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Planning during Execution

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

this lecture
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Real-time (Agent-centered) Heuristic Search

Enforce a strict limit on the amount of computations (no requirement on 

planning all the way to the goal)
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Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

- expanded
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Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (planning with Freespace Assumption):

- expanded



costs between unknown states is 

the same as the costs in between 

states known to be free
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Planning with Freespace Assumption [Nourbakhsh & Genesereth, ‘96]

• Freespace Assumption: all unknown cells are assumed to be 

traversable

• Planning with the Freespace Assumption: always move the robot on a 

shortest path to the goal assuming all unknown cells are traversable

• Replan the path whenever a new sensor information received

- unknown
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Planning with Freespace Assumption [Nourbakhsh & Genesereth, ‘96]

- unknown

…

• Freespace Assumption: all unknown cells are assumed to be 

traversable

• Planning with the Freespace Assumption: always move the robot on a 

shortest path to the goal assuming all unknown cells are traversable

• Replan the path whenever a new sensor information received
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Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Research issues: 

- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal
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Real-time (Agent-centered) Heuristic Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Research issues: 

- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal

Any ideas?
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Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using heuristics

h(x,y) = max(abs(x-xgoal), abs(y-ygoal)) + 0.4*min(abs(x-xgoal), abs(y-ygoal))

1. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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Any problems?
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Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using heuristics

h(x,y) = max(abs(x-xgoal), abs(y-ygoal)) + 0.4*min(abs(x-xgoal), abs(y-ygoal))

1. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

Local minima problem (myopic or incomplete behavior)
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Any solutions?
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Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

makes h-values more informed
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Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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h-values remain admissible and consistent

proof?
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Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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robot is guaranteed to reach goal in finite number of steps if:

• all costs are bounded from below with ∆ > 0

• graph is of finite size and there exists a finite-cost path to the goal

• all actions are reversible
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Learning Real-Time A* (LRTA*) [Korf, ‘90]

• Repeatedly move the robot to the most promising adjacent 

state, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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robot is guaranteed to reach goal in finite number of steps if:

• all costs are bounded from below with ∆ > 0

• graph is of finite size and there exists a finite-cost path to the goal

• all actions are reversible

Why conditions?



Carnegie Mellon University 18

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands [Koenig, ‘04]

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

necessary for the guarantee 

to reach the goal
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

state s:

- the state that minimizes cost to it plus heuristic estimate of the remaining distance

- the state that looks most promising in terms of the whole path from current robot 

state to goal

- expanded
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

4-connected grid (robot moves in 4 directions)
example borrowed from ICAPS’06 planning summer school lecture (Koenig & Likhachev)
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states



Carnegie Mellon University 22

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states

unexpanded state with smallest 

g + h (= 5 + 3) 



Carnegie Mellon University 23

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states

unexpanded state with smallest 

g + h (= 5 + 3) 

How path is found?
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

∞∞

∞∞

∞∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

4∞

∞∞

∞∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

∞∞

∞∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

6∞

∞∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

∞∞ ∞
Does it matter in 

what order?
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

7∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

78 ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

78 8
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

make a move along the found path 

and repeat steps 1-3

45

67

78 8

Drawbacks compared

to A*?
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Real-time Adaptive A* (RTAA*) [Koenig & Likhachev, ‘06]

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

one linear pass,

and even that can be lazy(postponed)

expand N=7 states

unexpanded state s with smallest 

g + h (= 5 + 3) 
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

g=4g=3

g=2g=3

g=1g=2 g=0
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

8-48-3

8-28-3

8-18-2 8-0
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

45

65

76 8
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

proof of admissibility:

g(u) + h*(u) ≥ h*(sstart)

h*(u) ≥ h*(sstart) – g(u)

h*(u) ≥ f(s) – g(u)

h*(u) ≥ hupdated(u)

45

65

76 8

h*() – true cost-to-goal

because f(s) ≤ h*(sstart)
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LRTA* vs. RTAA*

RTAA*

45

65

76 8

LRTA*

• Update of h-values in RTAA* is much faster but not as informed

• Both guarantee adimssibility and consistency of heuristics

• For both, heuristics are monotonically increasing

• Both guarantee to reach the goal in a finite number of steps (given 

the conditions listed previously)

45

67

78 8
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What You Should Know…

• What Freespace Assumption means

• Why we need to update heuristics in the context of Real-time Heuristic 

Search

• The operation of LRTA*

• Pros and cons of LRTA* 

• What domains LRTA* is useful in and what domains it is not really 

applicable

• What RTAA* is


