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Going into the Real-world

• Robot models and simple world interactions can be pre-encoded

• Planning on those models enables the robots to operate under 

benign/narrow conditions right away

• Real-world: real-time + going beyond what’s given
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Waseda/Mitsubishi robot



Learning in Search-based Planning
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Speeding up 

planning

Learning 

cost function

Going beyond 

the given model

Waseda/

Mitsubishi

Re-use of previous results within search (Phillips et al.,’12; Islam et al.,‘18)

Learning heuristic functions (Bhardwaj et al.,’17; Paden & Frazzoli,’17; Thayer et al.,’11)

Learning order of expansions (Choudhary et al.,’17)



Learning in Search-based Planning
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Speeding up 

planning

Learning 

cost function

Going beyond 

the given model

Learning a cost function from demonstrations (Ratliff et al.,’09; Wulfmeier et al.,’17)

Crusher (from Ratliff et a., ‘09 paper)



Learning in Search-based Planning
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Speeding up 

planning

Learning 

cost function

Going beyond 

the given model

Online adaptation/learning of a prior model (e.g., Ordonez et al., ‘17)

Learning additional dimensions to reason over (Phillips et al.,’13)

Planning over learned skills (G. Konidaris et al., ‘18)



Learning in Search-based Planning
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Speeding up 

planning

Learning 

cost function

Going beyond 

the given model

Waseda/

Mitsubishi

Re-use of previous results within search (Phillips et al.,’12; Islam et al.,’18)

Learning heuristic functions (Bhardwaj et al.,’17; Paden & Frazzoli,’17; Thayer et al.,’11)

Learning order of expansions (Choudhary et al.,’17)



Experience Graphs [Phillips et al., RSS’12]

• Many planning tasks are repetitive

- loading a dishwasher

- opening doors

- moving objects around a warehouse

- …

• Can we re-use prior experience to 

accelerate planning, in the context of 

search-based planning?

• Especially useful for high-dimensional 

problems such as mobile manipulation!
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Experience Graphs [Phillips et al., RSS’12]

Given a set of previous paths (experiences)…
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Experience Graphs [Phillips et al., RSS’12]

Put them together into an E-graph (Experience graph)
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Given a new planning query…
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Experience Graphs [Phillips et al., RSS’12]



…would like to re-use E-graph to speed up planning in similar situations

goal

start
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Experience Graphs [Phillips et al., RSS’12]



…would like to re-use E-graph to speed up planning in similar situations

goal

start
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Re-use is via focusing search with a recomputed hε() heuristic function:

Experience Graphs [Phillips et al., RSS’12]



…would like to re-use E-graph to speed up planning in similar situations

goal

start
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Re-use is via focusing search with a recomputed hε() heuristic function:

Experience Graphs [Phillips et al., RSS’12]

General idea:
Instead of biasing the search towards the goal, heuristics 
hε(s) biases it towards a set of paths in Experience Graph

General idea:
Instead of biasing the search towards the goal, heuristics 
hε(s) biases it towards a set of paths in Experience Graph



…would like to re-use E-graph to speed up planning in similar situations

goal

start
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Re-use is via focusing search with a recomputed hε() heuristic function:

Experience Graphs [Phillips et al., RSS’12]

Can be computed via a single Dijkstra’s search on the 
Experience Graph

Can be computed via a single Dijkstra’s search on the 
Experience Graph



…would like to re-use E-graph to speed up planning in similar situations

goal

start
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Re-use is via focusing search with a recomputed hε() heuristic function:

heuristics hε(s) is guaranteed to be ε-consistentheuristics hε(s) is guaranteed to be ε-consistent

Experience Graphs [Phillips et al., RSS’12]



…would like to re-use E-graph to speed up planning in similar situations

goal

start
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Re-use is via focusing search with a recomputed hε() heuristic function:

Theorem 1: Algorithm is complete with respect 
to the original graph

Theorem 2: The cost of the solution is within a 
given bound on sub-optimality

Theorem 1: Algorithm is complete with respect 
to the original graph

Theorem 2: The cost of the solution is within a 
given bound on sub-optimality

Experience Graphs [Phillips et al., RSS’12]
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Experience Graphs [Phillips et al., RSS’12]



