arms)

Admissible and Consistent Heuristic

- *h*_o: base distance
 - 2D BFS from goal state





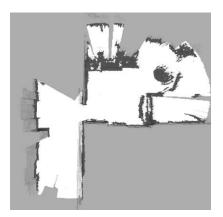
Do you think it will guide search well?

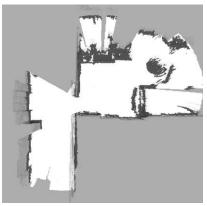
Any other ideas for good heuristics?

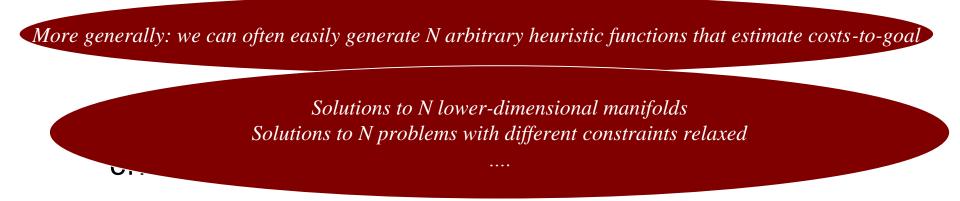
Inadmissible Heuristics

*h*₁: base distance + object
 orientation difference with goal

*h*₂: base distance + object orientation difference with vertical







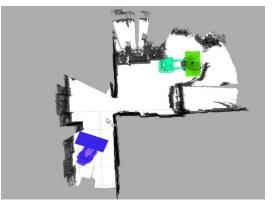
*h*₂: base distance + object orientation difference with vertical

Can we utilize a bunch of inadmissible heuristics simultaneously,

leveraging their individual strengths while preserving guarantees on completeness and bounded sub-optimality?

Can we utilize a bunch of inadmissible heuristics simultaneously, leveraging their individual strengths while preserving guarantees on completeness and bounded sub-optimality?

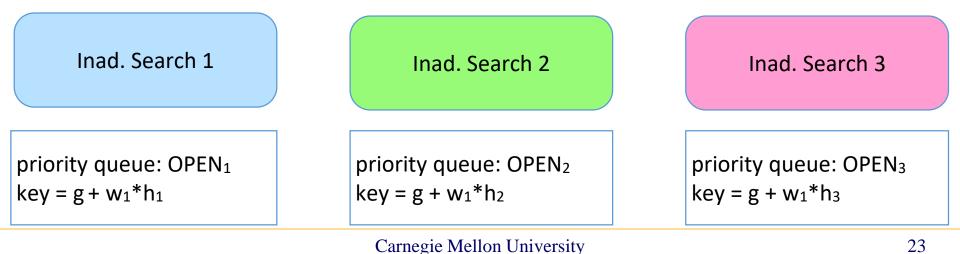
Combining multiple heuristics into one (e.g., taking max) is often inadequate



- information is lost
- creates local minima
- requires all heuristics to be admissible

- Given N inadmissible heuristics
- Run N independent searches
- Hope one of them reaches goal

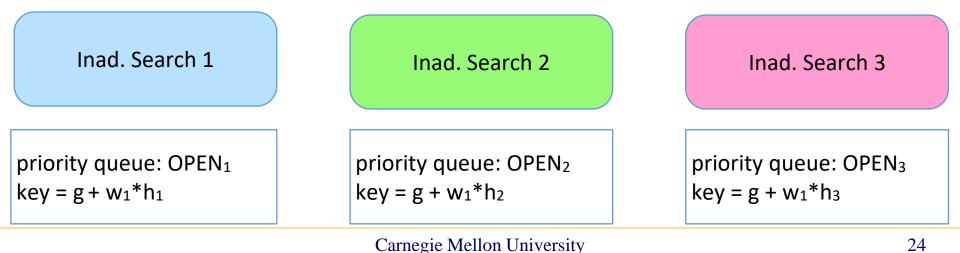
Within the while loop of the ComputePath function: for i=1...Nremove s with the smallest $[f(s) = g(s)+w_1*h(s)]$ from $OPEN_i$; expand s;



- Given N inadmissible heuristics
- Run N independent searches
- Hope one of them reaches goal

Problems:

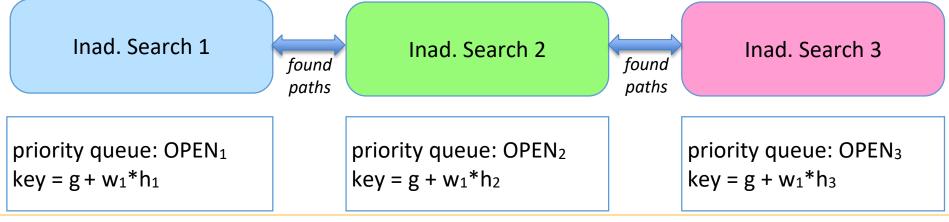
- Each search has its own local minima
- N times more work
- No completeness guarantees or bounds on solution quality



