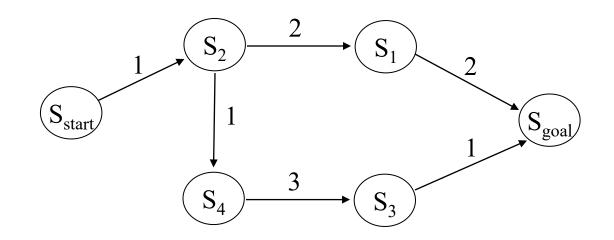
16-782

Planning & Decision-making in Robotics

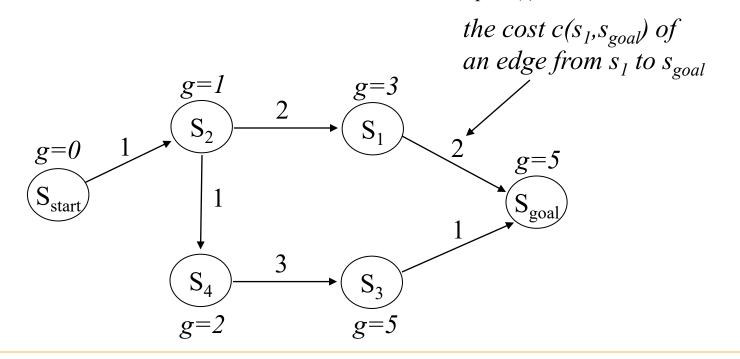
Search Algorithms: A*, Multi-Goal A*, Weighted A*, Backward A*

Maxim Likhachev Robotics Institute Carnegie Mellon University

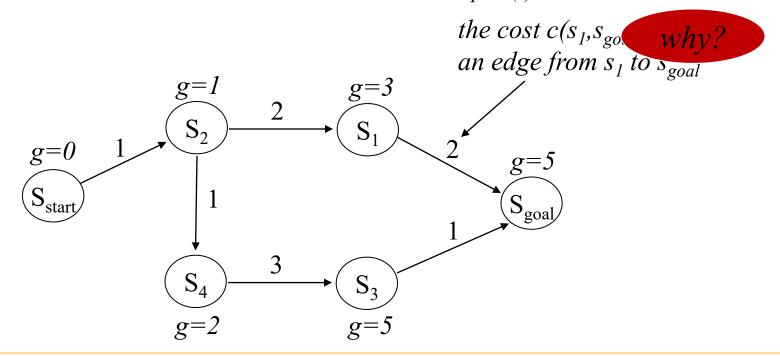
• Once a graph is constructed (from skeletonization or uniform cell decomposition or adaptive cell decomposition or lattice or whatever else), We need to search it for a least-cost path



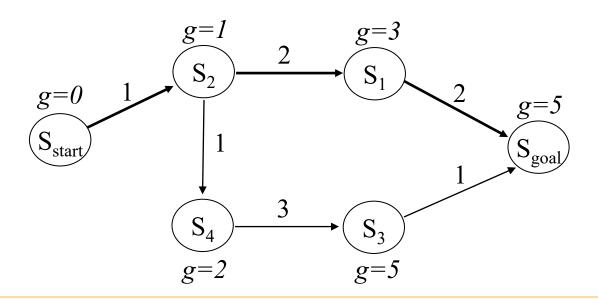
- Many searches work by computing optimal g-values for relevant states
 - -g(s) an estimate of the cost of a least-cost path from s_{start} to s
 - optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$



- Many searches work by computing optimal g-values for relevant states
 - -g(s) an estimate of the cost of a least-cost path from s_{start} to s
 - optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$



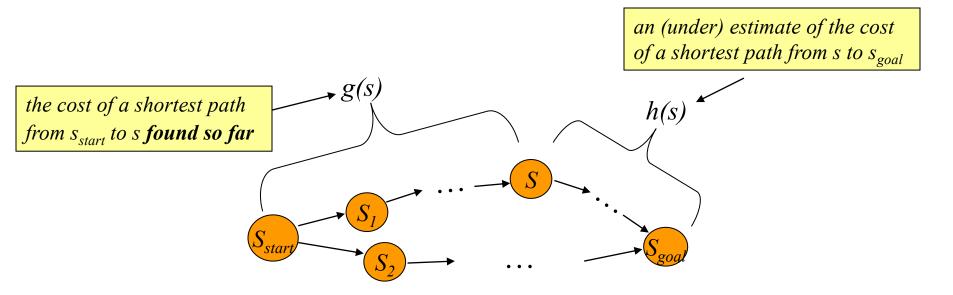
- Least-cost path is a greedy path computed by backtracking:
 - start with s_{goal} and from any state *s* move to the predecessor state *s*' such that $s' = \arg \min_{s'' \in pred(s)} (g(s'') + c(s'', s))$



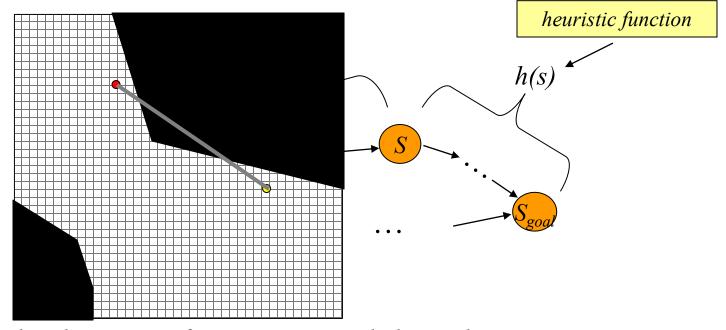
A* Search [Hart, Nillson, Raphael, '68]

• Computes optimal g-values for relevant states

at any point of time:



- Computes optimal g-values for relevant states
- at any point of time:



