
16-782, Fall ’20, Planning Techniques for Robotics

Homework III:

Symbolic Planning

DUE: Tue, Nov 24 at 11:59PM

Description:
In this homework, you will implement a generic symbolic planner. We have provided the code for

reading an environment description from a file by using regular expressions and generating the

corresponding environment object. Your job is to write a planner that gets an environment object

as an input and outputs a sequence of actions to go from the start to the goal. An example of the

environment description for the Blocks world that was taught in the class is below:

Symbols: A,B,C,Table

Initial Conditions: On(A,B), On(B,Table), On(C,Table), Block(A), Block(B), Block(C), Clear(A),

Clear(C)

Goal Conditions: On(B,C), On(C,A), On(A,Table)

Actions:

MoveToTable(b,x)

Preconditions: On(b,x), Clear(b), Block(b), Block(x)

Effects: On(b,Table), Clear(x), !On(b,x)

Move(b,x,y)

Preconditions: On(b,x), Clear(b), Clear(y), Block(b), Block(y)

Effects: On(b,y), Clear(x), !On(b,x), !Clear(y)

In the provided code, we parse the description files for you and provide you with the environment

object (Env class) which includes the 1) initial conditions, 2) goal conditions, 3) actions, and 4)

symbols. An object of the Env class is passed to your planner.

The Env class uses the data structures below. Feel free to add more functions to them as needed.
However, DO NOT change the main function.

● Condition: this class includes 3 variables: 1) name of the condition, 2) the arguments, and

3) if the condition is negated or not.

● GroundedCondition: this class includes 3 variables: 1) name of the condition, 2) the

values for the arguments, and 3) if the condition is negated or not.

● Action: this class includes 4 variables: 1) name of the action, 2) action arguments, 3)

preconditions, and 4) effects.

● GroundedAction: this class includes 2 variables: 1) name of the action and 2) values for

the arguments.

In this homework, we provide the environment description files for three environments: 1) Blocks

world 2) Blocks and Triangles and 3) Fire Extinguisher.

We will explain these environments later on. These environment description files are parsed and

an environment object (Env) is passed to your planner. Your job is to write a general planner that

outputs a sequence of steps to get from the initial condition to the goal condition. The output of

your planner is a list of GroundedActions (std::list<GroundedAction>).

Environments:

1. Blocks and Triangles Environment:
This environment is similar to the Blocks world problem explained in the class. In addition

to the blocks, this environment has triangles that can be moved in the exact same way as

blocks with the exception that nothing can be put on top of them. A simple example of this

environment with only three objects

is shown below.

We provide a description file for an environment with 5 blocks (B0, B1, B2, B3, B4), 2

triangles (T0, T1) and a Table. The start and goal conditions are below:

● Start conditions: B0 is on B1, B1 is on B4, B2 is on Table, B3 is on B2, B4 is on

Table, T0 is on B0, and T1 is on B3.

● Goal conditions: B0 is on B1, B1 is on B3, and T1 is on B0.

2. Fire Extinguisher Environment1:

The goal of this problem is to have a pair of robots put out a fire. This domain has two

robots 1) a quadcopter and 2) a mobile robot. The mobile robot can travel between

locations. The quadcopter only moves between locations by landing on the mobile robot

and having the mobile robot travel to the other location. The quadcopter can fly around a

single location (cannot navigate between locations) if its battery level is High, but it won’t

be able to take off if its battery level is Low. Whenever the quadcopter is on the mobile

robot, it can charge its battery by calling the charge action. The quadcopter has a tank that

can be filled with water when the quadcopter is on the mobile robot at location W (where

there is water). The fire is at location F. The W and F locations are far from each other.

The quadcopter should fly around location F in order to pour water on the fire. The

quadcopter needs to pour water on the fire three times in order to extinguish the fire. Every

time the quadcopter pours water on the fire, its battery level becomes low and its water

tank becomes empty (it should go back to W to fill its tank). The robots will each start at

one of five different locations (A, B, C, D, E), which are far from W and F. The quadcopter

cannot land on the ground.

● Start conditions: the quadcopter is flying and at location B. The mobile robot is at

location A. The quadcopter’s water tank is empty.
● Goal: The fire is extinguished.

To compile the code run g++ planner.cpp –o planner.out (add -std=c++11 if needed). To run the

code add the name of the input file to your command.
>> g++ planner.cpp –o planner.out

>> ./planner.out <path to environment description file>

Once your planner returns the plan, it will be printed out. It is your responsibility to check whether

the plan is valid with respect to the start conditions, actions, and goal conditions.

NOTE: you should write a domain-independent planner. The environment object is passed into

your GENERIC (domain-independent) planner which just runs a search by applying available

valid actions to every state. Your code will be tested with other environments.

In summary, you should 1) write a domain-independent planner that generates a plan for any

environment that follows the strips representation, and 2) include the discussion and results (i.e.,

planning time and number of expanded states) of your generic planner applied on the three

environments: a) Blocks b) Blocks and Triangles and c) Fire Extinguisher.

1 Inspired by the final challenge at 1st Summer School on Cognitive Robotics at MIT.

To submit:
Submissions need to be made through Gradescope and they should include:

● A folder named code that contains 1) all the C++ source files for the planner and 2) the

description files for the three environments.

● A PDF writeup named <Andrew ID>.pdf with instructions to compile code, results, and

everything we need to know about your implementations and submission. Do not leave

any details out because we will not assume any missing information. Include the time that

the planner takes and the number of states that the search expands for each of the three

environments with and without a heuristic.

Grading:
The grade will depend on:

● How well-founded your approach is. In other words, can your planner guarantee

completeness?
● How domain-independent the planner is. That is, is it implemented as a generic search

that can be used to solve a completely different problem from a different domain?

● The quality of the plan. Is your plan optimal (minimizes the number of steps)? Can your

planner solve problems within SECONDS (up to 30 seconds)?
● The quality of your writeup. Provide a discussion on how much improvement you get

when you use a heuristic in your search by comparing it with a planner that does not use

any heuristics.

