16-782
Planning & Decision-making in Robotics

Planning Representations:
Probabilistic Roadmaps for Continuous Spaces

Maxim Likhachev
Robotics Institute
Carnegie Mellon University
Example

- Planning for manipulation
Example

- Planning for manipulation
Example

• Planning for manipulation
 – robot state is defined by joint angles $Q = \{q_1, \ldots, q_6\}$
 – need to find a (least-cost) motion that connects Q_{start} to Q_{goal}

Constraints?
Example

- Planning for manipulation
 - robot state is defined by joint angles $Q = \{q_1, ..., q_6\}$
 - need to find a (least-cost) motion that connects Q_{start} to Q_{goal}
 - Constraints:
 - All joint angles should be within corresponding joint limits
 - No collisions with obstacles and no self-collisions
Example

- Planning for manipulation
 - robot state is defined by joint angles $Q = \{q_1, \ldots, q_6\}$
 - need to find a (least-cost) motion that connects Q_{start} to Q_{goal}
 - Constraints:
 - All joint angles should be within corresponding joint limits
 - No collisions with obstacles and no self-collisions

Can we use a grid-based representation for planning?
Resolution Complete vs. Sampling-based Planning

- Resolution complete planning (e.g. Grid-based):
 - generate a systematic (uniform) representation (graph) of a free C-space (C_{free})
 - search the generated representation for a solution guaranteeing to find it if one exists (completeness)
 - can interleave the construction of the representation with the search (i.e., construct only what is necessary)

The example above is borrowed from “AI: A Modern Approach” by S. Russel & P. Norvig
Resolution Complete vs. Sampling-based Planning

- Resolution complete planning (e.g. Grid-based):
 - complete and provide sub-optimality bounds on the solution

the example above is borrowed from “AI: A Modern Approach” by S. Russell & P. Norvig

Great. Any issues?
Resolution Complete vs. Sampling-based Planning

- Resolution complete planning (e.g. Grid-based):
 - complete and provide sub-optimality bounds on the solution
 - can get computationally very expensive, especially in high-D

the example above is borrowed from “AI: A Modern Approach” by S. Russel & P. Norvig
Resolution Complete vs. Sampling-based Planning

- Sampling-based planning:

 Main observation:
 The space is continuous and rather benign!

The example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig.
Resolution Complete vs. Sampling-based Planning

- Sampling-based planning:
 - generate a sparse (sample-based) representation (graph) of a free C-space (C_{free})
 - search the generated representation for a solution

the example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig
Resolution Complete vs. Sampling-based Planning

- **Sampling-based planning:**
 - provide **probabilistic** completeness guarantees
 - guaranteed to find a solution, if one exists, but only in the limit of the number of samples (that is, only as the number of samples approaches infinity)
 - well-suited for high-dimensional planning

the example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig
Main Questions in Sampling-based Planning

- How to select samples to construct a “good” graph
- How to search the graph
- Can we interleave these steps
Probabilistic Roadmaps (PRMs)

Step 1. Preprocessing Phase: Build a roadmap (graph) \(G \) which, hopefully, should be accessible from any point in \(C_{\text{free}} \).

Step 2. Query Phase: Given a start configuration \(q_I \) and goal configuration \(q_G \), connect them to the roadmap \(G \) using a local planner, and then search the augmented roadmap for a shortest path from \(q_I \) to \(q_G \).
Probabilistic Roadmaps (PRMs)

Step 1. Preprocessing Phase: Build a roadmap (graph) G which, hopefully, should be accessible from any point in C_{free}

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G, connect them to the roadmap G using a local planner, and then search the augmented roadmap for a shortest path from q_I to q_G

Any ideas for the local planner?
Probabilistic Roadmaps (PRMs)

Step 1. Preprocessing Phase: Build a roadmap (graph) G which, hopefully, should be accessible from any point in C_{free}.

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G, connect them to the roadmap G using a local planner, and then search the augmented roadmap for a shortest path from q_I to q_G.

Any ideas for the local planner?

Can be as simple as a straight line (interpolation) connecting start (or goal) configuration to the nearest vertex in the roadmap.
Probabilistic Roadmaps (PRMs)

Step 1: Preprocessing Phase.

BUILD_ROADMAP
1 \(\mathcal{G}.\text{init}(); i \leftarrow 0; \)
2 while \(i < N \)
3 \hspace{1em} \textbf{if} \(\alpha(i) \in \mathcal{C}_{\text{free}} \) \textbf{then}
4 \hspace{2em} \mathcal{G}.\text{add_vertex}(\alpha(i)); i \leftarrow i + 1;
5 \hspace{2em} \textbf{for} \ each \ q \in \text{NEIGHBORHOOD}(\alpha(i), \mathcal{G})
6 \hspace{3em} \textbf{if} \ ((\textbf{not} \ \mathcal{G}.\text{same_component}(\alpha(i), q)) \ \textbf{and} \ \text{CONNECT}(\alpha(i), q)) \ \textbf{then}
7 \hspace{4em} \mathcal{G}.\text{add_edge}(\alpha(i), q);

borrowed from “Planning Algorithms” by S. LaValle
Probabilistic Roadmaps (PRMs)

Step 1: Preprocessing Phase.