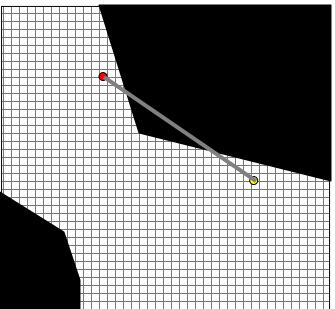
one popular heuristic function – Euclidean distance

minimal cost from s to s_{goal}

- Heuristic function must be:
 - admissible: for every state s, $h(s) \le c^*(s, s_{goal})$
 - consistent (satisfy triangle inequality):

 $h(s_{goal}, s_{goal}) = 0$ and for every $s \neq s_{goal}$, $h(s) \leq c(s, succ(s)) + h(succ(s))$

admissibility <u>provably</u> follows from consistency and often (<u>not</u> <u>always</u>) consistency follows from admissibility



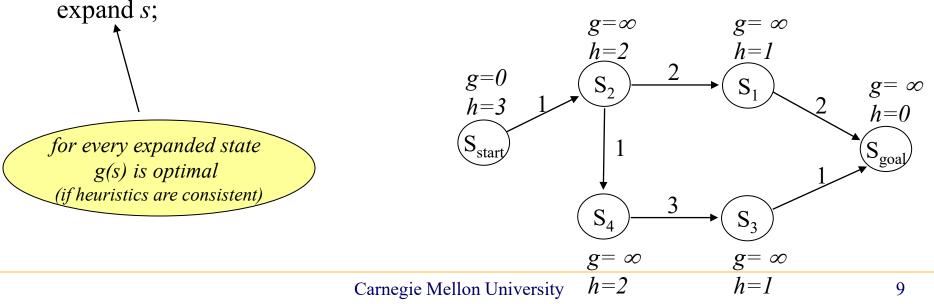
• Computes optimal g-values for relevant states Main function

 $g(s_{start}) = 0$; all other *g*-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution;

ComputePath function

set of candidates for expansion

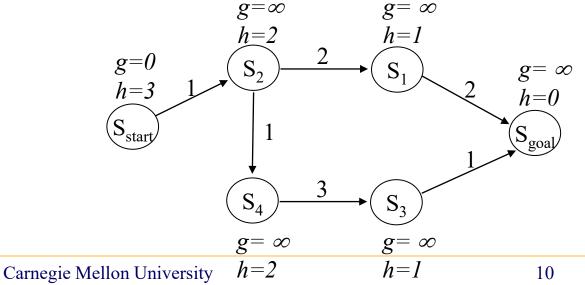
while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*;



• Computes optimal g-values for relevant states

ComputePath function

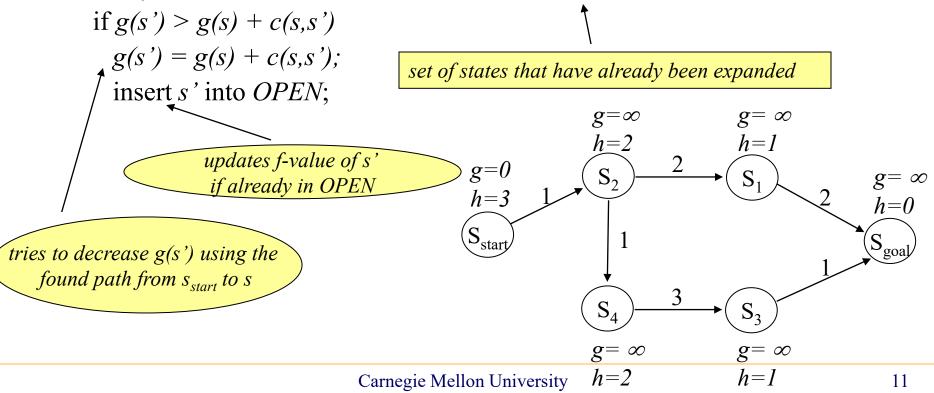
while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; expand *s*;



• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;



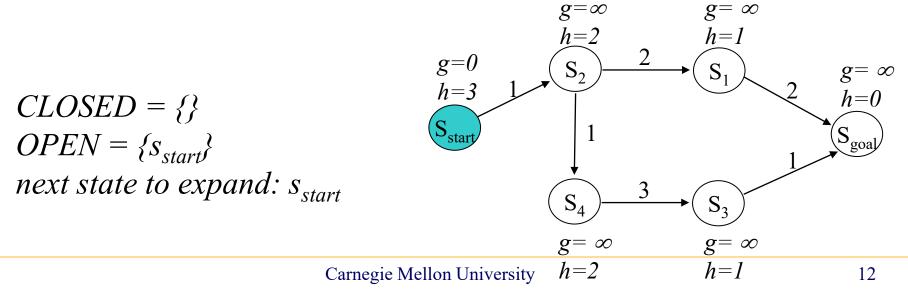
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

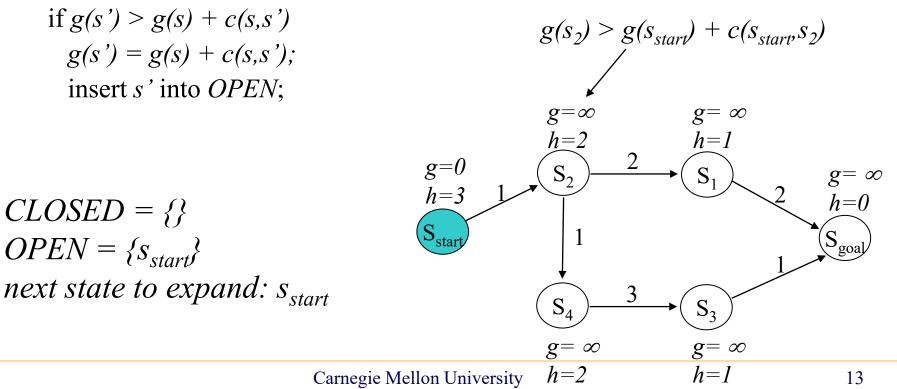
 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;



• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;



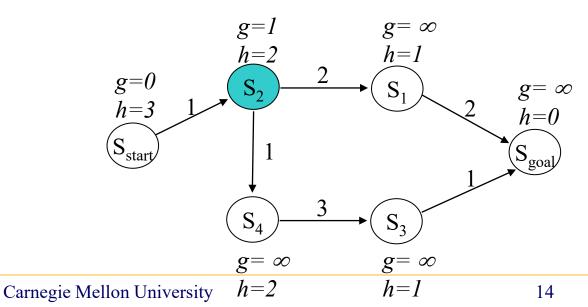
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert *s*' into *OPEN*;



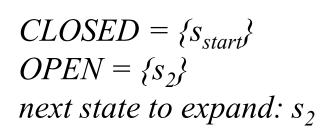
• Computes optimal g-values for relevant states

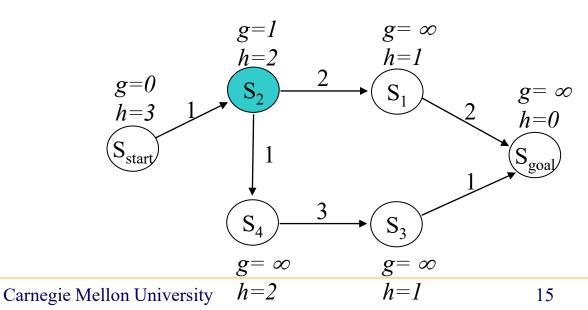
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;





Computes optimal g-values for relevant states

ComputePath function

while (s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;

$$CLOSED = \{s_{start}, s_2\}$$

$$OPEN = \{s_1, s_4\}$$

$$next state to expand: s_1$$

$$g=0$$

$$h=3$$

$$S_{start}$$

$$s$$

Carnegie Mellon University

 $g = \infty$ h=0

(Sgoa,

g=3

h=1

S

 S_3

 $g = \infty$

h=l

g=lh=2

• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;

$$CLOSED = \{s_{start}, s_{2}, s_{1}\}$$

$$OPEN = \{s_{4}, s_{goal}\}$$

$$next state to expand: s_{4}$$

$$g=0$$

$$h=3$$

$$1$$

$$S_{4}$$

$$S_{4}$$

$$g=2$$

$$g=\infty$$

$$h=1$$

$$g=0$$

$$h=1$$

$$g=3$$

$$h=1$$

$$g=5$$

$$h=3$$

$$g=5$$

$$h=3$$

$$g=3$$

$$g=5$$

$$h=3$$

$$g=5$$

$$h=3$$

$$g=5$$

$$h=3$$

$$g=5$$

$$h=1$$

$$g=5$$

• Computes optimal g-values for relevant states

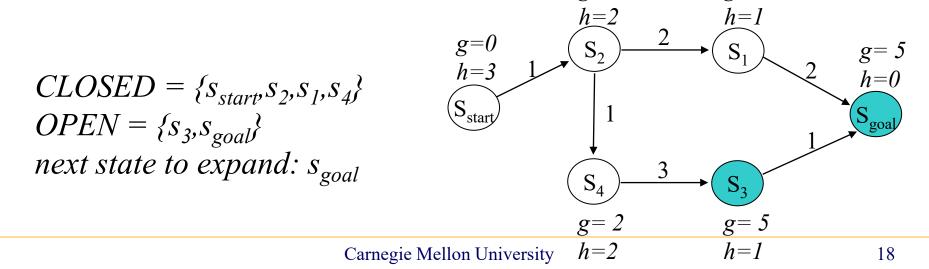
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;



g=l

g=3

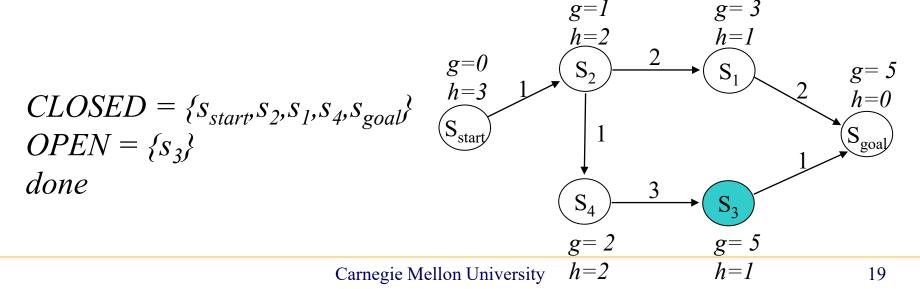
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;



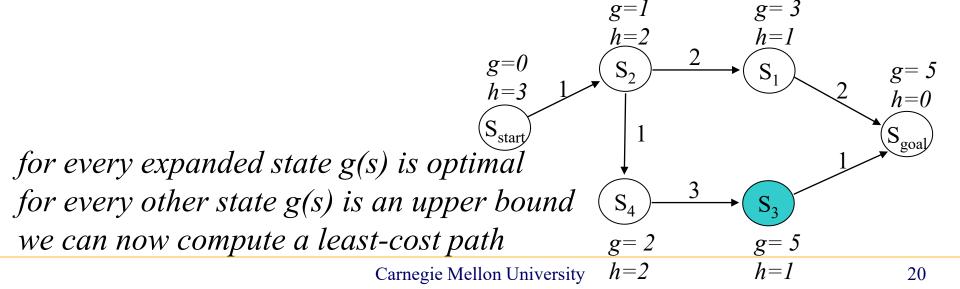
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;



