16-782

Planning & Decision-making in Robotics

Planning Representations/Search Algorithms: RRT, RRT-Connect, RRT*

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Probabilistic Roadmaps (PRMs)

Great for problems where a planner has to plan many times for different start/goal pairs (step 1 needs to be done only once)

Not so great for single shot planning

Step 1. Preprocessing Phase: Build a roadmap (graph) G which, hopefully, should be accessible from any point in C_{free}

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G , connect them to the roadmap G using a local planner, and then search the augmented roadmap for a shortest path from q_I to q_G

No preprocessing step: starting with the initial configuration q_I build the graph (actually, tree) until the goal configuration g_G is part of it

,

$BUILD_RRT(q_{init})$

- 1 $\mathcal{T}.init(q_{init});$
- $2 \quad {\rm for} \ k=1 \ {\rm to} \ K \ {\rm do}$
- 3 $q_{rand} \leftarrow \text{RANDOM_CONFIG}();$
- 4 EXTEND $(\mathcal{T}, q_{rand});$
- 5 Return \mathcal{T}

$\mathrm{EXTEND}(\mathcal{T}, q)$

1	$q_{near} \leftarrow \text{NEAREST_NEIGHBOR}(q, \mathcal{T})$
2	if NEW_CONFIG (q, q_{near}, q_{new}) then
3	$\mathcal{T}.\mathrm{add_vertex}(q_{new});$
4	$\mathcal{T}.\mathrm{add_edge}(q_{near}, q_{new});$
5	$\mathbf{if} \ q_{new} = q \ \mathbf{then}$
6	Return <i>Reached</i> ;
$\overline{7}$	else
8	Return Advanced;
9	Return Trapped;

• RRT provides uniform coverage of space

• RRT provides uniform coverage of space

• Alternatively, the growth is always biased by the largest unexplored region

borrowed from "RRT-Connect: An Efficient Approach to Single-Query Path Planning" paper by J. Kuffner & S. LaValle

Carnegie Mellon University

• Alternatively, the growth is always biased by the largest unexplored region

borrowed from "RRT-Connect: An Efficient Approach to Single-Query Path Planning" paper by J. Kuffner & S. LaValle

Carnegie Mellon University

Bi-directional growth of the tree

relax the ε constraint on the growth of the tree

+

RRT-Connect [Kuffner & LaValle, '00]

```
RRT_CONNECT_PLANNER(q_{init}, q_{goal})
       \mathcal{T}_a.\operatorname{init}(q_{init}); \mathcal{T}_b.\operatorname{init}(q_{goal});
  1
       for k = 1 to K do
  2
              q_{rand} \leftarrow \text{RANDOM}_\text{CONFIG}();
  3
              if not (EXTEND(\mathcal{T}_a, q_{rand}) = Trapped) then
  4
                    if (CONNECT(\mathcal{T}_b, q_{new}) = Reached) then
  5
                          Return PATH(\mathcal{T}_a, \mathcal{T}_b);
  6
              SWAP(\mathcal{T}_a, \mathcal{T}_b);
        Return Failure
  8
```

$\mathrm{CONNECT}(\mathcal{T},q)$

- 1 repeat
- 2 $S \leftarrow \text{EXTEND}(\mathcal{T}, q);$
- 3 until not (S = Advanced)
- 4 Return S;

RRT-Connect [Kuffner & LaValle, '00]

- For any $q \in C_{free}$, $\lim_{k\to\infty} P[d(q) < \varepsilon] = 1$, where d(q) is a distance from configuration q to the closest vertex in the tree, and assuming C_{free} is connected, bounded and open
- RRT-Connect is probabilistically complete: *as* # *of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists*

- For any $q \in C_{free}$, $\lim_{k\to\infty} P[d(q) < \varepsilon] = 1$, where d(q) is a distance from configuration q to the closest vertex in the tree, and assuming C_{free} is connected, bounded and open
- RRT-Connect is probabilistically complete: *as* # *of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists*

Is RRT-Connect asymptotically (as $k \rightarrow \infty$) optimal?

No, more on this later

- For any $q \in C_{free}$, $\lim_{k\to\infty} P[d(q) < \varepsilon] = 1$, where d(q) is a distance from configuration q to the closest vertex in the tree, and assuming C_{free} is connected, bounded and open
- RRT-Connect is probabilistically complete: *as* # *of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists*

Applicability of RRT vs. RRT-Connect to kinodynamic planning?

