16-782
 Planning \& Decision-making in Robotics

> Planning Representations: Implicit vs. Explicit Graphs;

Skeletonization, cell decomposition, lattices

Maxim Likhachev
Robotics Institute

Carnegie Mellon University

Planning as Graph Search Problem

1. Construct a graph representing the planning problem
2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

This class
2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Interleaving Search and Graph Construction

Graph Search using an Explicit Graph (allocated prior to the search itself):

1. Create the graph $G=\{V, E\}$ in-memory
2. Search the graph

Using Explicit Graphs
is typical for low-D (i.e., 2D) problems in Robotics (with the exception of PRMs, covered in a later lecture)

Interleaving Search and Graph Construction

Graph Search using an Implicit Graph (allocated as needed by the search):

1. Instantiate Start state
2. Start searching with the Start state using functions
a) Succs $=$ GetSuccessors (State s, Action)
b) ComputeEdgeCost (State s, Action a, State s')
and allocating memory for the generated states

> Using Implicit Graphs
> is critical for most (>2 D) problems

in Robotics

2D Planning for Omnidirectional Point Robot

Planning for omnidirectional point robot:
What is $M^{R}=<x, y>$
What is $M^{W}=<$ obstacle/free space $>$
What is $s^{R}{ }_{\text {current }}=\left\langle x_{\text {current }} y_{\text {current }}\right\rangle$
What is s^{W} current $=$ constant
Any ideas on how to construct a graph for planning?
What is $C=$ Euclidean Distance
What is $G=<x_{\text {goal }}, y_{\text {goal }}>$

Two Classes of Graph Construction Methods

- Skeletonization
-Visibility graphs
-Voronoi diagrams
- Probabilistic roadmaps
- Cell decomposition
- X-connected grids
- lattice-based graphs

Two Classes of Graph Construction Methods

- Skeletonization
-Visibility graphs
-Voronoi diagrams
- Probabilistic roadmaps
- Cell decomposition
- X-connected grids
- lattice-based graphs

Two Classes of Graph Construction Methods

- Skeletonization
-Visibility graphs
-Voronoi diagrams
- Probabilistic roadmaps
- Cell decomposition
- X-connected grids
- lattice-based graphs

Skeletonization-based Graphs

- Visibility Graphs [Wesley \& Lozano-Perez '79]
- based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

Skeletonization-based Graphs

- Visibility Graphs [Wesley \& Lozano-Perez '79]
- based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

Skeletonization-based Graphs

- Visibility Graphs [Wesley \& Lozano-Perez '79]
- construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, where n - \# of vert.)

Skeletonization-based Graphs

- Visibility Graphs [Wesley \& Lozano-Perez '79]
- construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, where n - \# of vert.)

Skeletonization-based Graphs

- Visibility Graphs
- advantages:
- independent of the size of the environment
- disadvantages:
- path is too close to obstacles
- hard to deal with the cost function that is not distance
- hard to deal with non-polygonal obstacles
- hard to maintain the polygonal representation of obstacles
- can be expensive in spaces higher than 2D

Two Classes of Graph Construction Methods

- Skeletonization
-Visibility graphs
-Voronoi diagrams
- Probabilistic roadmaps
- Cell decomposition
- X-connected grids
- lattice-based graphs

Skeletonization-based Graphs

- Voronoi diagram [Rowat ${ }^{\text {'79] }}$
- set of all points that are equidistant to two nearest obstacles (can be computed $O(n \log n)$, where $n-\#$ of points that represent obstacles)

Skeletonization-based Graphs

- Voronoi diagram-based graph
- Edges: Boundaries in Voronoi diagram
- Vertices: Intersection of boundaries
- Add start and goal vertices
- Add edges that correspond to:
- shortest path segment from start to the nearest segment on the Voronoi diagram
- shortest path segment from goal to the nearest segment on the Voronoi diagram

Skeletonization-based Graphs

- Voronoi diagram-based graph
- Edges: Boundaries in Voronoi diagram
- Vertices: Intersection of boundaries
- Add start and goal vertices
- Add edges that correspond to:
- shortest path segment from start to the nearest segment on the Voronoi diagram
- shortest path segment from goal to the nearest segment on the Voronoi diagram

Skeletonization-based Graphs

- Voronoi diagram-based graph
- advantages:
- tends to stay away from obstacles
- independent of the size of the environment
- can work with any obstacles represented as set of points
- disadvantages:
- can result in highly suboptimal paths
- hard to deal with the cost function that is not distance
- hard to use/maintain beyond 2D

Two Classes of Graph Construction Methods

- Skeletonization
-Visibility graphs
-Voronoi diagrams
- Probabilistic roadmaps
- Cell decomposition
- X-connected grids
- lattice-based graphs

Grid-based Graphs

- Approximate Cell Decomposition:
- overlay uniform grid (discretize)

