16-782
 Planning \& Decision-making in Robotics

Planning Representations/Search Algorithms: RRT, RRT-Connect, RRT*

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Probabilistic Roadmaps (PRMs)

Step 1. Preprocessing Phase: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in $C_{\text {free }}$

Step 2. Query Phase: Given a start configuration q_{I} and goal configuration q_{G}, connect them to the roadmap $\boldsymbol{\mathcal { G }}$ using a local planner, and then search the augmented roadmap for a shortest path from q_{I} to q_{G}

Rapidly Exploring Random Trees (RRTs) [LaValle, ’98]

No preprocessing step: starting with the initial configuration q_{I} build the graph (actually, tree) until the goal configuration g_{G} is part of it

Very effective for single shot planning

Rapidly Exploring Random Trees (RRTs) [LaValle, '98]

```
BUILD_RRT}(\mp@subsup{q}{\mathrm{ init }}{}
    T T.init (q}\mp@subsup{q}{\mathrm{ init }}{})\mathrm{ ;
    for k=1 to K do
            qrand
            EXTEND(\mathcal{T},\mp@subsup{q}{rand}{});
    Return }\mathcal{T
```

$\operatorname{EXTEND}(\mathcal{T}, q)$
$1 \quad q_{\text {near }} \leftarrow$ NEAREST_NEIGHBOR (q, \mathcal{T});
2 if NEW_CONFIG $\left(q, q_{\text {near }}, q_{\text {new }}\right)$ then
\mathcal{T}.add_vertex $\left(q_{\text {new }}\right)$;
\mathcal{T}.add_edge $\left(q_{\text {near }}, q_{\text {new }}\right)$;
if $q_{\text {new }}=q$ then
Return Reached;
else
Return Advanced;
9 Return Trapped;

Rapidly Exploring Random Trees (RRTs) [LaValle, '98]

Path to the goal is a path in the tree

Rapidly Exploring Random Trees (RRTs) [Lavalle, '98]

- RRT provides uniform coverage of space

Rapidly Exploring Random Trees (RRTs) [Lavalle, '98]

- RRT provides uniform coverage of space

Pros/cons?

Rapidly Exploring Random Trees (RRTs) [LaValle, '98]

- Alternatively, the growth is always biased by the largest unexplored region

borrowed from "RRT-Connect: An Efficient Approach to Single-Query Path Planning" paper by J. Kuffner \& S. LaValle

Rapidly Exploring Random Trees (RRTs) [LaValle, '98]

- Alternatively, the growth is always biased by the largest unexplored region

borrowed from "RRT-Connect: An Efficient Approach to Single-Query Path Planning" paper by J. Kuffner \& S. LaValle

RRT-Connect [Kuffner \& LaValle, ‘00]

Bi-directional growth of the tree

relax the ε constraint on the growth of the tree

RRT-Connect [Kuffner \& LaValle, ‘00]

```
RRT_CONNECT_PLANNER \(\left(q_{i n i t}, q_{g o a l}\right)\)
    \(1 \quad \mathcal{T}_{a} \cdot \operatorname{init}\left(q_{\text {init }}\right) ; \mathcal{T}_{b} \cdot \operatorname{init}\left(q_{\text {goal }}\right)\);
    2 for \(k=1\) to \(K\) do
    \(3 \quad q_{\text {rand }} \leftarrow\) RANDOM_CONFIG();
    4 if not \(\left(\operatorname{EXTEND}\left(\mathcal{T}_{a}, q_{\text {rand }}\right)=\right.\) Trapped \()\) then
                if \(\left(\operatorname{CONNECT}\left(\mathcal{T}_{b}, q_{\text {new }}\right)=\right.\) Reached \()\) then
                        Return \(\operatorname{PATH}\left(\mathcal{T}_{a}, \mathcal{T}_{b}\right)\);
    \(\operatorname{SWAP}\left(\mathcal{T}_{a}, \mathcal{T}_{b}\right)\);
    Return Failure
```

$\operatorname{CONNECT}(\mathcal{T}, q)$
1 repeat
$2 \quad S \leftarrow \operatorname{EXTEND}(\mathcal{T}, q)$;
3 until not ($S=$ Advanced $)$
4 Return S;

RRT-Connect [Kuffner \& LaValle, ‘00]