Typical setup:

- Run PRM/RRT/RRT-Connect/...
- Post-process the generated solution to make it more optimal

An important but often time-consuming step

Could also be highly non-trivial

Post-processing

Consider this path generated by RRT or PRM or A on a grid-based graph:*

• Short-cutting a path consisting of a series of points

NewPath=[]; P=start point, P1 = point P+1 along the path while P != goal point

while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;

• Short-cutting a path consisting of a series of points

NewPath=[]; P=start point, P1 = point P+1 along the path while P != goal point

while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;

• Short-cutting a path consisting of a series of points

NewPath=[]; P=start point, P1 = point P+1 along the path while P != goal point

while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;

Short-cutting a path consisting of a series of points NewPath = []; P = start point, P1 = point P+1 along the pathwhile *P* != goal point while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1 + 1 along the path;NewPath + = [P,P1]; P = P1; P1 = point P+1 along the path;

• Short-cutting a path consisting of a series of points

NewPath=[]; P=start point, P1 = point P+1 along the path while P != goal point

while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;

• Short-cutting a path consisting of a series of points

NewPath=[]; P=start point, P1 = point P+1 along the path while P != goal point

while line segment [P,P1+1] is obstacle-free AND P1+1 < goal point P1 = point P1+1 along the path;

Examples of RRT in action

Examples of RRT in action

Examples of RRT in action

Examples of RRT

5DOF kinodynamic planning for a car

borrowed from "Rapidly-Exploring Random Trees: A new tool for Path Planning" paper by S. LaValle

PRMs vs. RRTs

- PRMs construct a roadmap and then searches it for a solution whenever q_I , g_G are given
 - well-suited for repeated planning in between different pairs of q_I , g_G (multiple queries)
- RRTs construct a tree for a given q_I , q_G until the tree has a solution
 - well-suited for single-shot planning in between a single pair of q_I , g_G (single query)
 - There exist extensions of RRTs that try to reuse a previously constructed tree when replanning in response to map updates

RRTs vs A*-based planning

• RRTs:

- sparse exploration, usually little memory and computations required, works well in high-D
- solutions can be highly sub-optimal, requires post-processing, which in some cases can be very hard to do, the solution is still restricted to the same homotopic class

RRTs vs A*-based planning

• RRTs:

- does not incorporate a (potentially complex) cost function
- there exist versions (e.g., RRT*) that try to incorporate the cost function and converge to a provably least-cost solution in the limit of samples (but typically computationally more expensive than RRT)

RRTs vs A*-based planning

- A* and weighted A* (wA*):
 - returns a solution with optimality (or sub-optimality) guarantees with respect to the discretization used
 - explicitly minimizes a cost function
 - requires a thorough exploration of the state-space resulting in high memory and computational requirements

- Uniform: q_{rand} is a random sample in C_{free}
- Goal-biased: with a probability $(1-P_g)$, q_{rand} is chosen as a random sample in C_{free} , with probability P_g , q_{rand} is set to g_G

- Uniform: q_{rand} is a random sample in C_{free}
- Goal-biased: with a probability $(1-P_g)$, q_{rand} is chosen as a random sample in C_{free} , with probability P_g , q_{rand} is set to g_G

Very useful!

RRT + "re-wiring of nodes"

Properties of RRT again...

Is RRT asymptotically (in the limit of the number of samples) complete?

Is RRT asymptotically (in the limit of the number of samples) optimal?

Main loop (same as in RRT):

1
$$V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset; i \leftarrow 0;$$

2 while $i < N$ do
3 $G \leftarrow (V, E);$
4 $x_{\text{rand}} \leftarrow \text{Sample}(i); i \leftarrow i + 1$
5 $(V, E) \leftarrow \text{Extend}(G, x_{\text{rand}});$

Extend(G,x) (same as in RRT + "re-wiring"):