Grid-based Graphs

- Approximate Cell Decomposition:

- construct a graph

Grid-based Graphs

- Approximate Cell Decomposition:

- construct a graph

edgecosts can represent any cost function

Grid-based Graphs

- Approximate Cell Decomposition:

- construct a graph

(Important) Implementation Detail:

No need to use an explicit graph data structure
Can be (much more efficiently) represented as a 2-Dimensional Array!

planning map
search the graph for a least-cost path from $s_{\text {start }}$ to $S_{\text {goal }}$
edgecosts can represent any cost function

Grid-based Graphs

- Approximate Cell Decomposition:

- construct a graph

Grid-based Graphs

- Approximate Cell Decomposition:
- what to do with partially blocked cells?

Grid-based Graphs

- Approximate Cell Decomposition:
- what to do with partially blocked cells?
- make it untraversable - incomplete (may not find a path that exists)

Grid-based Graphs

- Approximate Cell Decomposition:
- what to do with partially blocked cells?
- make it traversable - unsound (may return invalid path)

so, what's the solution?

Grid-based Graphs

- Approximate Cell Decomposition:
- solution 1:
- make the discretization very fine
- expensive, especially in high-D

Grid-based Graphs

- Approximate Cell Decomposition:
- solution 2:
- make the discretization adaptive
- various ways possible

Any ideas?

Grid-based Graphs

- Graph construction:
- connect neighbors

8-connected grid

Grid-based Graphs

- Graph construction:
- connect neighbors
- path is restricted to 45° degrees

Grid-based Graphs

- Graph construction:
- connect neighbors
- path is restricted to 45° degrees

Ideas to improve it?

Grid-based Graphs

- Graph construction:
- connect cells to neighbor of neighbors
- path is restricted to 22.5° degrees

Grid-based Graphs

- Graph construction:
- connect cells to neighbor of neighbors
- path is restricted to $\mathbf{2 6 . 6}{ }^{\circ} / 63.4^{\circ}$ degrees
16-connected grid

Grid-based Graphs

- Graph construction:
- connect cells to neighbor of neighbors
- path is restricted to $\mathbf{2 6 . 6}{ }^{\circ} / 63.4^{\circ}$ degrees

Grid-based Graphs

- Graph construction:
- connect cells to neighbor of neighbors
- path is restricted to $\mathbf{2 6 . 6} /{ }^{\circ} / 63.4^{\circ}$ degrees

Disadvantages?

Dynamically generated directions (for low-d problems): Field D* [Ferguson \& Stentz, ‘06], Theta* [Nash \& Koenig, '13]

$$
\boldsymbol{1} \text { o-connected grid }
$$

S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$
	$\mathrm{~S}_{6}$	

Cell Decomposition-based Graphs

- Grid-based graph
- advantages:
- very simple to implement (super popular)
- can represent any dimensional space
- works well with obstacles represented as set of points
- works with any cost function
- disadvantages:
- size does depend on the size of the environment
- can be expensive to compute/store if \# of dimensions > 3

Cell Decomposition-based Graphs

- Grid-based graph
- advantages:
- very simple to implement (super popular)
- can represent any dimensional space
- works well with obstacles represented as set of points
- works with any cost function
- disadvantages:
- size does depend on the size of the environment
- can be expensive to compute/store if \# of dimensions > 3

Cell Decomposition-based Graphs

- Grid-based graph
- advantages:
- very simple to implement (super popular)
- can represent any dimensional space
- works well with obstacles represented as set of points
- works with any cost function
- disadvantages:
- size does depend on the size of the environment
- can be expensive to compute/store if \# of dimensions > 3

Use Implicit Graphs

2D Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional point robot:
What is $M^{R}=<x, y>$
What is $M^{W}=<$ obstacle/free space>
What is $s_{\text {current }}^{R}=\left\langle x_{\text {current }} y_{\text {current }}\right\rangle$
What is $s^{W}{ }_{\text {current }}=$ constant
What is $C=$ Euclidean Distance
What is $G=\left\langle x_{\text {goal }} y_{\text {goal }}\right\rangle$

Configuration Space

- Configuration is legal if it does not intersect any obstacles and is valid
- Configuration Space is the set of legal configurations

Legal configurations for the base of the robot:

Configuration Space

- Configuration is legal if it does not intersect any obstacles and is valid
- Configuration Space is the set of legal configurations

Legal configurations for the base of the robot:

C-Space Transform

- Configuration space for a robot base in 2D world is:
-2D if robot's base is circular

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

C-Space Transform

- Configuration space for a robot base in 2D world is:
-2D if robot's base is circular

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

C-Space Transform

- Configuration space for a robot base in 2D world is:
-2D if robot's base is circular