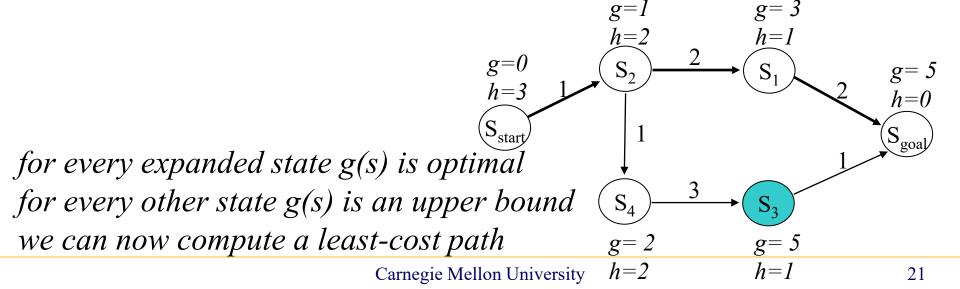
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;



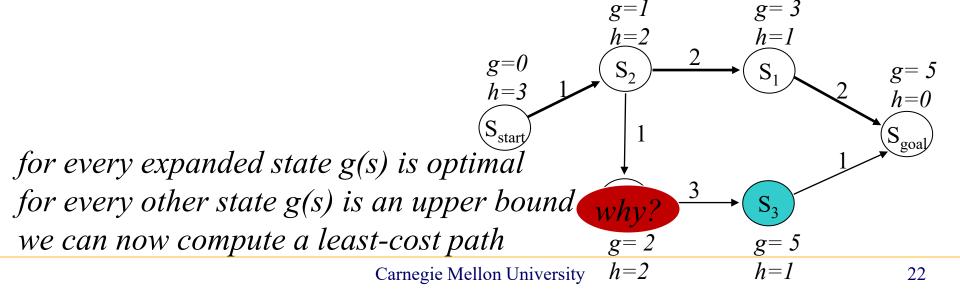
• Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;



- Is guaranteed to return an optimal path (in fact, for every expanded state) optimal in terms of the solution
- Performs <u>provably minimal number of state expansions</u> required to guarantee optimality – optimal in terms of the computations

- Is guaranteed to return an optimal path (in fact, for every expanded state) optimal in terms of the solution
 Sketch of proof by induction for h = 0:
 - 1. assume all previously expanded states have optimal g-values
 - 2. next state to expand is s: f(s) = g(s) min among states in OPEN
 - 3. OPEN separates expanded states from never seen states
 - 4. thus, path to s via a state in OPEN or an unseen state will be worse than g(s) (assuming positive costs)

- Is guaranteed to return an optimal path (in fact, for every expanded state) optimal in terms of the solution
 Sketch of proof by induction for consistent h:
 - 1. assume all previously expanded states have optimal g-values
 - 2. next state to expand is s: f(s) = g(s)+h(s) min among states in OPEN
 - 3. assume g(s) is suboptimal (i.e., proof by contradiction)
 - 4. then there must be at least one state s' on an optimal path from start to s such that it is still in OPEN

5. $g(s') + h(s') \ge g(s) + h(s)$ 6. $but g(s') + c^*(s',s) < g(s) =>$ $g(s') + c^*(s',s) + h(s) < g(s) + h(s) =>$ g(s') + h(s') < g(s) + h(s) (= contradiction)7. thus it must be the case that g(s) is optimal

Multi-goal A*: Support for Multiple Goal Candidates

- How to compute a least-cost path to any one of the possible goals?
 - Example 1: Computing a least-cost path to a parking spot given multiple parking spaces (some are better, some are worse, some are closer, some are further)
 - Example 2: Catching a moving target whose future trajectory is known (i.e., multiple potential intercept points)
 - Example 3: Mapping/exploration (covered in future lectures)

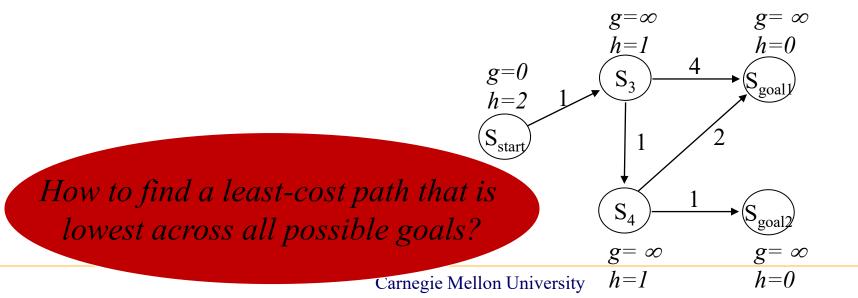
Main function

 $g(s_{start}) = 0$; all other *g*-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution; **ComputePath function**

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s'); insert s' into OPEN;



Introducing "imaginary" goal

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$;

ComputePath();

publish solution;

ComputePath function

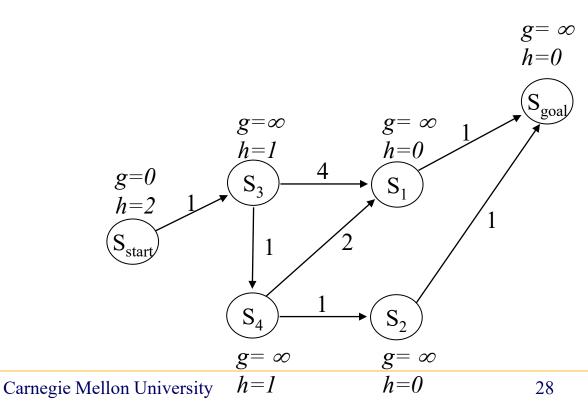
```
while (s_{goal} \text{ is not expanded and } OPEN \neq 0)
```

```
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
```

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

Equivalent problem but with a single goal!



