16-782
Planning & Decision-making in Robotics

Case Study:
Planning for Autonomous Driving

Maxim Likhachev
Robotics Institute
Carnegie Mellon University
Typical Planning Architecture for Autonomous Vehicle

- **Route Planner**
 - Input: world model
 - Output: next road segment to follow

- **Lane Trajectory Planner**
 - Input: world model, perception data
 - Output: trajectory represented as series of \(x,y,\theta,v\) points

- **Path/Motion Planner for Free Spaces**
 - Input: world model, perception data
 - Output: trajectory represented as series of \(x,y,\theta,v\) points

- **Trajectory Follower & Low-level Collision Avoidance**
 - Input: world model, perception data
 - Output: Control inputs (e.g., speed and steering angle) for execution
Typical Planning Architecture for Autonomous Vehicle

Route Planner

Path/Motion Planner for Free Spaces

Trajectory Follower & Low-level Collision Avoidance

next road segment to follow

world model

world model

perception data

trajectory represented as series of <x, y, theta, v> points

How do you think the graph is constructed?
Typical Planning Architecture for Autonomous Vehicle

Route Planner

world model

next road segment to follow

Lane Trajectory Planner

world model
perception data

Path/Motion Planner for Free Spaces

world model
perception data

represented as x,y,theta,v> points

Tartanracing, CMU

Carnegie Mellon University
Typical Planning Architecture for Autonomous Vehicle

planning states defined by: x, y, θ, v
Typical Planning Architecture for Autonomous Vehicle

- Lane Trajectory Planner
 - world model perception data
 - trajectory represented as series of \(<x,y,\theta,v> \) points

- Trajectory Follower & Low-level Collision Avoidance
 - perception data
 - control inputs (e.g., speed and steering angle) for execution

- for Free Spaces
 - perception data
 - trajectory represented as series of \(<x,y,\theta,v> \) points
Typical Planning Architecture for Autonomous Vehicle

planning states defined by:
- discretization along a lane (=x) and perpendicular to it (=y),
- lane ID,
- v, time

Control inputs (e.g., speed and steering angle) for execution
Typical Planning Architecture for Autonomous Vehicle

We’ll look into the version used for Urban Challenge in ‘07
[Likhachev & Ferguson, ‘09]
Motivation

- Planning **long complex maneuvers** for the Urban Challenge vehicle from CMU (Tartanracing team)

- Planner suitable for
 - autonomous parking in very large (200m by 200m) cluttered parking lots
 - navigating in off-road conditions
 - navigating cluttered intersections/driveways
Desired Properties

- Generate a path that can be tracked well (at up to 5m/sec):
 - path is a 4-dimensional trajectory:

\[(x, y, \theta, v) \]

- orientation
- speed
Desired Properties

- Generate a path that can be tracked well (at up to 5m/sec):
 - path is a 4-dimensional trajectory:

\[(x, y, \theta, v)\]

Orientation of the wheels is not included. When will that be a problem?
Desired Properties

- Fast (2D-like) planning in trivial environments:

200 by 200m parking lot
Desired Properties

- But can also handle large non-trivial environments:

200 by 200m parking lot
Desired Properties

- Anytime property: finds the best path it can within X secs and then improves the path while following it

initial path

converged (to optimal) path
Desired Properties

- Fast replanning, especially since we need to avoid other vehicles

planning a path that avoids other vehicles
Desired Properties

- Fast replanning, especially since we need to avoid other vehicles

Time is not part of the state-space.

When will that be a problem?
Our Approach

• Build a graph
 – multi-resolution version of a lattice graph

• Search the graph for a least-cost path
 – Anytime D* [Likhachev et al. ‘05]
Building the Graph

- **Lattice-based graph** [Pivtoraiко & Kelly, ‘05]:

 - Outcome state is the center of the corresponding cell
 - Each transition is feasible (constructed beforehand)

Action template

$$(x, y, \theta, v)$$
Building the Graph

- **Lattice-based graph** [Pivtoraiko & Kelly, ‘05]:

 outcome state is the center of the corresponding cell

 each transition is feasible (constructed beforehand)

 action template

 replicate it online

(x, y, θ, v)
Building the Graph

• Lattice-based graph [Pivtoraiko & Kelly, ‘05]:

 outcome state is the center of the corresponding cell

 each transition is feasible

 we will be searching this graph for

 a least-cost path from s_{start} to s_{goal}

 replicate it

 online

 (x, y, θ, v)
Building the Graph

- Multi-resolution lattice:
 - high density in the most constrained areas (e.g., around start/goal)
 - low density in areas with higher freedom for motions
Building the Graph

