16-782 Fall'19 Planning & Decision-making in Robotics

Introduction; What is Planning, Role of Planning in Robots

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Class Logistics

• Instructor:

Maxim Likhachev – maxim@cs.cmu.edu

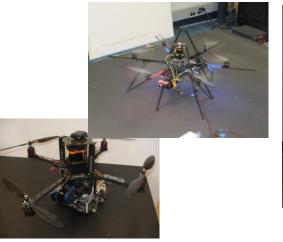
• TA:

Rogerio Bonatti — <u>rbonatti@andrew.cmu.edu</u> Shohin Mukherjee — <u>shohinm@andrew.cmu.edu</u>

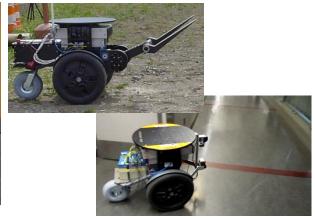
• Website:

http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad

- Mailing List for Announcements and Questions:
 - 16782-pdr-fall19@lists.andrew.cmu.edu
 - TA will send a "welcome" email to everyone


For those on the waitlist

- Consider taking the undergraduate (basic) version:
 - 16-350 in Spring'20
 - basic version of this course (70% overlap, easier assignments)
 - Master students should be able to register for it
 - see syllabus from Spring'19:


http://www.cs.cmu.edu/~maxim/classes/robotplanning

About Me

- My Research Interests:
 - Planning, Decision-making, Learning
 - Applications: planning for complex robotic systems including aerial and ground robots, manipulation platforms, small teams of heterogeneous robots
- More info: http://www.cs.cmu.edu/~maxim
- Search-based Planning Lab: http://www.sbpl.net

What is Planning?

• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

What is Planning for Robotics?

• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

• Given

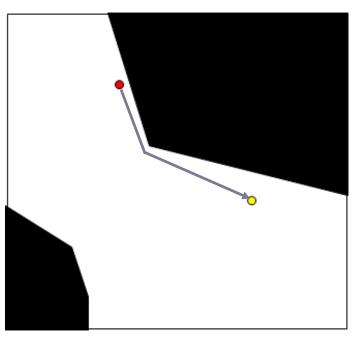
- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{\ \ current}$
- − cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for omnidirectional robot:

What is M^R ?


What is M^{W} ?

What is $s^{R}_{current}$?

What is $s^{W}_{current}$?

What is C?

What is *G*?

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- − cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for omnidirectional drone:

What is M^R ?

What is M^{W} ?

What is $s^{R}_{current}$?

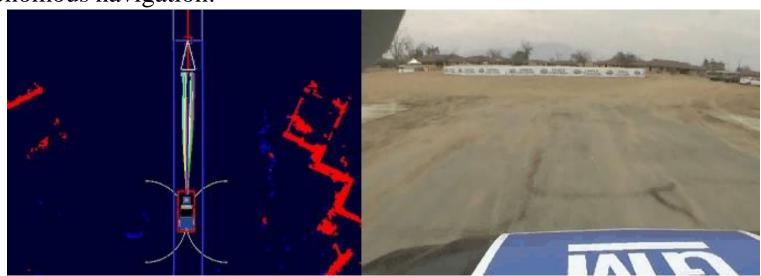
What is $s^{W}_{current}$?

What is C?

What is *G*?

MacAllister et al., 2013

• Given


- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- − cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for autonomous navigation:

What is M^R?
What is M^W?
What is s^R_{current}?
What is s^W_{current}?
What is C?
What is G?

Likhachev & Ferguson, '09; part of Tartanracing team from CMU for the Urban Challenge 2007 race

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for autonomous flight among people :

Narayanan et al., 2012

What is M^R ?
What is M^W ?
What is $s^R_{current}$?
What is $s^W_{current}$?
What is C?
What is G?

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for a mobile manipulator robot opening a door:

What is M^R ?

What is M^{W} ?

What is $s^{R}_{current}$?

What is $s^{W}_{current}$?

What is C?

What is *G*?

• Given

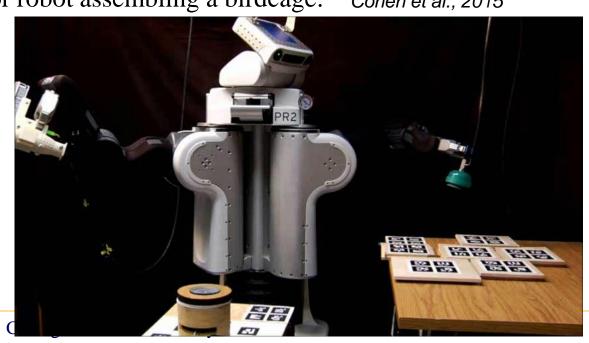
- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for a mobile manipulator robot assembling a birdcage: Cohen et al., 2015

What is M^R ?