RRT_CONNECT PLANNER $\left(q_{\text {init }}, q_{\text {goal }}\right)$

1	$\mathcal{T}_{a} . \operatorname{init}\left(q_{\text {init }}\right) ; \mathcal{T}_{b} \cdot \operatorname{init}\left(q_{\text {goal }}\right) ;$	tries to grow T_{b} to $q_{\text {new }}$
2	for $k=1$ to K do	that was just added to T_{a}
3	$q_{\text {rand }} \leftarrow \operatorname{RANDOM_ CONFIG}() ;$	
4	if not $\left(\operatorname{EXTEND}\left(\mathcal{T}_{a} q\right.\right.$ rand $)=$ Trapped $)$ then	
5	if $\left(\operatorname{CONNECT}\left(\mathcal{T}_{b}, q_{\text {new }}\right)=\right.$ Reached $)$ then	
6	$\operatorname{Return} \operatorname{PATH}\left(\mathcal{T}_{a}, \mathcal{T}_{b}\right) ;$	

 \(\operatorname{SWAP}\left(\mathcal{T}_{a}, \mathcal{T}_{b}\right)\);
 Return Failure

Why swap the trees?

$\operatorname{CONNECT}(\mathcal{T}, q)$

1 repeat

$2 \quad S \leftarrow \operatorname{EXTEND}(\mathcal{T}, q)$;
3 until not ($S=$ Advanced)

CONNECT function grows the tree by more than just one ε

RRT-Connect [Kuffner \& LaValle, ‘00]

- For any $q \in C_{\text {free }} \lim _{k \rightarrow \infty} P[d(q)<\varepsilon]=1$, where $d(q)$ is a distance from configuration q to the closest vertex in the tree, and assuming $C_{\text {free }}$ is connected, bounded and open
- RRT-Connect is probabilistically complete: as \# of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists

RRT-Connect [Kuffner \& LaValle, ‘00]

- For any $q \in C_{\text {free }} \lim _{k \rightarrow \infty} P[d(q)<\varepsilon]=1$, where $d(q)$ is a distance from configuration q to the closest vertex in the tree, and assuming $C_{\text {free }}$ is connected, bounded and open
- RRT-Connect is probabilistically complete: as \# of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists

Is RRT-Connect asymptotically (as $k \rightarrow \infty$) optimal?

RRT-Connect [Kuffner \& LaValle, ‘00]

- For any $q \in C_{\text {free }} \lim _{k \rightarrow \infty} P[d(q)<\varepsilon]=1$, where $d(q)$ is a distance from configuration q to the closest vertex in the tree, and assuming $C_{\text {free }}$ is connected, bounded and open
- RRT-Connect is probabilistically complete: as \# of samples approaches infinity, the algorithm is guaranteed to find a solution if one exists

> Applicability of RRT vs. RRT-Connect to kinodynamic planning?

Sampling-based approaches

Typical setup:

- Run PRM/RRT/RRT-Connect/...
- Post-proceșs the generated solution to make it more optimal

Post-processing

Any ideas how to post-process it?

Consider this path generated by RRT or PRM or A^{*} on a grid-based graph:

Simple Post-processing via Short-cutting

- Short-cutting a path consisting of a series of points

NewPath = []; $P=$ start point, $P 1=$ point $P+1$ along the path while $P!=$ goal point
while line segment $[P, P 1+1]$ is obstacle-free AND P1+1<goal point
$P 1=$ point $P 1+1$ along the path;
NewPath $+=[P, P 1] ; P=P 1 ; P 1=$ point $P+1$ along the path;

Simple Post-processing via Short-cutting

- Short-cutting a path consisting of a series of points

NewPath = []; $P=$ start point, $P 1=$ point $P+1$ along the path while $P!=$ goal point
while line segment $[P, P 1+1]$ is obstacle-free AND P1+1<goal point
$P 1=$ point $P 1+1$ along the path;
NewPath $+=[P, P 1] ; P=P 1 ; P 1=$ point $P+1$ along the path;

Simple Post-processing via Short-cutting

- Short-cutting a path consisting of a series of points

NewPath = []; $P=$ start point, $P 1=$ point $P+1$ along the path while $P!=$ goal point
while line segment $[P, P 1+1]$ is obstacle-free AND P1+1<goal point
P1 = point P1+1 along the path;
NewPath $+=[P, P 1] ; P=P 1 ; P 1=$ point $P+1$ along the path;

Simple Post-processing via Short-cutting

- Short-cutting a path consisting of a series of points

NewPath = []; $P=$ start point, $P 1=$ point $P+1$ along the path while P != goal point
while line segment $[P, P 1+1]$ is obstacle-free AND $P 1+1<$ goal point
$P 1=$ point $P 1+1$ along the path;
NewPath $+=[P, P 1] ; P=P 1 ; P 1=$ point $P+1$ along the path;