BUILD_ROADMAP
1 G.init(); $i \leftarrow 0$;
2 while $i < N$
3 \hspace{1em} if $\alpha(i) \in \mathcal{C}_{\text{free}}$ then
4 \hspace{2em} G.add_vertex($\alpha(i)$);
5 \hspace{2em} for each $q \in \text{NEIG($\alpha(i)$)}$
6 \hspace{3em} if ((not G.same_conf($\alpha(i)$, q))
7 \hspace{4em} G.add_edge($\alpha(i)$, q);

$\alpha(i)$ is an ith sample in the configuration space. Each sample can be drawn uniformly (or more intelligently as described later).

borrowed from “Planning Algorithms” by S. LaValle
Probabilistic Roadmaps (PRMs)

Step 1: Preprocessing Phase.

BUILD_ROADMAP

1. \(G \).init(); \(i \leftarrow 0; \)

2. while \(i < N \)

3. if \(\alpha(i) \in C_{free} \) then

4. \(G\).add_vertex(\(\alpha(i) \)); \(i \leftarrow i + 1; \)

5. for each \(q \in \text{NEIGHBORHOOD}(\alpha(i), G) \)

6. if ((not \(G\).same_component(\(\alpha(i), q \)) and \(\text{CONNECT}(\alpha(i), q) \)) then

7. \(G\).add_edge(\(\alpha(i), q \));

borrowed from “Planning Algorithms” by S. LaValle
Probabilistic Roadmaps (PRMs)

Step 1: Preprocessing Phase.

BUILD_ROADMAP
1 \(\mathcal{G}.\text{init}(); \ i \leftarrow 0; \)
2 \(\text{while} \ i < N \)
3 \(\text{if} \ \alpha(i) \in \mathcal{C}_{\text{free}} \ \text{then} \)
4 \(\quad \mathcal{G}.\text{add}_\text{vertex}(\alpha(i)); \ i \leftarrow i + 1; \)
5 \(\quad \text{for each} \ q \in \text{NEIGHBORHOOD}(\alpha(i), \mathcal{G}) \)
6 \(\quad \text{if} \ ((\text{not} \ \mathcal{G}.\text{same}_\text{component}(\alpha(i), q)) \ \text{and} \ \text{CONNECT}(\alpha(i), q)) \ \text{then} \)
7 \(\quad \mathcal{G}.\text{add}_\text{edge}(\alpha(i), q); \)

borrowed from “Planning Algorithms” by S. LaValle

\[\text{can be replaced with: “number of successors of } q < K \text{”} \]
Probabilistic Roadmaps (PRMs)

Step 1: Preprocessing Phase.

Efficient implementation of \(q \in \text{NEIGHBORHOOD}(\alpha(i), \mathcal{G}) \)

- select \(K \) vertices closest to \(\alpha(i) \)
- select \(K \) (often just 1) closest points from each of the components in \(\mathcal{G} \)
- select all vertices within radius \(r \) from \(\alpha(i) \)

borrowed from “Planning Algorithms” by S. LaValle
Probabilistic Roadmaps (PRMs)

Step 1: Preprocessing Phase.

Sampling strategies
- sample uniformly from C_{free}

Why do we need anything better than uniform sampling?

borrowed from “Planning Algorithms” by S. LaValle
Probabilistic Roadmaps (PRMs)

Step 1: Preprocessing Phase.

Sampling strategies

- sample uniformly from C_{free}
- select at random an existing vertex with a probability distribution inversely proportional to how well-connected a vertex is, and then generate a random motion from it to get a sample $\alpha(i)$
- bias sampling towards obstacle boundaries

borrowed from “Planning Algorithms” by S. LaValle
Probabilistic Roadmaps (PRMs)

Step 1: Preprocessing Phase.

Sampling strategies

- sample \(q_1 \) and \(q_2 \) from Gaussian around \(q_1 \) and if either is in \(C_{obs} \), then the other one is set as \(\alpha(i) \)

- sample \(q_1, q_2, q_3 \) from Gaussian around \(q_2 \) and set \(q_2 \) as \(\alpha(i) \) if \(q_2 \) is in \(C_{free} \), and \(q_1 \) and \(q_3 \) are in \(C_{obs} \)

- bias sampling away from obstacles

borrowed from “Planning Algorithms” by S. LaValle
What You Should Know…

- Pros and Cons of Resolution-complete approaches (like Grid-based or Lattice-based graphs) vs. Sampling-based approaches

- What domains are more suitable for each

- How PRM works