• The construction of multi-resolution lattice:
 – the action space of a low-resolution lattice is a strict subset of the action space of the high-resolution lattice

reduce the branching factor for the low-res. lattice
Building the Graph

- The construction of multi-resolution lattice:
 - the action space of a low-resolution lattice is a strict subset of the action space of the high-resolution lattice
 - the state-space of a low-resolution lattice is discretized to be a subset of the possible discretized values of the state variables in the high-resolution lattice

 reduces the branching factor for the low-res. lattice

 reduces the size of the state-space for the low-res. lattice

 both allow for seamless transitions
Building the Graph

- Multi-resolution lattice used for Urban Challenge:

 - **dense-resolution lattice**
 - 36 actions,
 - 32 discrete values of heading
 - 0.25m discretization for x,y

 - **low-resolution lattice**
 - 24 actions,
 - 16 discrete values of heading
 - 0.25m discretization for x,y

 can be multiple levels

 can also be non-uniform in x,y & v
Building the Graph

• Properties of multi-resolution lattice:
 – *utilization of low-resolution lattice*: every path that uses only the action space of the low-resolution lattice is guaranteed to be a valid path in the multi-resolution lattice

 – *validity of paths*: every path in the multi-resolution lattice is guaranteed to be a valid path in a lattice that uses only the action space of the high-resolution lattice
Building the Graph

- Benefit of the multi-resolution lattice:

<table>
<thead>
<tr>
<th>Lattice</th>
<th>States Expanded</th>
<th>Planning Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-resolution</td>
<td>2,933</td>
<td>0.19</td>
</tr>
<tr>
<td>Multi-resolution</td>
<td>1,228</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Searching the Graph

• **Anytime D*** [Likhachev et al. ’05]:

 – anytime incremental version of A*

 – **anytime**: computes the best path it can within provided time and improves it while the robot starts execution.

 – **incremental**: it reuses its previous planning efforts and as a result, re-computes a solution much faster
Searching the Graph

- **Anytime D* [Likhachev et al. '05]**

 computes a path reusing all of the previous search efforts

 set ε to large value;
 until goal is reached

 ComputePathwithReuse();

 publish ε-suboptimal path for execution;

 update the map based on new sensory information;

 update current state of the agent;

 if significant changes were observed

 increase ε or replan from scratch;

 else

 decrease ε;

 guarantees that $\text{cost(path)} \leq \varepsilon \cdot \text{cost(optimal path)}$ makes it improve the solution
Searching the Graph

• Anytime behavior of Anytime D*:

\[
\begin{align*}
\text{solution cost} & \quad \text{time (s)} \\
13,000 & \quad 0 \quad 0.2 \quad 0.4 \quad 0.6 \\
11,000 & \\
9,000 & \\
7,000 & \\
\end{align*}
\]

- cost = 133,736
- \(\varepsilon = 3.0\)
- # expands = 1,715

- cost = 77,345
- \(\varepsilon = 1.0\)
- # expands = 14,132
Searching the Graph

• Incremental behavior of Anytime D*:

initial path

a path after re-planning
Searching the Graph

- Performance of Anytime D* depends strongly on heuristics $h(s)$: estimates of cost-to-goal

\[S = (x, y, \theta, v) \]

$h(s)$

should be consistent and admissible (never overestimate cost-to-goal)
Searching the Graph

- Performance of Anytime D* depends strongly on heuristics $h(s)$: estimates of cost-to-goal

$S = (x, y, \theta, v)$

$h(s)$

S_{goal}

should be consistent and admissible (never overestimate cost-to-goal)

Any ideas?
Searching the Graph

- In our planner: $h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s))$, where
 - $h_{\text{mech}}(s)$ – mechanism-constrained heuristic
 - $h_{\text{env}}(s)$ – environment-constrained heuristic

$h_{\text{mech}}(s)$ – considers only dynamics constraints and ignores environment

$h_{\text{env}}(s)$ – considers only environment constraints and ignores dynamics
Searching the Graph

- In our planner: \(h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s)) \), where
 - \(h_{\text{mech}}(s) \) – mechanism-constrained heuristic
 - \(h_{\text{env}}(s) \) – environment-constrained heuristic

\(h_{\text{mech}}(s) \) – considers only dynamics constraints and ignores environment

\(h_{\text{env}}(s) \) – considers only environment constraints and ignores dynamics

pre-computed as a table lookup for high-res. lattice

computed online by running a 2D A* with late termination
Searching the Graph

- In our planner: $h(s) = \max(h_{mech}(s), h_{env}(s))$, where
 - $h_{mech}(s)$ – mechanism-constrained heuristic
 - $h_{env}(s)$ – environment-constrained heuristic

$h_{mech}(s)$ – considers only dynamics constraints and ignores environment

pre-computed as a table lookup for high-res. lattice

Closed-form analytical solutions
(Dubins paths [Dubins, ‘57], Reeds-Shepp paths [Reeds & Shepp, ‘90])

Any other options?

