Planning Representations:
Symbolic Representation for Task Planning

Maxim Likhachev
Robotics Institute
Carnegie Mellon University
Planning to Construct a Birdcage

- Robot takes in a 3D model of a birdcage it needs to build
Planning to Construct a Birdcage

- Robot takes in a 3D model of a birdcage it needs to build.

Planning the order in which to assemble pieces is an example of Task Planning.
Famous “Blocksworld” Example

• Planning to re-order the blocks

start state

goal state
Famous “Blocksworld” Example

• Planning to re-order the blocks

Assuming the arm can reach/move all the top blocks,
the problem is in figuring out the order

start state

goal state
Famous “Blocksworld” Example

- Planning to re-order the blocks

Actions:

\[\text{Move}(b,x,y) \] moves block \(b \) from \(x \) to \(y \)

\[\text{MoveToTable}(b,x) \] moves block \(b \) from \(x \) to table \(y \)

\[\begin{array}{c}
A \\
B \\
C
\end{array} \quad \begin{array}{c}
B \\
C \\
A
\end{array} \]

\textit{start state} \quad \textit{goal state}
Famous “Blocksworld” Example

• Planning to re-order the blocks

Actions:

\[\text{Move}(b,x,y) \text{ – moves block } b \text{ from } x \text{ to } y \]

\[\text{MoveToTable}(b,x) \text{ – moves block } b \text{ from } x \text{ to table} \]

What is a plan that achieves the goal?
Defining it as a Graph Search (State-space Search)

- Planning to re-order the blocks

Actions:

\[\text{Move}(b,x,y) \] – moves block \(b \) from \(x \) to \(y \)

\[\text{MoveToTable}(b,x) \] – moves block \(b \) from \(x \) to table

Any ideas for how to represent a state in a graph?
Defining it as a Graph Search (State-space Search)

- Planning to re-order the blocks

Actions:

- $\text{Move}(b,x,y)$ – moves block b from x to y
- $\text{MoveToTable}(b,x)$ – moves block b from x to table

start state

\[
\begin{array}{c}
A \\
B \\
C
\end{array}
\]

goal state

\[
\begin{array}{c}
B \\
C \\
A
\end{array}
\]

- $A=\text{on } B$
- $B=\text{on table}$
- $C=\text{on table}$
Defining it as a Graph Search (State-space Search)

- Planning to re-order the blocks

Actions:

Move\((b,x,y)\) – moves block \(b\) from \(x\) to \(y\)

MoveToTable\((b,x)\) – moves block \(b\) from \(x\) to table

start state

| A | B | C |

goal state

| B | C | A |
Defining it as a Graph Search (State-space Search)

- Planning to re-order the blocks

Actions:

\[\text{Move}(b,x,y) \text{ – moves block } b \text{ from } x \text{ to } y \]
\[\text{MoveToTable}(b,x) \text{ – moves block } b \text{ from } x \text{ to table} \]

\[
\begin{array}{c}
A \\
B \\
C
\end{array}
\]

Start state

\[
\begin{array}{c}
A=\text{on } B \\
B=\text{on table} \\
C=\text{on table}
\end{array}
\]

\[
\begin{array}{c}
A,B,C
\end{array}
\]

\[
\begin{array}{c}
A=\text{on } C \\
B=\text{on table} \\
C=\text{on table}
\end{array}
\]

...

\[
\begin{array}{c}
B \\
C \\
A
\end{array}
\]

Goal state

Cost of each edge is often set to 1 (minimization of the total # of actions)
Defining it as a Graph Search (State-space Search)

- Planning to re-order the blocks

Actions:

- Move\((b,x,y)\) – moves block \(b\) from \(x\) to \(y\)
- MoveToTable\((b,x)\) – moves block \(b\) from \(x\) to table

![Diagram showing the transition from start state to goal state](image)

Any ideas for heuristics?
We would like to be able to represent ANY planning problem with a single representational language that allows for the definition of: STATES, ACTIONS, GOAL
Generic Representation of Symbolic Planning Problems

- STRIPS (=Stanford Research Institute Problem Solver)

 State Representation:

 Goal Representation:

 Action Representation:
Generic Representation of Symbolic Planning Problems

- STRIPS (=Stanford Research Institute Problem Solver)

State Representation:

- conjunction of positive(true) literals

 \[\text{On}(A, B) \land \text{On}(B, \text{Table}) \land \text{On}(C, \text{Table}) \land \text{Block}(A) \land \text{Block}(B) \land \text{Block}(C) \land \text{Clear}(A) \land \text{Clear}(C) \]

Goal Representation:

Action Representation:
Generic Representation of Symbolic Planning Problems

- STRIPS (=Stanford Research Institute Problem Solver)

State Representation:

conjunction of positive(true) literals

(e.g., $\text{On}(A, B)^\land \text{On}(B, \text{Table})^\land \text{On}(C, \text{Table})^\land \text{Block}(A)^\land \text{Block}(B)^\land \text{Block}(C)^\land \text{Clear}(A)^\land \text{Clear}(C)$)

Goal Representation:

Closed-world assumption:

any conditions not mentioned in the state are assumed to be false

Action Representation:
Generic Representation of Symbolic Planning Problems

- STRIPS (=Stanford Research Institute Problem Solver)

State Representation:

\[
\text{conjunction of positive(true) literals}
\]

(e.g, \(\text{On}(A,B)^\land \text{On}(B,\text{Table})^\land \text{On}(C,\text{Table})^\land \text{Block}(A)^\land \text{Block}(B)^\land \text{Block}(C)^\land \text{Clear}(A)^\land \text{Clear}(C)\))

Goal Representation:

\[
\text{desired conjunction of positive(true) literals}
\]

Action Representation:
Generic Representation of Symbolic Planning Problems

- STRIPS (=Stanford Research Institute Problem Solver)

State Representation:
- conjunction of positive(true) literals
 -(e.g. On(A,B)\(^\land\)On(B,Table)\(^\land\)On(C,Table)\(^\land\)Block(A)\(^\land\)Block(B)\(^\land\)Block(C)\(^\land\)Clear(A)\(^\land\)Clear(C))

Goal Representation:
- desired conjunction of positive(true) literals

Action Representation:
- What is it for this goal?
Generic Representation of Symbolic Planning Problems

- STRIPS (=Stanford Research Institute Problem Solver)

State Representation:

conjunction of positive(true) literals

(e.g., On(A,B)\(^\wedge\)On(B,Table)\(^\wedge\)On(C,Table)\(^\wedge\)Block(A)\(^\wedge\)Block(B)\(^\wedge\)Block(C)\(^\wedge\)Clear(A)\(^\wedge\)Clear(C))

Goal Representation:

desired conjunction of positive(true) literals

Action Representation:

Goal: any state where A is directly on the table
Generic Representation of Symbolic Planning Problems

- STRIPS (=Stanford Research Institute Problem Solver)

State Representation:

conjunction of positive(true) literals

(e.g, \(\text{On}(A,B)^\land\text{On}(B,\text{Table})^\land\text{On}(C,\text{Table})^\land\text{Block}(A)^\land\text{Block}(B)^\land\text{Block}(C)^\land\text{Clear}(A)^\land\text{Clear}(C)\))

Goal Representation:

desired conjunction of positive(true) literals

Could be partially-specified

Action Representation:

Goal: any state where \(A\) is directly on the table

What is it for this goal?
Generic Representation of Symbolic Planning Problems

• STRIPS (=Stanford Research Institute Problem Solver)

State Representation:

\[
\text{conjunction of positive(true) literals} \\
(\text{e.g., On}(A,B)^{\text{On}}(B,\text{Table})^\text{On}(C,\text{Table})^\text{Block}(A)^\text{Block}(B)^\text{Block}(C)^\text{Clear}(A)^\text{Clear}(C))
\]

Goal Representation:

\[
\text{desired conjunction of positive(true) literals}
\]

Action Representation:

Preconditions: conjunction of positive(true) literals that must be held true in order for the action to be applicable

Effect: conjunction of positive(true) literals showing how the state will change (what should be deleted and added)
STRIPS (Stanford Research Institute Problem Solver)

State Representation:

\[\text{conjunction of positive(true) literals}\]

\[\text{(e.g., } On(A,B) \land On(B,Table) \land On(C,Table) \land Block(A) \land Block(B) \land Block(C) \land Clear(A) \land Clear(C))\]

Goal Representation:

\[\text{desired conjunction of positive(true) literals}\]

What are preconditions & effect for MoveToTable(b,x) action?