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

C-Space Transform

- Configuration space for a robot hn~ o(n) methods exist to compute -2D if robot's base is circulaı distance transforms efficienty

$$
\xrightarrow[\text { Transform }]{\text { C-Space }}
$$

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

2D Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional circular robot:
What is $M^{R}=<x, y>$
What is $M^{W}=<$ obstacle/free space>
What is $s^{R}{ }_{\text {current }}=\left\langle x_{\text {current }} y_{\text {current }}>\right.$
What is $s^{W}{ }_{\text {current }}=$ constant
What is $C=$ Euclidean Distance
What is $G=\left\langle x_{\text {goal }}, y_{\text {goal }}\right\rangle$

2D Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional circular robot:
What is $M^{R}=<x, y>$
What is $M^{W}=<$ obstacle/free space $>$
What is $s^{R}{ }_{\text {current }}=\left\langle x_{\text {current }} y_{\text {current }}\right\rangle$
What is $s^{W}{ }_{\text {current }}=$ constant
What is $C=$ Euclidean Distance
What is $G=\left\langle x_{\text {goal }}, y_{\text {goal }}\right\rangle$

We can now construct a graph using previously discussed methods
(grids, Voronoi graphs, Visibility graphs)

C-Space Transform

- Configuration space for a robot base in 2D world is:
- 3D if robot's base is non-circular

Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional non-circular robot:
What is $M^{R}=<x, y, \Theta>$
What is $M^{W}=<$ obstacle/free space $>$
What is $s_{\text {current }}^{R}=<x_{\text {current }} y_{\text {current }}, \Theta_{\text {current }}>$
What is $s^{W}{ }_{\text {current }}=$ constant
What is $C=$ Euclidean Distance
What is $G=<x_{\text {goal }}, y_{\text {goal }} \Theta_{\text {goal }}>$

Interleave

Graph Construction and Graph Search steps!

Construct a $3 D$ grid (x, y, Θ) assuming point robot (i.e., a cell (x, y, Θ) is free whenever its (x, y) is free) and compute the actual validity of only those cells that get computed by the graph search

Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional non-circular robot:
What is $M^{R}=<x, y, \Theta>$
What is $M^{W}=<$ obstacle/free space $>$
What is $s_{\text {current }}^{R}=<x_{\text {current }} y_{\text {current }}, \Theta_{\text {current }}>$
What is $s^{W}{ }_{\text {current }}=$ constant
What is $C=$ Euclidean Distance
What is $G=<x_{\text {goal }}, y_{\text {goal }} \Theta_{\text {goal }}>$

Interleave

Graph Construction and Graph Search steps!

Construct a $3 D$ grid (x, y, Θ) assuming point robot (i.e., a cell (x, y, Θ) is free whenever its (x, y) is free) and compute the actual validity of only those cells that get computed by the graph search

How to compute the actual validity of cell (x, y, θ) ?

Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional non-circular robot:
What is $M^{R}=<x, y, \theta>$
What is $M^{W}=<$ obstacle/free space>

What's different when planning for a robot that has a complex
$3 D$ body?

What is $s_{\text {current }}^{R}=<x_{\text {current }} y_{\text {current }}, \Theta_{\text {current }}>$
What is $s^{W}{ }_{\text {current }}=$ constant
What is $C=$ Euclidean Distance
What is $G=<x_{\text {goal }}, y_{\text {goal }}, \Theta_{\text {goal }}>$

Two Classes of Graph Construction Methods

- Skeletonization
-Visibility graphs
-Voronoi diagrams
- Probabilistic roadmaps
- Cell decomposition
- X-connected grids
- lattice-based graphs

Beyond Planning for Omnidirectional Robots

Beyond Planning for Omnidirectional Robots

Beyond Planning for Omnidirectional Robots

What's wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

Kinodynamic planning:

Planning representation includes $\{X, \dot{X}\}$, where X-configuration and \dot{X}-derivative of $X($ dynamics of $X)$

Lattice Graphs [Pivtoraiko \& Kelly '05]

- Graph $\{V, E\}$ where
$-V$: centers of the grid-cells
$-E$: motion primitives that connect centers of cells via short-term feasible motions
each transition is feasible
(typically, constructed beforehand)
motion primitives
outcome state is the center of the
corresponding cell in a grid

Lattice Graphs [Pivtoraiko \& Kelly '05]

- Graph $\{V, E\}$ where
$-V$: centers of the grid-cells
$-E$: motion primitives that connect centers of cells via short-term feasible motions
motion primitives

replicate it during planning
to generate lattice graph

Lattice Graphs [Pivtoraiko \& Kelly ’05]

- Graph $\{V, E\}$ where
$-V$: centers of the grid-cells
$-E$: motion primitives that connect centers of cells via short-term feasible motions

What You Should Know...

- Explicit vs. Implicit graphs
- What visibility graphs are
- What Voronoi diagram-based graphs are
- X-connected N -dimensional grids
- Lattice-based graphs

