
16-782 

Planning & Decision-making in Robotics

Interleaving Planning & Execution: 

Real-time Heuristic Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University



Carnegie Mellon University 2

Planning during Execution

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

this lecture



Carnegie Mellon University 3

Real-time (Agent-centered) Heuristic Search

Enforce a strict limit on the amount of computations (no requirement on 

planning all the way to the goal)



Carnegie Mellon University 4

Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

- expanded



Carnegie Mellon University 5

Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (planning with Freespace Assumption):

- expanded



costs between unknown states is 

the same as the costs in between 

states known to be free

Carnegie Mellon University 6

Planning with Freespace Assumption [Nourbakhsh & Genesereth, ‘96]

• Freespace Assumption: all unknown cells are assumed to be 

traversable

• Planning with the Freespace Assumption: always move the robot on a 

shortest path to the goal assuming all unknown cells are traversable

• Replan the path whenever a new sensor information received

- unknown



Carnegie Mellon University 7

Planning with Freespace Assumption [Nourbakhsh & Genesereth, ‘96]

- unknown

…

• Freespace Assumption: all unknown cells are assumed to be 

traversable

• Planning with the Freespace Assumption: always move the robot on a 

shortest path to the goal assuming all unknown cells are traversable

• Replan the path whenever a new sensor information received



Carnegie Mellon University 8

Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Research issues: 

- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal



Carnegie Mellon University 9

Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Research issues: 

- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal

Any ideas?



Carnegie Mellon University 10

Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using heuristics

h(x,y) = max(abs(x-xgoal), abs(y-ygoal)) + 0.4*min(abs(x-xgoal), abs(y-ygoal))

1. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

Any problems?



Carnegie Mellon University 11

Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using heuristics

h(x,y) = max(abs(x-xgoal), abs(y-ygoal)) + 0.4*min(abs(x-xgoal), abs(y-ygoal))

1. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

Local minima problem (myopic or incomplete behavior)

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4
…

Any solutions?



Carnegie Mellon University 12

Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

makes h-values more informed

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4



Carnegie Mellon University 13

Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

0

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.25.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

14.45.4 3.4
…



Carnegie Mellon University 14

Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

0

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.25.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

14.45.4 3.4
…

h-values remain admissible and consistent

proof?



Carnegie Mellon University 15

Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

0

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.25.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

14.45.4 3.4
…

robot is guaranteed to reach goal in finite number of steps if:

• all costs are bounded from below with ∆ > 0

• graph is of finite size and there exists a finite-cost path to the goal

• all actions are reversible



Carnegie Mellon University 16

Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

0

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.25.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

14.45.4 3.4
…

robot is guaranteed to reach goal in finite number of steps if:

• all costs are bounded from below with ∆ > 0

• graph is of finite size and there exists a finite-cost path to the goal

• all actions are reversible

Why conditions?



Carnegie Mellon University 18

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands [Koenig, ‘04]

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

necessary for the guarantee 

to reach the goal



Carnegie Mellon University 19

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

state s:

- the state that minimizes cost to it plus heuristic estimate of the remaining distance

- the state that looks most promising in terms of the whole path from current robot 

state to goal

- expanded



Carnegie Mellon University 20

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

4-connected grid (robot moves in 4 directions)
example borrowed from ICAPS’06 planning summer school lecture (Koenig & Likhachev)



Carnegie Mellon University 21

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states



Carnegie Mellon University 22

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states

unexpanded state with smallest 

g + h (= 5 + 3) 



Carnegie Mellon University 23

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states

unexpanded state with smallest 

g + h (= 5 + 3) 

How path is found?



Carnegie Mellon University 24

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

∞∞

∞∞

∞∞ ∞



Carnegie Mellon University 25

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

4∞

∞∞

∞∞ ∞



Carnegie Mellon University 26

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

∞∞

∞∞ ∞



Carnegie Mellon University 27

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

6∞

∞∞ ∞



Carnegie Mellon University 28

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

∞∞ ∞
Does it matter in 

what order?



Carnegie Mellon University 29

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

7∞ ∞



Carnegie Mellon University 30

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

78 ∞



Carnegie Mellon University 31

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

78 8



Carnegie Mellon University 32

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

make a move along the found path 

and repeat steps 1-3

45

67

78 8

Drawbacks compared

to A*?



Carnegie Mellon University 33

Real-time Adaptive A* (RTAA*) [Koenig & Likhachev, ‘06]

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

one linear pass,

and even that can be lazy(postponed)

expand N=7 states

unexpanded state s with smallest 

g + h (= 5 + 3) 



Carnegie Mellon University 34

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

g=4g=3

g=2g=3

g=1g=2 g=0



Carnegie Mellon University 35

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

8-48-3

8-28-3

8-18-2 8-0



Carnegie Mellon University 36

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

45

65

76 8



Carnegie Mellon University 37

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

proof of admissibility:

g(u) + h*(u) ≥ h*(sstart)

h*(u) ≥ h*(sstart) – g(u)

h*(u) ≥ f(s) – g(u)

h*(u) ≥ hupdated(u)

45

65

76 8

h*() – true cost-to-goal

because f(s) ≤ h*(sstart)



Carnegie Mellon University 38

LRTA* vs. RTAA*

RTAA*

45

65

76 8

LRTA*

• Update of h-values in RTAA* is much faster but not as informed

• Both guarantee adimssibility and consistency of heuristics

• For both, heuristics are monotonically increasing

• Both guarantee to reach the goal in a finite number of steps (given 

the conditions listed previously)

45

67

78 8



Carnegie Mellon University 39

What You Should Know…

• What Freespace Assumption means

• Why we need to update heuristics in the context of Real-time Heuristic 

Search

• The operation of LRTA*

• Pros and cons of LRTA* 

• What domains LRTA* is useful in and what domains it is not really 

applicable

• What RTAA* is