Simple Post-processing via Short-cutting

- Short-cutting a path consisting of a series of points

NewPath = []; $P=$ start point, $P 1=$ point $P+1$ along the path while $P!=$ goal point
while line segment $[P, P 1+1]$ is obstacle-free AND $P 1+1<$ goal point
$P 1=$ point $P 1+1$ along the path;
NewPath $+=[P, P 1] ; P=P 1 ; P 1=$ point $P+1$ along the path;

Simple Post-processing via Short-cutting

- Short-cutting a path consisting of a series of points

NewPath = []; $P=$ start point, $P 1=$ point $P+1$ along the path while $P!=$ goal point
while line segment $[P, P 1+1]$ is obstacle-free AND P1+1<goal point
P1 = point P1+1 along the path;
NewPath $+=[P, P 1] ; P=P 1 ; P 1=$ point $P+1$ along the path;

Examples of RRT in action

RRT-connect

path after postprocessing

Examples of RRT in action

RRT-connect

path after postprocessing

Examples of RRT in action

RRT-connect

path after postprocessing

Examples of RRT

5DOF kinodynamic planning for a car

PRMs vs. RRTs

- PRMs construct a roadmap and then searches it for a solution whenever q_{I}, g_{G} are given
- well-suited for repeated planning in between different pairs of q_{I}, g_{G} (multiple queries)
- RRTs construct a tree for a given q_{I}, q_{G} until the tree has a solution
- well-suited for single-shot planning in between a single pair of $q_{\text {}}$, g_{G} (single query)
- There exist extensions of RRTs that try to reuse a previously constructed tree when replanning in response to map updates

RRTs vs A*-based planning

- RRTs:
- sparse exploration, usually little memory and computations required, works well in high-D
- solutions can be highly sub-optimal, requires post-processing, which in some cases can be very hard to do, the solution is still restricted to the same homotopic class

RRTs vs A*-based planning

- RRTs:
- does not incorporate a (potentially complex) cost function
- there exist versions (e.g., RRT*) that try to incorporate the cost function and converge to a provably least-cost solution in the limit of samples (but typically computationally more expensive than RRT)

RRTs vs A*-based planning

- A* and weighted A* (wA*):
- returns a solution with optimality (or sub-optimality) guarantees with respect to the discretization used
- explicitly minimizes a cost function
- requires a thorough exploration of the state-space resulting in high memory and computational requirements

Sampling in RRTs

$$
R R T, P_{g}=0 \quad R R T, P_{g}=0.1 \quad R R T, P_{g}=0.5
$$

- Uniform: $q_{\text {rand }}$ is a random sample in $C_{\text {free }}$
- Goal-biased: with a probability $\left(1-P_{g}\right), q_{\text {rand }}$ is chosen as a random sample in $C_{\text {free }}$, with probability $P_{g}, q_{\text {rand }}$ is set to g_{G}

Sampling in RRTs

$$
R R T, P_{g}=0 \quad R R T, P_{g}=0.1 \quad R R T, P_{g}=0.5
$$

- Uniform: $q_{\text {rand }}$ is a random sample in $C_{\text {free }}$
- Goal-biased: with a probability $\left(1-P_{g}\right), q_{\text {rand }}$ is chosen as a random sample in $C_{\text {free }}$, with probability $P_{g}, q_{\text {rand }}$ is set to g_{G}

RRT* [Karaman \& Frazzoli, ‘06]

RRT

$+$
"re-wiring of nodes"

Properties of RRT again...

Is RRT

asymptotically (in the limit of the number of samples) complete?

Is RRT

asymptotically (in the limit of the number of samples) optimal?

Why?

RRT* [Karaman \& Frazzoli, ‘06]

Main loop (same as in RRT):
$\mathbf{1} V \leftarrow\left\{x_{\text {init }}\right\} ; E \leftarrow \emptyset ; i \leftarrow 0 ;$
2 while $i<N$ do
$\mathbf{3}$
$\mathbf{4}$

$\mathbf{5}$$\quad$| $G \leftarrow(V, E) ;$ |
| :--- |
| $\mathbf{x}_{\text {rand }} \leftarrow \operatorname{Sample}(i) ; i \leftarrow i+1 ;$ |
| $(V, E) \leftarrow \operatorname{Extend}\left(G, x_{\text {rand }}\right) ;$ |