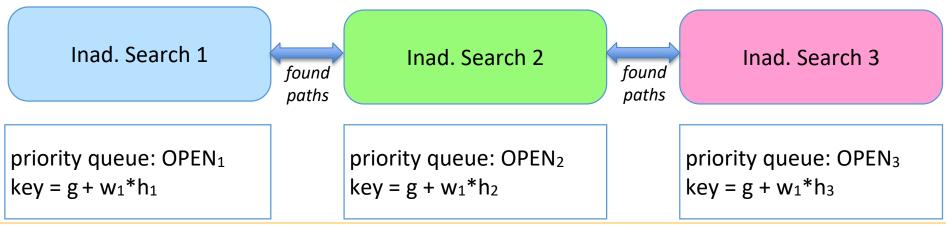
- Given N inadmissible heuristics
- Run N independent searches
- Hope one of them reaches goal
- Key Idea #1: Share information (g-values) between searches!

Within the while loop of the ComputePath function (note: CLOSED is shared): for i=1...N

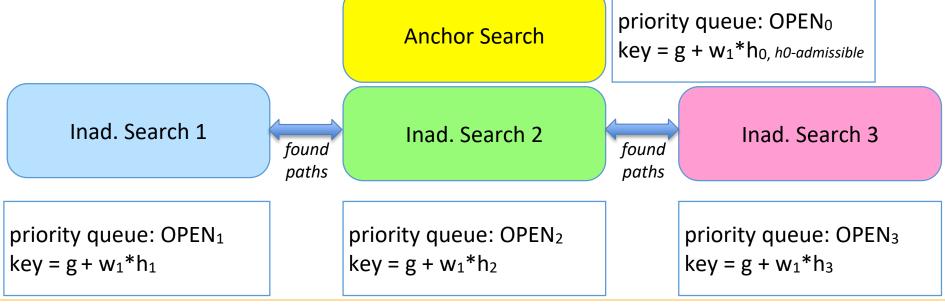
remove s with the smallest $[f(s) = g(s)+w_1*h(s)]$ from $OPEN_i$; expand s and also insert/update its successors into all other OPEN lists;



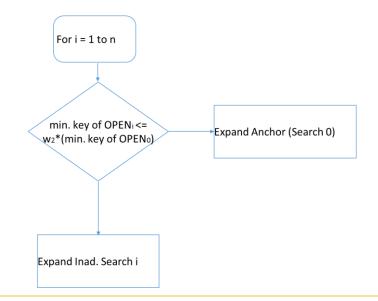
- Given N inadmissible heuristics
- Run N independent searches
- Hope one of them reaches goal
- Key Idea #1: Share information (g-values) between searches! Benefits:
- Searches help each other to circumvent local minima
- States are expanded at most once across ALL searches Remaining Problem:
- No completeness guarantees or bounds on solution quality



- Given N inadmissible heuristics
- Run N independent searches
- Hope one of them reaches goal
- Key Idea #1: Share information (g-values) between searches!
- Key Idea #2: Search with admissible heuristics controls expansions Benefits:
- Algorithm is complete and provides bounds on solution quality



- Given N inadmissible heuristics
- Run N independent searches
- Hope one of them reaches goal
- Key Idea #1: Share information (g-values) between searches!
- Key Idea #2: Search with admissible heuristics controls expansions Benefits:
- Algorithm is complete and provides bounds on solution quality