Any challenges using it?

computed online by running a 2D A* with late termination

h_{env}(s) – considers only environment constraints and ignores dynamics
Searching the Graph

- In our planner: \(h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s)) \)

- \(h(s) \) needs to be admissible and consistent

for efficiency, valid paths, suboptimality bounds, optimality in the limit
Searching the Graph

• In our planner: \(h(s) = \max(h_{mech}(s), h_{env}(s)) \)

• \(h(s) \) needs to be admissible and consistent

• if \(h_{mech}(s) \) and \(h_{env}(s) \) are admissible and consistent, then \(h(s) \) is admissible and consistent [Pearl, 84]

• \(h_{mech}(s) \) – cost of a path in high-res. lattice with no obstacles and no boundaries

\[h_{mech}(s) \text{ – admissible and consistent} \]
Searching the Graph

• In our planner: \(h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s)) \)

• \(h(s) \) needs to be admissible and consistent

• if \(h_{\text{mech}}(s) \) and \(h_{\text{env}}(s) \) are admissible and consistent, then \(h(s) \) is admissible and consistent [Pearl, 84]

• \(h_{\text{env}}(s) \) – cost of a 2D path of the inner circle of the vehicle into the center of the goal location

\(h_{\text{env}}(s) – \text{NOT admissible} \)
Searching the Graph

- In our planner: $h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s))$

- $h_{\text{env}}(s)$ – cost of a 2D path of the inner circle of the vehicle into the center of the goal location

$h_{\text{env}}(s)$ – NOT admissible
Searching the Graph

• In our planner: \(h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s)) \)

\(h_{\text{env}}(s) \) – NOT admissible

• \(h_{\text{env}}(s) \) – cost of a 2D path of the inner circle of the vehicle into the center of the goal location

\[\text{cost} = \text{average over this box (convolution)} \]

\[\text{cost} < \text{cost}_h \]

\[\text{FIX: cost} = \max(\text{cost}, \text{cost}_h) \]

\[\text{equivalent to slightly higher cost for obstacles close to the middle of the vehicle} \]
Searching the Graph

- In our planner: \(h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s)) \)

- \(h_{\text{mech}}(s) \) – admissible and consistent

- \(h_{\text{env}}(s) \) – admissible and consistent

- \(h(s) \) – admissible and consistent
Searching the Graph

- In our planner: \(h(s) = \max(h_{mech}(s), h_{env}(s)) \)

- \(h_{mech}(s) \) – admissible and consistent

- \(h_{env}(s) \) – admissible and consistent

- \(h(s) \) – admissible and consistent

Theorem. The cost of a path returned by Anytime D* is no more than \(\varepsilon \) times the cost of a least-cost path from the vehicle configuration to the goal configuration using actions in the multi-resolution lattice, where \(\varepsilon \) is the current value by which Anytime D* inflates heuristics.
Searching the Graph

- Benefit of the combined heuristics:

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>States Expanded</th>
<th>Planning Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment-constrained only</td>
<td>26,108</td>
<td>1.30</td>
</tr>
<tr>
<td>Mechanism-constrained only</td>
<td>124,794</td>
<td>3.49</td>
</tr>
<tr>
<td>Combined</td>
<td>2,019</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Optimizations

- Pre-compute as much as possible
 - convolution cells for each action for each initial heading
Optimizations

- Pre-compute as much as possible
 - mechanism-constrained heuristics
Optimizations

- avoid convolutions based on collision checking with inner and outer circles
Optimizations

- Efficient re-planning by maintaining low-resolution boolean map of states expanded
 - each map update may affect thousands of states
 - need to iterate over those states to see if they are effected
 - **optimization:** iterate and update edge costs only when map update is in the area that have states expanded
Results

• Plan improvement

Tartanracing, CMU
Results

- Replanning in a large parking lot (200 by 200m)

Tartanracing, CMU
What You Should Know…

- Different types of planning for autonomous driving and how they interact

- What is multi-resolution lattice

- Different heuristic functions used in Motion Planning