Introducing "imaginary" goal

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath();

publish solution;

ComputePath function

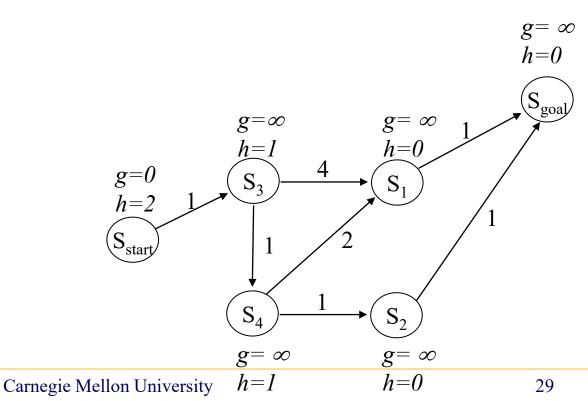
```
while (s_{goal} is not expanded and OPEN \neq 0)
```

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

Equivalent problem but with a single goal!



Main function

 $g(s_{start}) = 0$; all other *g*-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution;

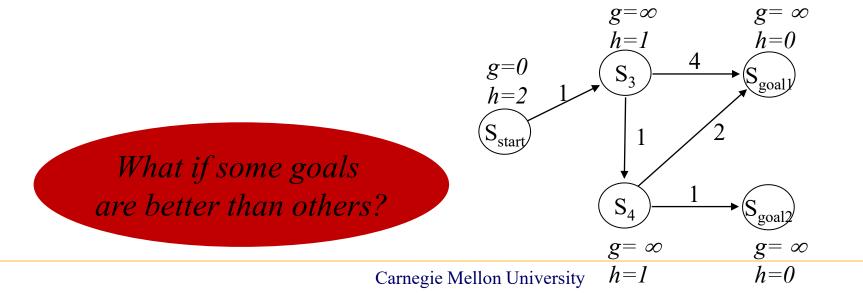
ComputePath function

```
while (s_{goal} \text{ is not expanded and } OPEN \neq 0)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSED
```

```
if g(s') > g(s) + c(s,s')

g(s') = g(s) + c(s,s');

insert s' into OPEN;
```



Main function

 $g(s_{start}) = 0$; all other *g*-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution;

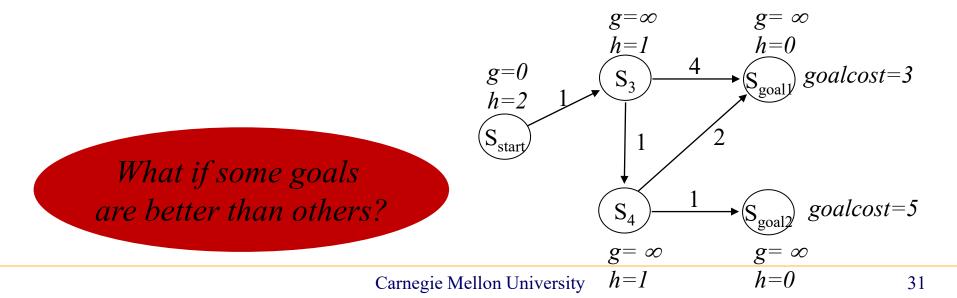
ComputePath function

```
while (s_{goal} \text{ is not expanded and } OPEN \neq 0)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSED
```

```
if g(s') > g(s) + c(s,s')

g(s') = g(s) + c(s,s');

insert s' into OPEN;
```



Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath();

publish solution;

ComputePath function

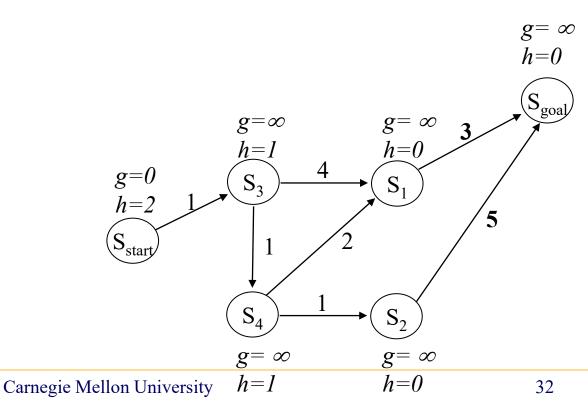
```
while (s_{goal} is not expanded and OPEN \neq 0)
```

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

Equivalent problem but with a single goal!



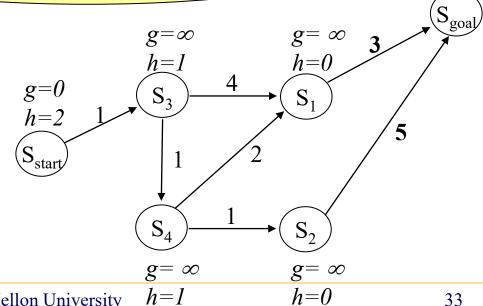
Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution; **ComputePath function**

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert s into CLOSED; for every successor s' of s such that s'not in CLOSED if g(s') > g(s) + c(s,s')Once the graph transformation is done, g(s') = g(s) + c(s,s');

insert s' into OPEN;

you can run either forward or backwards search



 $g = \infty$

h=0

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution; **ComputePath function** while (s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN: Any impact on how insert s into CLOSED; heuristics is computed? for every successor s' of s such that s'not in CLOSED if g(s') > g(s) + c(s,s') $g = \infty$ Once the graph transformation is done, g(s') = g(s) + c(s,s');h=0you can run either forward or backwards search insert s' into OPEN; Sgoal $g = \infty$ $g = \infty$ h=0h = 14 g=0 S_3 S_1 h=25 (S_{sta}, S_4 S_{2} $g = \infty$ $g = \infty$