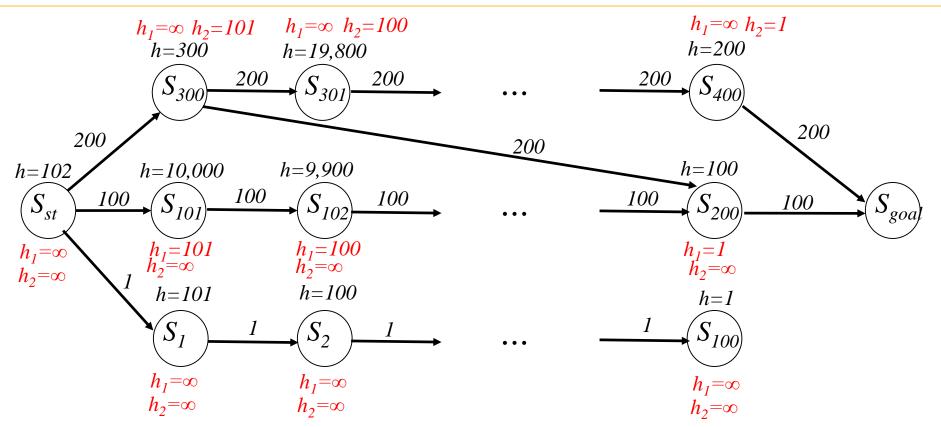


- Given N inadmissible heuristics
- Run N independent searches
- Hope one of them reaches goal
- Key Idea #1: Share information (g-values) between searches!
- Key Idea #2: Search with admissible heuristics controls expansions Benefits:
- Algorithm is complete and provides bounds on solution quality

Within the while loop of the ComputePath function (note: CLOSED is shared among searches 1...N. Search 0 has its own CLOSED): for i=1...N

if(min. f-value in $OPEN_i \le w_2^*$ min. f-value in $OPEN_0$) remove s with the smallest $[f(s) = g(s) + w_1^*h_i(s)]$ from $OPEN_i$; expand s and also insert/update its successors into all other OPEN lists; else

remove s with the smallest $[f(s) = g(s)+w_1*h_0(s)]$ from $OPEN_0$; expand s and also insert/update its successors into all other OPEN lists;



Within the while loop of the ComputePath function

(note: CLOSED is shared among searches 1...N. Search 0 has its own CLOSED):

for i=1...N

if(min. f-value in $\underline{OPEN_i} \le w_2^*$ min. f-value in $OPEN_0$) remove s with the smallest $[f(s) = g(s) + w_1^* h_i(s)]$ from $\underline{OPEN_i}$; expand s and also insert/update its successors into all other OPEN lists;

else

remove s with the smallest $[f(s) = g(s)+w_1*h_0(s)]$ from $OPEN_0$; expand s and also insert/update its successors into all other OPEN lists;

- Given N inadmissible heuristics
- Run N independent seen
- Hope one of them 1: min. key of $OPEN_0 <= w_1^*$ optimal solution cost
- Key Idea #1: Share informat
- Key Idea #2: Searc. Theorem 2: min. key of $OPEN_i <= w_2 * w_1 * optimal solution cost$

Benefits:

• Algorithm is **(**

Theorem 3: The algorithm is complete and the cost of the found solution is no more than $w_2^*w_1^*$ optimal solution cost

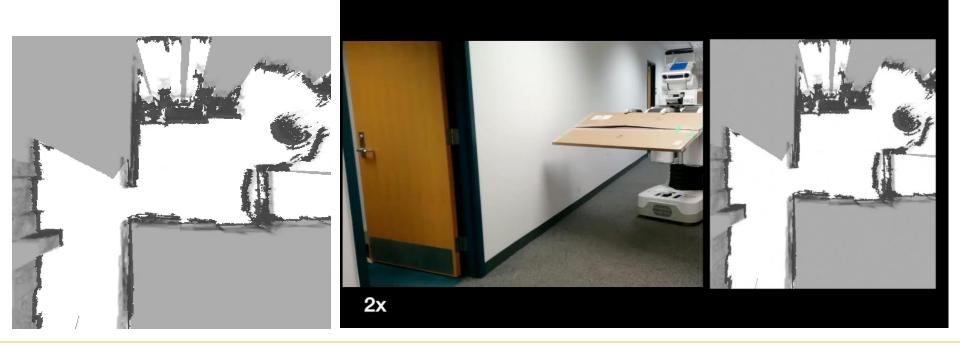
Within the while loop of the (note: CLOSED is shared a. for i=1...N

Theorem 4: Each state is expanded at most twice: at most once by one of the inadmissible searches and at most once by the Anchor search

if(min. f-value in $OPEN_i \le w_2^*$ min. f-value in $OPEN_0$) remove s with the smallest $[f(s) = g(s)+w_1^*h_i(s)]$ from $OPEN_i$; expand s and also insert/update its successors into all other OPEN lists; else

remove s with the smallest $[f(s) = g(s)+w_1*h_0(s)]$ from $OPEN_0$; expand s and also insert/update its successors into all other OPEN lists;

- Given N inadmissible heuristics
- Run N independent searches
- Hope one of them reaches goal
- Key Idea #1: Share information (g-values) between searches!
- Key Idea #2 Search with admissible heuristics controls expansions



- Examples of heuristic functions
 - for X-connected grids
 - For higher dimensional planning problems derived by lower-dimensional search
- Be able to come up with a good heuristic function for a given problem
- Properties of heuristic functions
- How Multi-heuristic A* works