What is M^{W} ?

What is $s^{R}_{current}$?

What is $s^{W}_{current}$?

What is C?

What is *G*?

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- − cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for a mobile manipulator unloading a truck:

What is M^R?
What is M^W?
What is s^R_{current}?
What is s^W_{current}?
What is C?
What is G?

Assuming Infinite Computational Resources...

Where does Planning break?

Assuming Infinite Computational Resources...

Where does Planning break?

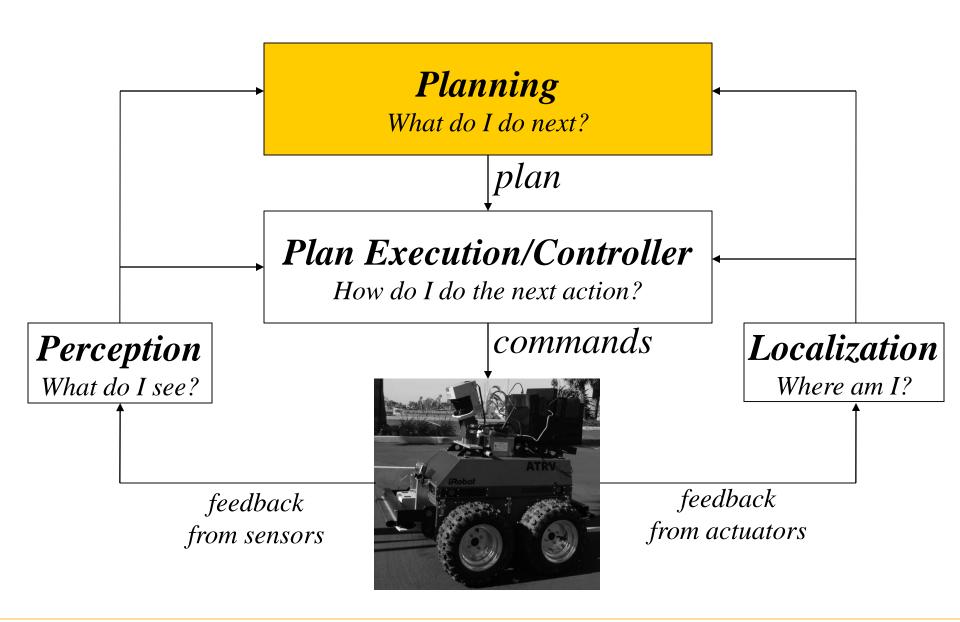
Reliance on the knowledge/accuracy of the model!

Role of Learning in Planning?

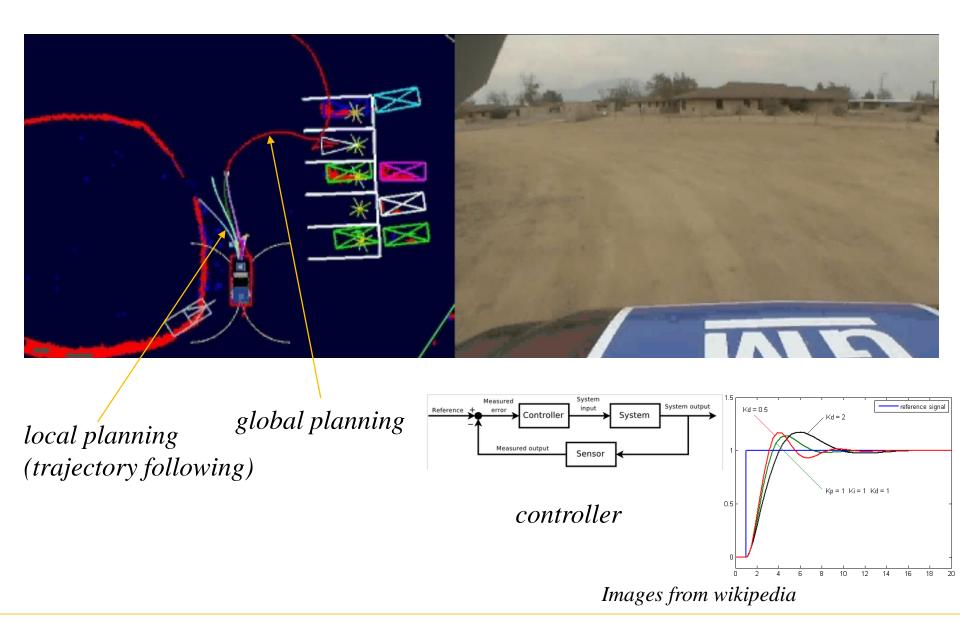
Planning vs. Learning

Model-based approach

Learning
models M^R, M^W
and cost
function C


models M^R , M^W and cost function C

Planning
using models
M^R, M^W and
cost function C


Model-free approach

Learning the mapping from "what robot sees" onto "what to do next" using rewards received by the robot (Reinforcement Learning)