Carnegie Mellon University h=1

h=0

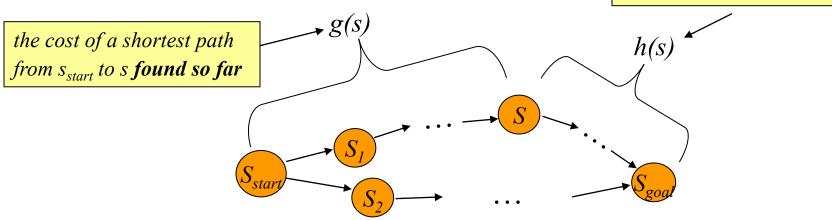
Effect of the Heuristic Function

• A* Search: expands states in the order of f = g + h values

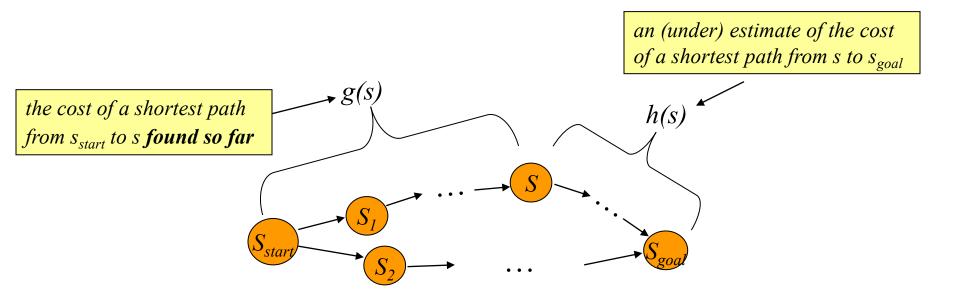
Effect of the Heuristic Function

- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values (pretty much)
- Intuitively: f(s) estimate of the cost of a least cost path from start to goal via s

an (under) estimate of the cost of a shortest path from s to s_{goal}



- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values (pretty much)
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

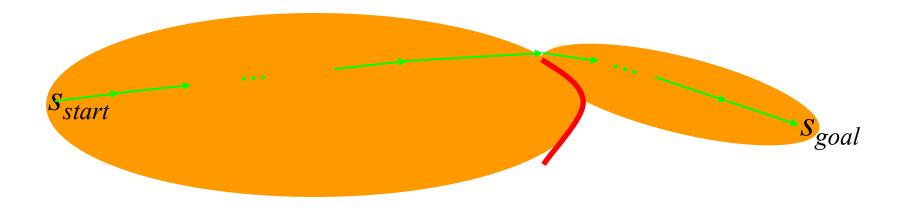


• Dijkstra's: expands states in the order of f = g values

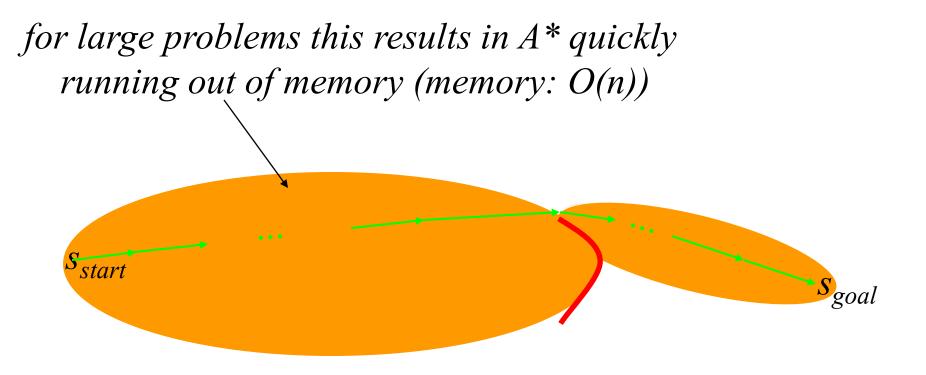
start

What are the states expanded?

• A* Search: expands states in the order of f = g + h values

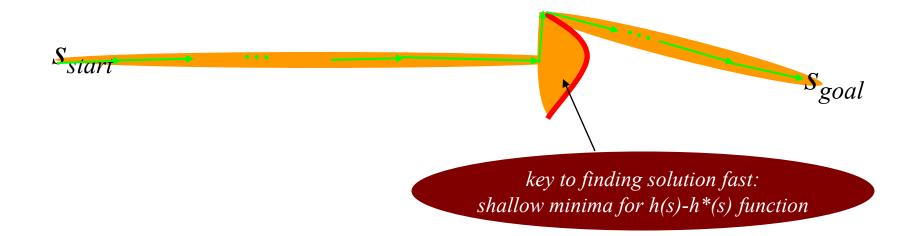


• A* Search: expands states in the order of f = g + h values



• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

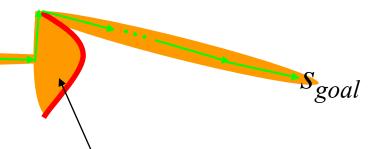
what states are expanded?



• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

what states are expanded?