Learning in Search-based Planning
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Speeding up 

planning

Learning 

cost function

Going beyond 

the prior model

Learning a cost function from demonstrations (Ratliff et al.,’09; Wulfmeier et al.,’17)

Crusher (from Ratliff et a., ‘09 paper)



• Imitation Learning/Apprenticeship Learning/Learning from 

Demonstrations/Robot Programming by Demonstrations

– Methods for programming robot behavior via demonstrations [Schaal & Atkeson, 

‘94], [Abbeel & Ng, ’04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [Billard, 

Calinon & Dillmann, ’13], [Sammut et al., ‘92],…

• Major classes of Imitation Learning:

– Learning policies directly from demonstrated trajectories or supervised learning 

[Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],…

– Learning a cost function (or reward function) from demonstrations and then using it 

to generate plans (policies) [Abbeel & Ng, ’04], [Ratliff & Bagnell, ‘06], ...

A bit of terminology
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• Imitation Learning/Apprenticeship Learning/Learning from 

Demonstrations/Robot Programming by Demonstrations

– Methods for programming robot behavior via demonstrations [Schaal & Atkeson, 

‘94], [Abbeel & Ng, ’04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [Billard, 

Calinon & Dillmann, ’13], [Sammut et al., ‘92],…

• Major classes of Imitation Learning:

– Learning policies directly from demonstrated trajectories or supervised learning 

[Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],…

– Learning a cost function (or reward function) from demonstrations and then using it 

to generate plans (policies) [Abbeel & Ng, ’04], [Ratliff & Bagnell, ‘06], ...

A bit of terminology
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Inverse Reinforcement Learning (IRL), Inverse Optimal ControlInverse Reinforcement Learning (IRL), Inverse Optimal Control



• Recover a cost function that makes given demonstrations optimal 

plans [Ratliff, Silver & Bagnell, ’09]

Learning a cost function
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• Consider a (simple) outdoor navigation example

Example
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R G
slippery area

cliff

Modeled as graph search



• Consider a (simple) outdoor navigation example

Example
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R G
slippery area

cliff

Can we teach the planner to avoid slippery areas and driving close to the 

cliff (without manually tweaking a cost function)? 

Modeled as graph search



• Consider a (simple) outdoor navigation example

Example
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R G
slippery area

cliff

Can we teach the planner to avoid slippery areas and driving close to the 

cliff (without manually tweaking a cost function)? 

?

?

?

?

?

?
?

?

= learning the “right” cost function



• Consider a (simple) outdoor navigation example

Example
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R

G

slippery area

Can we teach the planner to avoid slippery areas and driving close to the 

cliff (without manually tweaking a cost function)? 

R

G

cliff

A user gives N demonstrations of what paths are good.

We want a cost function for which these demonstrated trajectories are least-cost plans



• Consider a (simple) outdoor navigation example

Example
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R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G



• Consider a (simple) outdoor navigation example

Example
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R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that 
makes these demonstrations 
optimal paths

Compute cost function that 
makes these demonstrations 
optimal paths

Cost function – a function of 
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of 
features Φ: c(s,s’) = f(ɸ(s,s’))

Why not learn edge costs directly?



• Consider a (simple) outdoor navigation example

Example
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R

G

cliff

R

G

slippery area

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that 
makes these demonstrations 
optimal paths

Compute cost function that 
makes these demonstrations 
optimal paths

Cost function – a function of 
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of 
features Φ: c(s,s’) = f(ɸ(s,s’))

What Φ would make sense in this example?



• Consider a (simple) outdoor navigation example

Example
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R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that 
makes these demonstrations 
optimal paths

Compute cost function that 
makes these demonstrations 
optimal paths

Cost function – a function of 
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of 
features Φ: c(s,s’) = f(ɸ(s,s’))

Example of f()?



• Consider a (simple) outdoor navigation example

Example
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R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that 
makes these demonstrations 
optimal paths

Compute cost function that 
makes these demonstrations 
optimal paths

Cost function – a function of 
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of 
features Φ: c(s,s’) = f(ɸ(s,s’))

Example of f()?