Extend (G, x) (same as in $R R T+$ "re-wiring"):

```
1 \(V^{\prime} \leftarrow V ; E^{\prime} \leftarrow E\);
\(2 x_{\text {nearest }} \leftarrow \operatorname{Nearest}(G, x)\);
\(3 x_{\text {new }} \leftarrow \operatorname{Steer}\left(x_{\text {nearest }}, x\right)\);
4 if ObstacleFree ( \(\left.x_{\text {nearest }}, x_{\text {new }}\right)\) then
            \(V^{\prime} \leftarrow V^{\prime} \cup\left\{x_{\text {new }}\right\} ;\)
    \(x_{\text {min }} \leftarrow x_{\text {nearest }}\);
    \(X_{\text {near }} \leftarrow \operatorname{Near}\left(G, x_{\text {new }},|V|\right)\);
    for all \(x_{\text {near }} \in X_{\text {near }}\) do
            if ObstacleFree \(\left(x_{\text {near }}, x_{\text {new }}\right)\) then
                \(c^{\prime} \leftarrow \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\operatorname{Line}\left(x_{\text {near }}, x_{\text {new }}\right)\right)\);
                if \(c^{\prime}<\operatorname{Cost}\left(x_{\text {new }}\right)\) then
                        \(x_{\text {min }} \leftarrow x_{\text {near }}\);
        \(E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(x_{\min }, x_{\text {new }}\right)\right\} ;\)
        for all \(x_{\text {near }} \in X_{\text {near }} \backslash\left\{x_{\text {min }}\right\}\) do
            if ObstacleFree \(\left(x_{\text {new }}, x_{\text {near }}\right)\) and
            \(\operatorname{Cost}\left(x_{\text {near }}\right)>\operatorname{Cost}\left(x_{\text {new }}\right)+c\left(\operatorname{Line}\left(x_{\text {new }}, x_{\text {near }}\right)\right)\)
            then
                \(x_{\text {parent }} \leftarrow \operatorname{Parent}\left(x_{\text {near }}\right)\);
                \(E^{\prime} \leftarrow E^{\prime} \backslash\left\{\left(x_{\text {parent }}, x_{\text {near }}\right)\right\} ;\)
                \(E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(x_{\text {new }}, x_{\text {near }}\right)\right\} ;\)
                            8 return \(G^{\prime}=\left(V^{\prime}, E^{\prime}\right)\)
```


RRT* [Karaman \& Frazzoli, ‘06]

Main loop (same as in RRT):
$\mathbf{1} V \leftarrow\left\{x_{\text {init }}\right\} ; E \leftarrow \emptyset ; i \leftarrow 0 ;$
2 while $i<N$ do
$\mathbf{3}$
$\mathbf{3}$
$\mathbf{4}$

$\mathbf{5}$$\quad$| $G \leftarrow(V, E) ;$ |
| :--- |

Re-wiring:

Checking if we can improve (re-wire) the cost of other nodes near
the cost of other nodes near the new node $x_{\text {new }}$

```
\(V \leftarrow\left\{x_{\text {init }}\right\} ; E \leftarrow \emptyset ; i \leftarrow 0 ;\)
    while \(i<N\) do
        \(G \leftarrow(V, E) ;\)
        \(x_{\text {rand }} \leftarrow \operatorname{Sample}(i) ; i \leftarrow i+1\);
        \((V, E) \leftarrow \operatorname{Extend}\left(G, x_{\text {rand }}\right) ;\)
```