1 $V' \leftarrow V$: $E' \leftarrow E$: 2 $x_{\text{nearest}} \leftarrow \text{Nearest}(G, x);$ 3 $x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x);$ 4 if $ObstacleFree(x_{nearest}, x_{new})$ then $V' \leftarrow V' \cup \{x_{\text{new}}\};$ $x_{\min} \leftarrow x_{\text{nearest}};$ 6 $X_{\text{near}} \leftarrow \text{Near}(G, x_{\text{new}}, |V|);$ 7 for all $x_{near} \in X_{near}$ do 8 if $ObstacleFree(x_{near}, x_{new})$ then 9 $c' \leftarrow \text{Cost}(x_{\text{near}}) + c(\text{Line}(x_{\text{near}}, x_{\text{new}}));$ if $c' < \text{Cost}(x_{\text{new}})$ then $x_{\min} \leftarrow x_{\text{near}};$ 0 1 12 $E' \leftarrow E' \cup \{(x_{\min}, x_{new})\};$ 13 for all $x_{near} \in X_{near} \setminus \{x_{min}\}$ do 4 if $ObstacleFree(x_{new}, x_{near})$ and 15 $Cost(x_{near}) > Cost(x_{new}) + c(Line(x_{new}, x_{near}))$ then $\begin{array}{c} x_{\text{parent}} \leftarrow \texttt{Parent}(x_{\text{near}}); \\ E' \leftarrow E' \setminus \{(x_{\text{parent}}, x_{\text{near}})\}; \\ E' \leftarrow E' \cup \{(x_{\text{new}}, x_{\text{near}})\}; \end{array}$ 16 7 is return G' = (V', E')

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

Carnegie Mellon University

Main loop (same as in RRT):

1
$$V \leftarrow \{x_{init}\}; E \leftarrow \emptyset; i \leftarrow 0;$$

2 while $i < N$ do
3 $G \leftarrow (V, E);$
4 $x_{rand} \leftarrow Sample(i); i \leftarrow i + 1;$
5 $(V, E) \leftarrow Extend(G, x_{rand});$

Re-wiring:

Checking if we can improve (re-wire) the cost of other nodes near the new node x_{new} Extend(G,x) (same as in RRT + "re-wiring"):

1 $V' \leftarrow V$: $E' \leftarrow E$: 2 $x_{\text{nearest}} \leftarrow \text{Nearest}(G, x);$ 3 $x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x);$ 4 if $ObstacleFree(x_{nearest}, x_{new})$ then $V' \leftarrow V' \cup \{x_{\text{new}}\};$ 5 $x_{\min} \leftarrow x_{\text{nearest}};$ 6 $X_{\text{near}} \leftarrow \text{Near}(G, x_{\text{new}}, |V|);$ 7 for all $x_{near} \in X_{near}$ do 8 if $ObstacleFree(x_{near}, x_{new})$ then 9 $c' \leftarrow \text{Cost}(x_{\text{near}}) + c(\text{Line}(x_{\text{near}}, x_{\text{new}}));$ if $c' < \text{Cost}(x_{\text{new}})$ then $\ x_{\min} \leftarrow x_{\text{near}};$ 0 1 2 $E' \leftarrow E' \cup \{(x_{\min}, x_{\text{new}})\};$ 3 for all $x_{near} \in X_{near} \setminus \{x_{\min}\}$ do 4 if $ObstacleFree(x_{new}, x_{near})$ and 15 $Cost(x_{near}) > Cost(x_{new}) + c(Line(x_{new}, x_{near}))$ then $\begin{array}{c} x_{\text{parent}} \leftarrow \texttt{Parent}(x_{\text{near}}); \\ E' \leftarrow E' \setminus \{(x_{\text{parent}}, x_{\text{near}})\}; \\ E' \leftarrow E' \cup \{(x_{\text{new}}, x_{\text{near}})\}; \end{array}$ 6 7 is return G' = (V', E')

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

RRT vs RRT*

The growth of the RRT tree over time & its effect on the solution

The growth of the RRT* tree over time & its effect on the solution

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

Carnegie Mellon University

RRT vs RRT*

The growth of the RRT tree over time & its effect on the solution

The growth of the RRT* tree over time & its effect on the solution

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman & E. Frazzoli

Carnegie Mellon University

What You Should Know...

- Pros and Cons of RRT, PRM, RRT-Connect, RRT*
- How RRT, RRT-Connect and RRT* operate
- What guarantees RRT/RRT* provide
- Simple shortcutting algorithm