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)



• Consider a (simple) outdoor navigation example

Example
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R

G

cliff

Demonstration d2 on graph G2

S

G

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

For example:
ɸ0 : 1/(distance to slippery area)
ɸ1 : 1/(distance to cliff)
ɸ2 : length of the transition

Need to compute (learn) w0,w1,w2 based on demonstrations



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]
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Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

   for i=1…N

      update edge costs in graph Gi using the current function f(ɸ(,))

      plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

𝑐(𝑠𝑘 , 𝑠𝑘+1)

     increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

     decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]
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Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

   for i=1…N

      update edge costs in graph Gi using the current function f(ɸ(,))

      plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

𝑐(𝑠𝑘 , 𝑠𝑘+1)

     increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

     decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Is 𝜋𝑖
∗ always guaranteed to converge to di?



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]
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Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

   for i=1…N

      update edge costs in graph Gi using the current function f(ɸ(,))

      plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

𝑐(𝑠𝑘 , 𝑠𝑘+1)

     increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

     decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Any problem with arbitrary decrease of f(ɸ(,))?

Any solutions?



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]
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Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

   for i=1…N

      update edge costs in graph Gi using the current function f(ɸ(,))

      plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

𝑐(𝑠𝑘 , 𝑠𝑘+1)

     increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

     decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}



• Consider a (simple) outdoor navigation example

Example
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Demonstration d1 on graph G1

S

G

R

G

slippery area

Suppose initial w0 = 0. Any problem learning W?

Need a loss function that makes the algorithm learn 
harder to stay on the demonstrated paths (related to 
maximizing the margin in a classifier)

Need a loss function that makes the algorithm learn 
harder to stay on the demonstrated paths (related to 
maximizing the margin in a classifier)



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]
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Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

   for i=1…N

      update edge costs in graph Gi using the current function f(ɸ(,))

      plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝒍 𝐬𝐤, 𝐬𝐤+𝟏 }

     increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

     decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Loss function penalizes being NOT on a demonstration path.
For example, 𝑙(s,s’)=0 if (s,s’) on di and 𝑙(s,s’)>1 otherwise

Loss function penalizes being NOT on a demonstration path.
For example, 𝑙(s,s’)=0 if (s,s’) on di and 𝑙(s,s’)>1 otherwise



Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

   for i=1…N

      update edge costs in graph Gi using the current function f(ɸ(,))

      plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝑙 𝑠𝑘 , 𝑠𝑘+1 }

     increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

     decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]
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How do we decide how to increase/decrease f(ɸ(,))?



Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

   for i=1…N

      update edge costs in graph Gi using the current function f(ɸ(,))

      plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝑙 𝑠𝑘 , 𝑠𝑘+1 }

     increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

     decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]
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How do we decide how to increase/decrease f(ɸ(,))?

Set dC vector as: +1 for all edges that need to be increased, 
and -1 for all edges that need to be decreased. 

Recompute f(ɸ(,)) to make a step in the direction of dC

Set dC vector as: +1 for all edges that need to be increased, 
and -1 for all edges that need to be decreased. 

Recompute f(ɸ(,)) to make a step in the direction of dC

For example, if f(ɸ(s,s’)) = Σwiɸi(s,s’)=ΦW, then:
1. Solve for vector dW from ΦdW = dC  (e.g., dW = (ΦTΦ)-1Φ T dC )

2. Update W: W = W + ηdW

For example, if f(ɸ(s,s’)) = Σwiɸi(s,s’)=ΦW, then:
1. Solve for vector dW from ΦdW = dC  (e.g., dW = (ΦTΦ)-1Φ T dC )

2. Update W: W = W + ηdW



Learning in Search-based Planning
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Speeding up 

planning

Learning 

cost function

Going beyond 

the given model

Online adaptation/learning of a prior model (e.g., Ordonez et al., ‘17)

Learning additional dimensions to reason over (Phillips et al.,’13)

Planning over learned skills (G. Konidaris et al., ‘18)

Planning directly in sensor space (Huan et al., ‘25)



Points2Plans 
[Huang, Agia, Wu, Herman, and Bohg, ‘25]
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Input: 

 - instruction l

 - segmented partial-view point clouds o1,

 

Compute plan τ = [ψ1,...,ψH] that maximizes the probability of the goal implied by instruction l:

              τ  = argmax G,ψ p(l | G,o1) p(G | ψ1:H,o1)



• Types of learning in planning

• Why and when learning in planning is useful

• General idea for methods to learn plan faster

• General idea for learning cost function from 

demonstrations

What You Should Know…

Carnegie Mellon University 44
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