No one knows. Topic for research.



key to finding solution fast: _shallow minima for h(s)-h*(s) function

S_{siari}

- Weighted A* Search:
 - trades off optimality for speed
 - ε-suboptimal:

 $cost(solution) \leq \varepsilon cost(optimal solution)$

- in many domains, it has been shown to be orders of magnitude faster than A*
- research becomes to develop a heuristic function that has shallow local minima

- Weighted A* Search:
 - trades off optimality for speed
 - ε-suboptimal:

 $cost(solution) \leq \varepsilon cost(optimal solution)$

- in many domains, it has been shown to be orders of magnitude faster than A*
- research becomes to develop a heuristic function that has shallow local minima
- Weighted A* Search
 - with re-expansions (no Closed List) [Pohl, '70]
 - without re-expansions (with Closed List) [Likhachev et al., '04]
 - same sub-optimality guarantees but no more than 1 expansion per state
 Carnegie Mellon University

- Weighted A* Search:
 - trades off optimality for speed
 - ε-suboptimal:
 - $cost(solution) \leq \varepsilon cost(optimal solution)$
 - in many domains, it has be faster than A*

Is it guaranteed to expand no more states than A*?

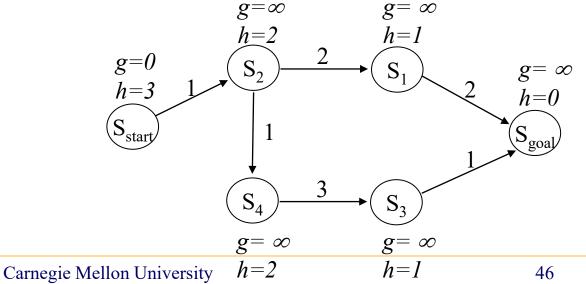
- research becomes to develop a heuristic remember mat has shallow local minima
- Weighted A* Search
 - with re-expansions (no Closed List) [Pohl, '70]
 - without re-expansions (with Closed List) [Likhachev et al., '04]
 - same sub-optimality guarantees but no more than 1 expansion per state
 Carnegie Mellon University
 45

- Searches from goal towards states
- g-values are cost-to-goals Main function

 $g(s_{start}) = 0$; all other *g*-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution; *What needs to be changed*?

ComputePath function

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; expand *s*;

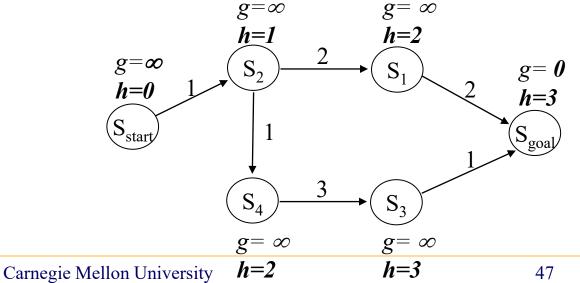


- Searches from goal towards states
- g-values are cost-to-goals
 Main function

 $g(s_{goal}) = 0$; all other g-values are infinite; $OPEN = \{s_{goal}\}$; ComputePath(); publish solution; *What needs to be changed*?

ComputePath function

while $(s_{start} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; expand *s*;



- Searches from goal towards states
- g-values are cost-to-goals
 ComputePath function

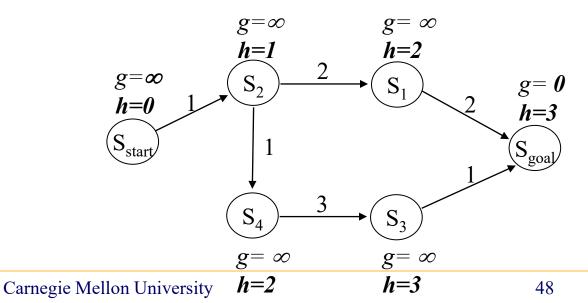
What needs to be changed in here?

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;



- Searches from goal towards states
- g-values are cost-to-goals
 ComputePath function

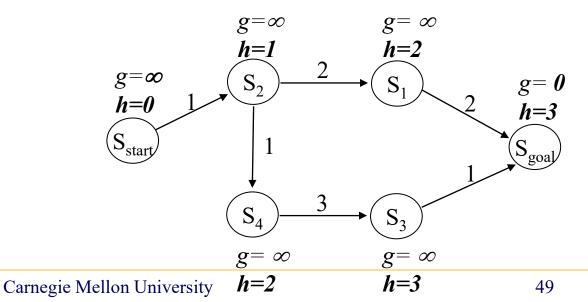
What needs to be changed in here?

while $(s_{start} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** s' of s such that s'not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s)$;
insert s' into OPEN;



- Searches from goal towards states
- g-values are cost-to-goals

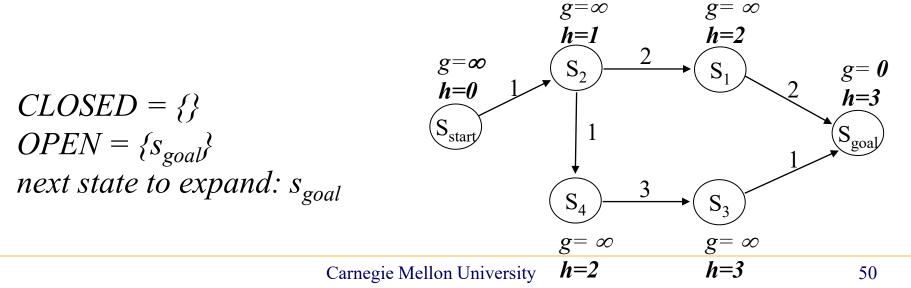
ComputePath function

while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** *s* ' of *s* such that *s* 'not in *CLOSED*

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert s' into OPEN;