$\operatorname{Extend}(G, x)$ (same as in $R R T+$ "re-wiring"):

```
\(1 V^{\prime} \leftarrow V ; E^{\prime} \leftarrow E\);
\(2 x_{\text {nearest }} \leftarrow \operatorname{Nearest}(G, x)\);
\(3 x_{\text {new }} \leftarrow \operatorname{Steer}\left(x_{\text {nearest }}, x\right)\);
4 if ObstacleFree ( \(x_{\text {nearest }}, x_{\text {new }}\) ) then
        \(V^{\prime} \leftarrow V^{\prime} \cup\left\{x_{\text {new }}\right\} ;\)
        \(x_{\text {min }} \leftarrow x_{\text {nearest }}\);
        \(X_{\text {near }} \leftarrow \operatorname{Near}\left(G, x_{\text {new }},|V|\right)\);
        for all \(x_{\text {near }} \in X_{\text {near }}\) do
            if ObstacleFree \(\left(x_{\text {near }}, x_{\text {new }}\right)\) then
                \(c^{\prime} \leftarrow \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\operatorname{Line}\left(x_{\text {near }}, x_{\text {new }}\right)\right)\);
                if \(c^{\prime}<\operatorname{Cost}\left(x_{\text {new }}\right)\) then
                \(x_{\text {min }} \leftarrow x_{\text {near }}\);
        \(E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(x_{\min }, x_{\text {new }}\right)\right\} ;\)
        for all \(x_{\text {near }} \in X_{\text {near }} \backslash\left\{x_{\text {min }}\right\}\) do
            if ObstacleFree \(\left(x_{\text {new }}, x_{\text {near }}\right)\) and
            \(\operatorname{Cost}\left(x_{\text {near }}\right)>\operatorname{Cost}\left(x_{\text {new }}\right)+c\left(\operatorname{Line}\left(x_{\text {new }}, x_{\text {near }}\right)\right)\)
            then
                        \(x_{\text {parent }} \leftarrow \operatorname{Parent}\left(x_{\text {near }}\right)\);
                \(E^{\prime} \leftarrow E^{\prime} \backslash\left\{\left(x_{\text {parent }}, x_{\text {near }}\right)\right\} ;\)
                \(E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(x_{\text {new }}, x_{\text {near }}\right)\right\} ;\)
                    18 return \(G^{\prime}=\left(V^{\prime}, E^{\prime}\right)\)
```

17
borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman \& E. Frazzoli

RRT* [Karaman \& Frazzoli, ‘06]

Re-wiring:

Checking if we can improve (re-wire)
the cost of other nodes near the new node $x_{\text {new }}$

```
\(X_{\text {near }} \leftarrow \operatorname{Near}\left(G, x_{\text {new }},|V|\right)\);
for all \(x_{\text {near }} \in X_{\text {near }}\) do
    if ObstacleFree \(\left(x_{\text {near }}, x_{\text {new }}\right)\) then
                \(c^{\prime} \leftarrow \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\operatorname{Line}\left(x_{\text {near }}, x_{\text {new }}\right)\right)\);
                if \(c^{\prime}<\operatorname{Cost}\left(x_{\text {new }}\right)\) then
                \(x_{\text {min }} \leftarrow x_{\text {near }}\);
    \(E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(x_{\min }, x_{\text {new }}\right)\right\} ;\)
    for all \(x_{\text {near }} \in X_{\text {near }} \backslash\left\{x_{\text {min }}\right\}\) do
        if ObstacleFree \(\left(x_{\text {new }}, x_{\text {near }}\right)\) and
        \(\operatorname{Cost}\left(x_{\text {near }}\right)>\operatorname{Cost}\left(x_{\text {new }}\right)+c\left(\operatorname{Line}\left(x_{\text {new }}, x_{\text {near }}\right)\right)\)
        then
            \(x_{\text {parent }} \leftarrow \operatorname{Parent}\left(x_{\text {near }}\right)\);
            \(E^{\prime} \leftarrow E^{\prime} \backslash\left\{\left(x_{\text {parent }}, x_{\text {near }}\right)\right\} ;\)
            \(E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(x_{\text {new }}, x_{\text {near }}\right)\right\} ;\)
                            ss return \(G^{\prime}=\left(V^{\prime}, E^{\prime}\right)\)
```


RRT* [Karaman \& Frazzoli, ‘06]

$X_{\text {near: }}$: set of all vertices v in V s.t. they lie within radius r from $x_{\text {new }}$ where $r=\min \left(\left(\frac{\gamma}{\delta} \frac{\log |V|}{|V|}\right)^{1 / d}, \quad \varepsilon\right)$,

$R R T^{*}$ (unlike RRT) is asymptotically optimal:
converges to an optimal solution in the limit of the number of samples
Checking !
the cost of other noues m... the new node $x_{n e w}$

RRT vs RRT*

The growth of the RRT tree over time \& its effect on the solution

The growth of the $R R T^{*}$ tree over time \& its effect on the solution

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman \& E. Frazzoli

RRT vs RRT*

The growth of the RRT tree over time \& its effect on the solution

The growth of the $R R T^{*}$ tree over time \& its effect on the solution

borrowed from "Incremental Sampling-based Algorthms for Optimal Motion Planning" paper by S. Karaman \& E. Frazzoli

What You Should Know...

- Pros and Cons of RRT, PRM, RRT-Connect, RRT*
- How RRT, RRT-Connect and RRT* operate
- What guarantees RRT/RRT* provide
- Simple shortcutting algorithm