Planning within a Typical Autonomy Architecture

Planning vs. Trajectory Following vs. Control

Class Logistics

- Books (optional):
- Planning Algorithms by Steven M. LaValle
- Heuristic Search, Theory and Applications by Stefan Edelkamp and Stefan Schroedl
- Principles of Robot Motion, Theory, Algorithms, and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun
- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig

Class Prerequisites

- Knowledge of programming (e.g., C, C++)
- Working knowledge of data structures & basic Computer Science algorithms (e.g., graphs, linked lists, priority queues, BFS/DFS, etc.)
- Prior exposure to robotics

Class Objectives

- Understand and learn how to implement most popular planning algorithms in robotics including heuristic search-based planning algorithms, sampling-based planning algorithms, task planning, planning under uncertainty and multi-robot planning
- Learn basic principles behind the design of planning representations
- Understand core theoretical principles that many planning algorithms rely on and learn how to analyze theoretical properties of the algorithms
- Understand the challenges and basic approaches to interleaving planning and execution in robotic systems
- Learn common uses of planning in robotics

Tentative Class Schedule

TENTATIVE SCHEDULE FOR Planning and Decision-making in Robotics CLASS Fall 2019

Date	Day	Topic	HW out	HW due
26-Aug	Mon	Introduction; What is Planning?		
28-Aug	Wed	planning representations: explicit vs. implicit graphs, skeletonization, cell decomposition & lattice-based graphs		
2-Sep	Mon	LABOR DAY - NO CLASS		
4-Sep	Wed	search algorithms: A*, Weighted A*, Backward A*		
9-Sep	Mon	search algorithms: Heuristic functions, Multi-Heuristic A*	HW1	
11-Sep	Wed	interleaving planning and execution: Anytime heuristic search, Incremental heuristic search		
16-Sep	Mon	interleaving planning and execution: Real-time heuristic Search		
18-Sep	Wed	case study: planning for autonomous driving		
23-Sep	Mon	planning representations: PRM for continuous spaces		HW1
25-Sep	Wed	planning representations/search algorithms: RRT, RRT-Connect	HW2	
30-Sep	Mon	planning representations/search algorithms: RRT*		
2-Oct	Wed	case study: planning for mobile manipulators and legged robots		
7-Oct	Mon	search algorithms: Multi-goal A*, Markov Property, dependent vs. independent variables, Dominance		
9-Oct	Wed	case study: planning for coverage, mapping and surveillance tasks		HW2
14-Oct	Mon	planning representations: state-space vs. symbolic representation for task planning	HW3	
16-Oct	Wed	search algorithms: planning on symbolic representations		
21-Oct	Mon	planning under uncertainty: Minimax formulation, Minimax Backward A*		
23-Oct	Wed	planning under uncertainty: Markov Decision Processes, Value Iteration, RTDP		
28-Oct	Mon	planning under uncertainty: Partially-Observable Markov Decision Processes		HW3
30-Oct	Wed	planning under uncertainty: Partially-Observable Markov Decision Processes (cont'd)		
4-Nov	Mon	final project proposal presentations		
6-Nov	Wed	learning in planning		
11-Nov	Mon	learning in planning (cont'd)		
13-Nov	Wed	multi-robot planning		
18-Nov	Mon	multi-robot planning (cont'd)		
20-Nov	Wed	exam review		
25-Nov	Mon	exam		
27-Nov	Wed	THANKSGIVING - NO CLASS		
2-Dec	Mon	TBD		
4-Dec	Wed	final project presentations		

Three Homeworks + Final Project

- All homeworks are individual (no groups)
- Final projects is a group project (3-5 people per group)
- Homeworks are programming assignments based on the material
- Final project is a research-like project
 - For example: to develop and implement a planner for a robot planning problem of your choice
 - Or: to extend a particular planning algorithm to improve its running time or to handle additional conditions
 - Two presentations (proposal and final) and meetings with groups

Class Structure

Grading

Three homeworks	33%
Exam	20%
In-class pop quizzes	10%
Final project	32%
Participation	5%

• Exam is tentatively scheduled for Nov. 25 (no final exam)

Late Policy

- 3 free late days
- No late days may be used for the final project!
- Each additional late day will incur a 10% penalty

Questions about the class?