16-350
Planning Techniques for Robotics

Search Algorithms: Multi-goal A*

Maxim Likhachev
Robotics Institute
Carnegie Mellon University
Support for Multiple Goal Candidates

• How to compute a least-cost path to any one of the possible goals?
 – Example 1: Computing a least-cost path to a parking spot given multiple parking spaces (some are better, some are worse, some are closer, some are further)

 – Example 2: Catching a moving target whose future trajectory is known (i.e., multiple potential intercept points)

 – Example 3: Mapping/exploration (next lecture)
Main function
\[g(s_{\text{start}}) = 0; \text{ all other } g\text{-values are infinite}; \ OPEN = \{s_{\text{start}}\}; \]
ComputePath();
publish solution;

ComputePath function
while(\(s_{\text{goal}}\) is not expanded and \(OPEN \neq \emptyset\))
 remove \(s\) with the smallest \(f(s) = g(s) + h(s)\) from \(OPEN\);
 insert \(s\) into \(CLOSED\);
 for every successor \(s'\) of \(s\) such that \(s'\) not in \(CLOSED\)
 if \(g(s') > g(s) + c(s,s')\)
 \(g(s') = g(s) + c(s,s')\);
 insert \(s'\) into \(OPEN\);

How to find a least-cost path that is lowest across all possible goals?
Introducing “imaginary” goal

Main function
\[g(s_{\text{start}}) = 0; \text{ all other } g\text{-values are infinite}; \text{ OPEN} = \{s_{\text{start}}\}; \]
ComputePath();
publish solution;

ComputePath function
while(s goal is not expanded and OPEN ≠ 0)
 remove s with the smallest \([f(s) = g(s)+h(s)]\) from OPEN;
 insert s into CLOSED;
 for every successor \(s’\) of s such that \(s’\) not in CLOSED
 if \(g(s’) > g(s) + c(s,s’)\)
 \(g(s’) = g(s) + c(s,s’);\)
 insert \(s’\) into OPEN;

Equivalent problem but with a single goal!

Carnegie Mellon University
Introducing “imaginary” goal

Main function

\[g(s_{start}) = 0; \text{ all other } g\text{-values are infinite}; \ OPEN = \{s_{start}\}; \]

ComputePath();

publish solution;

ComputePath function

while \(s_{goal} \) is not expanded and \(OPEN \neq 0 \)

remove \(s \) with the smallest \([f(s) = g(s)+h(s)] \) from \(OPEN \);

insert \(s \) into CLOSED;

for every successor \(s' \) of \(s \) such that \(s' \) not in CLOSED

if \(g(s') > g(s) + c(s,s') \)

\[g(s') = g(s) + c(s,s'); \]

insert \(s' \) into \(OPEN \);

Equivalent problem but with a single goal!

How to prove it?

\[
\begin{array}{cccc}
S_3 & \rightarrow & S_1 & \rightarrow & S_{goal} \\
g=\infty & h=1 & g=\infty & h=0 & g=\infty \\
h=1 & h=0 & h=0 & \\
S_{start} & \rightarrow & S_4 & \rightarrow & S_2
\end{array}
\]
Support for “unequal” goals

Main function
\[g(s_{\text{start}}) = 0; \text{ all other } g\text{-values are infinite}; \ OPEN = \{s_{\text{start}}\}; \]
ComputePath();
publish solution;

ComputePath function
while(s_{\text{goal}} \text{ is not expanded and } OPEN \neq 0)

remove \(s \) with the smallest \(f(s) = g(s) + h(s) \) from OPEN;
insert \(s \) into CLOSED;
for every successor \(s' \) of \(s \) such that \(s' \) not in CLOSED
if \(g(s') > g(s) + c(s,s') \)
\(g(s') = g(s) + c(s,s') \);
insert \(s' \) into OPEN;

What if some goals are better than others?
Support for “unequal” goals

Main function

\[g(s_{\text{start}}) = 0; \text{ all other } g\text{-values are infinite}; \ OPEN = \{s_{\text{start}}\}; \]

ComputePath();
publish solution;

ComputePath function

while \(s_{\text{goal}} \) is not expanded and \(OPEN \neq 0 \)

- remove \(s \) with the smallest \([f(s) = g(s) + h(s)] \) from \(OPEN \);
- insert \(s \) into \(CLOSED \);
- for every successor \(s' \) of \(s \) such that \(s' \) not in \(CLOSED \)
 - if \(g(s') > g(s) + c(s, s') \)
 - \(g(s') = g(s) + c(s, s') \);
 - insert \(s' \) into \(OPEN \);

What if some goals are better than others?

![Diagram](diagram.png)
Support for “unequal” goals

Main function
\[g(s_{\text{start}}) = 0; \text{ all other } g\text{-values are infinite}; \text{ } OPEN = \{s_{\text{start}}\}; \]
ComputePath();
publish solution;

ComputePath function
while(\(s_{\text{goal}}\) is not expanded and OPEN \(\neq 0\))
 remove \(s\) with the smallest \([f(s) = g(s) + h(s)]\) from OPEN;
 insert \(s\) into CLOSED;
for every successor \(s'\) of \(s\) such that \(s'\) not in CLOSED
 if \(g(s') > g(s) + c(s, s')\)
 \(g(s') = g(s) + c(s, s')\);
 insert \(s'\) into OPEN;

Equivalent problem but with a single goal!

How to prove it?
Support for “unequal” goals

Main function
\[g(s_{\text{start}}) = 0; \] all other \(g \)-values are infinite; \(OPEN = \{s_{\text{start}}\} \).

ComputePath();
publish solution;

ComputePath function
while(\(s_{\text{goal}} \) is not expanded and \(OPEN \neq 0 \))
 remove \(s \) with the smallest \(f(s) = g(s) + h(s) \) from \(OPEN \);
 insert \(s \) into \(CLOSED \);
 for every successor \(s' \) of \(s \) such that \(s' \) not in \(CLOSED \)
 if \(g(s') > g(s) + c(s,s') \)
 \[g(s') = g(s) + c(s,s') \];
 insert \(s' \) into \(OPEN \);

Once the graph transformation is done, you can run either forward or backwards search.

Once the graph transformation is done, you can run either forward or backwards search.
Support for “unequal” goals

Main function
\[g(s_{\text{start}}) = 0; \text{all other } g\text{-values are infinite}; \, OPEN = \{s_{\text{start}}\}; \]
ComputePath();
publish solution;

ComputePath function
while\((s_{\text{goal}} \text{ is not expanded and } \, OPEN \neq 0)\)
remove \(s\) with the smallest \([f(s) = g(s) + h(s)]\) from \(OPEN\):
insert \(s\) into \(CLOSED\);
for every successor \(s'\) of \(s\) such that \(s'\) not in \(CLOSED\)
if \(g(s') > g(s) + c(s,s')\)
\[g(s') = g(s) + c(s,s'); \]
insert \(s'\) into \(OPEN\);

Any impact on how heuristics is computed?

Once the graph transformation is done,
you can run either forward or backwards search
What You Should Know…

- How to search for a path that is cost-minimal given multiple potential goals with different goal costs (e.g., know how the graph transformation using “imaginary” goal)