Action Representation:

Preconditions: conjunction of positive(true) literals that must be held true in order for the action to be applicable

Effect: conjunction of positive(true) literals showing how the state will change (what should be deleted and added)
Generic Representation of Symbolic Planning Problems

- STRIPS (=Stanford Research Institute Problem Solver)

State Representation:

\[
\text{conjunction of positive(true) literals}
\]

(e.g., $\text{On}(A,B)^{\land} \text{On}(B,\text{Table})^{\land} \text{On}(C,\text{Table})^{\land} \text{Block}(A)^{\land} \text{Block}(B)^{\land} \text{Block}(C)^{\land} \text{Clear}(A)^{\land} \text{Clear}(C)$)

Goal Representation:

What are preconditions & effect for MoveToTable(b,x) action?

Action Representation:

- **Precondition:** conjunction of positive(true) literals that must be held true in order for the action to be applicable
- **Effect:** conjunction of positive(true) literals showing how the state will change (what will be deleted and added)

\[
\text{MoveToTable}(b,x)
\]

Precond: \(\text{On}(b,x)^{\land} \text{Clear}(b)^{\land} \text{Block}(b)^{\land} \text{Block}(x)\)

Effect: \(\text{On}(b,\text{Table})^{\land} \text{Clear}(x)^{\land} \sim \text{On}(b,x)\)
Generic Representation of Symbolic Planning Problems

• STRIPS (=Stanford Research Institute Problem Solver)

State Representation:

\[\text{conjunction of positive(true) literals} \]
\[(e.g., \text{On(A,B)} \land \text{On(B,Table)} \land \text{On(C,Table)} \land \text{Block(A)} \land \text{Block(B)} \land \text{Block(C)} \land \text{Clear(A)} \land \text{Clear(C)}) \]

Goal Representation:

\[\text{desired conjunction of positive(true) literals} \]

Action Representation:

Preconditions: conjunction of positive(true) literals that must be held true in order for the action to be applicable

Effect: conjunction of positive(true) literals showing how the state will change (what should be deleted and added)

What are preconditions & effect for for Move(b,x,y) action?
• Representing it with STRIPS

Start state:
\(\text{On}(A,B)^\land \text{On}(B,\text{Table})^\land \text{On}(C,\text{Table})^\land \text{Block}(A)^\land \text{Block}(B)^\land \text{Block}(C)^\land \text{Clear}(A)^\land \text{Clear}(C) \)

Goal state:
\(\text{On}(B,C)^\land \text{On}(C,A)^\land \text{On}(A,\text{Table}) \)

Actions:

MoveToTable\((b,x)\)
Precond: \(\text{On}(b,x)^\land \text{Clear}(b)^\land \text{Block}(b)^\land \text{Block}(x) \)
Effect: \(\text{On}(b,\text{Table})^\land \text{Clear}(x)^\land \sim \text{On}(b,x) \)

Move\((b,x,y)\)
Precond: \(\text{On}(b,x)^\land \text{Clear}(b)^\land \text{Clear}(y)^\land \text{Block}(b)^\land \text{Block}(y)^\land (b \sim = y) \)
Effect: \(\text{On}(b,y)^\land \text{Clear}(x)^\land \sim \text{On}(b,x)^\land \sim \text{Clear}(y) \)
Representing it with STRIPS

Start state:
\[\text{On}(A,B) \land \text{On}(B,\text{Table}) \land \text{On}(C,\text{Table}) \land \text{Block}(A) \land \text{Block}(B) \land \text{Block}(C) \land \text{Clear}(A) \land \text{Clear}(C)\]

Goal state:
\[\text{On}(B,C) \land \text{On}(C,A) \land \text{On}(A,\text{Table})\]

Actions:

- **MoveToTable\((b,x)\)**
 - **Precond:** \(\text{On}(b,x) \land \text{Clear}(b) \land \text{Block}(b) \land \text{Block}(x)\)
 - **Effect:** \(\text{On}(b,\text{Table}) \land \text{Clear}(x) \land \neg \text{On}(b,x)\)

- **Move\((b,x,y)\)**
 - **Precond:** \(\text{On}(b,x) \land \text{Clear}(b) \land \text{Clear}(y) \land \text{Block}(b) \land \text{Block}(y) \land (b \neq y)\)
 - **Effect:** \(\text{On}(b,y) \land \text{Clear}(x) \land \neg \text{On}(b,x) \land \neg \text{Clear}(y)\)
Back to the Example

- Representing it with STRIPS

We can now write a (domain-independent) program that takes in such specifications and automatically provides a function GetSuccessors(state S, action A) required for implicit graph construction.

Start state:
On(A,B)\(^\land\)On(B,Table)\(^\land\)On(C,Table)\(^\land\)Block(A)\(^\land\)Block(B)\(^\land\)Block(C)\(^\land\)Clear(A)\(^\land\)Clear(C)

Goal state:
On(B,C)\(^\land\)On(C,A)\(^\land\)On(A,Table)

Actions:
- **MoveToTable(b,x)**
 Precond: On(b,x)\(^\land\)Clear(b)\(^\land\)Block(b)\(^\land\)Block(x)
 Effect: On(b,Table)\(^\land\)Clear(x)\(^\land\)\neg On(b,x)

- **Move(b,x,y)**
 Precond: On(b,x)\(^\land\)Clear(b)\(^\land\)Clear(y)\(^\land\)Block(b)\(^\land\)Block(y)\(^\land\)(b\(\sim\)y)
 Effect: On(b,y)\(^\land\)Clear(x)\(^\land\)\neg On(b,x)\(^\land\)\neg Clear(y)
• Representing it with STRIPS

We can now write a (domain-independent) program that takes in such specifications and automatically provides a function GetSuccessors(state S, action A) required for implicit graph construction.

Start state:
On(A,B)\land On(B,Table)\land On(C,Table) \land Block(A) \land Block(B) \land Block(C) \land Clear(A) \land Clear(C)

Goal state:
On(B,C) \land On(C,A) \land On(A,Table)

Actions:
MoveToTable(b,x)
Precond: On(b,x) \land Clear(b) \land Block(b) \land Block(x)
Effect: On(b,Table) \land Clear(x) \land \neg On(b,x)

Move(b,x,y)
Precond: On(b,x) \land Clear(b) \land Clear(y) \land Block(b) \land Block(y) \land (b \neq y)
Effect: On(b,y) \land Clear(x) \land \neg On(b,x) \land \neg Clear(y)

This graph can be searched with A* or any other search.

This is often referred to as domain-independent planning.
• Representing it with STRIPS

Start state:
\[
\text{On}(A,B)^\text{On}(B,\text{Table})^\text{On}(C,\text{Table})^\text{Block}(A)^\text{Block}(B)^\text{Block}(C)^\text{Clear}(A)^\text{Clear}(C)
\]

Goal state:
\[
\text{On}(B,C)^\text{On}(C,A)^\text{On}(A,\text{Table})
\]

Actions:

- **MoveToTable** \((b,x)\)

 Precond: \(\text{On}(b,x)^\text{Clear}(b)^\text{Block}(b)^\text{Block}(x)\)

 Effect: \(\text{On}(b,\text{Table})^\text{Clear}(x)^{\sim}\text{On}(b,x)\)

- **Move** \((b,x,y)\)

 Precond: \(\text{On}(b,x)^\text{Clear}(b)^\text{Clear}(y)^\text{Block}(b)^\text{Block}(y)^{(b\sim=y)}\)

 Effect: \(\text{On}(b,y)^\text{Clear}(x)^{\sim}\text{On}(b,x)^{\sim}\text{Clear}(y)\)

Any ideas for domain-independent heuristics?
What You Should Know…

• How to represent a particular planning problem using STRIPS language and how this translates into a graph

• The motivation behind creating domain-independent planning representations such as STRIPS