- Searches from goal towards states
- g-values are cost-to-goals

ComputePath function

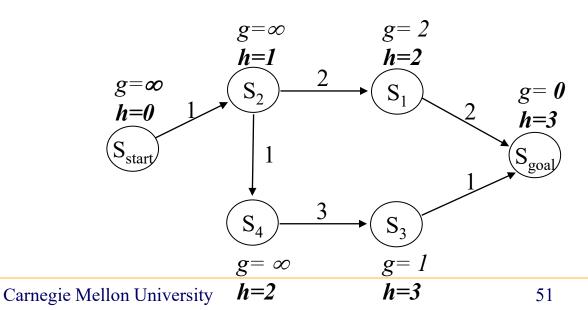
while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** *s* ' of *s* such that *s* 'not in *CLOSED*

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s)$;
insert s' into OPEN;

 $CLOSED = \{\}$ $OPEN = \{s_1, s_3\}$ next state to expand: s_1



- Searches from goal towards states
- g-values are cost-to-goals

ComputePath function

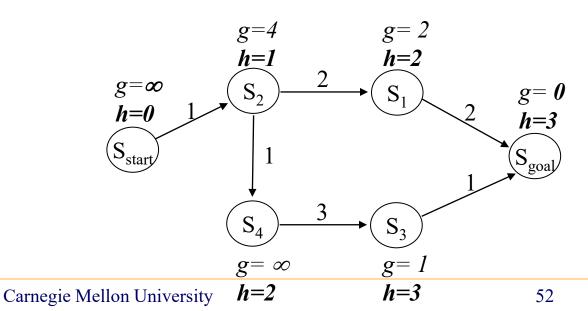
while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** *s* ' of *s* such that *s* 'not in *CLOSED*

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s)$;
insert s' into OPEN;

 $CLOSED = \{\}$ $OPEN = \{s_2, s_3\}$ next state to expand: s_3



- Searches from goal towards states
- g-values are cost-to-goals

ComputePath function

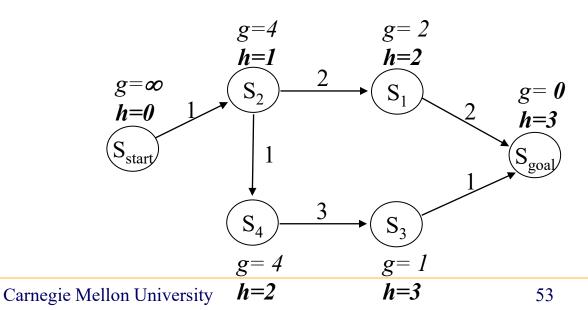
while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** *s* ' of *s* such that *s* 'not in *CLOSED*

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert s' into OPEN;

 $CLOSED = \{\}$ $OPEN = \{s_2, s_4\}$ next state to expand: s_2



- Searches from goal towards states
- g-values are cost-to-goals

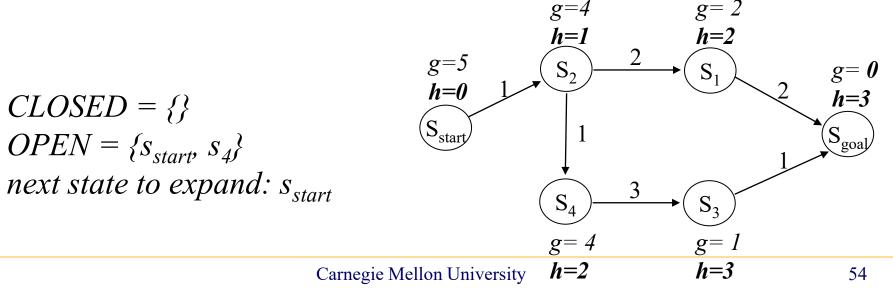
ComputePath function

while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** *s* ' of *s* such that *s* 'not in *CLOSED*

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert s' into OPEN;



- Searches from goal towards states
- g-values are cost-to-goals

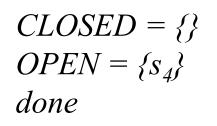
ComputePath function

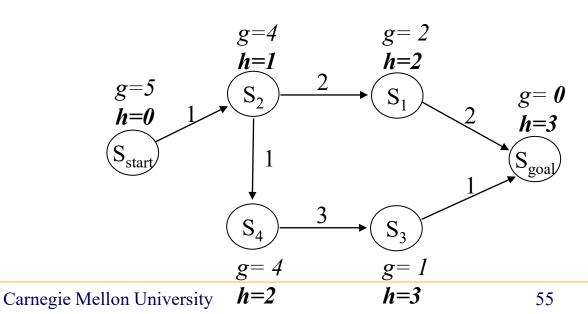
while(s_{start} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every **predecessor** *s* ' of *s* such that *s* 'not in *CLOSED*

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert s' into OPEN;





Using A* to Compute a Policy

• Imagine planning for the agent that can easily deviate off the path

• Can A* compute least-cost paths from **all** the states of interest?

Using A* to Compute a Policy

• Imagine planning for the agent that can easily deviate off the path

- Can A* compute least-cost paths from **all** the states of interest?
 - Run Backward A* search until all states of interest have been expanded

Using A* to Compute a Policy

• Backward A* search to compute least-cost paths for all states $s \in \Phi$

ComputePath function

while(at least one state in Φ hasn't been expanded and $OPEN \neq 0$) remove *s* with the smallest [*f*(*s*) = *g*(*s*)+*h*(*s*)] from *OPEN*;

insert *s* into *CLOSED*;

for every predecessor *s* ' of *s* such that *s* 'not in *CLOSED*

if
$$g(s') > c(s',s) + g(s)$$

 $g(s') = c(s',s) + g(s);$
insert *s*' into *OPEN*;

• Guaranteed to compute least-cost paths for all $s \in \Phi$ that can reach goal

- A*
 - How it works
 - Theoretical properties
- Proof for its optimality
- Multi-goal A*: support for multiple goal candidates
- Weighted A*
- Backwards A*
- A* can be used to compute a policy and not just a single path