
16-350

Planning & Decision-making in Robotics

Learning in Planning

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Going into the Real-world

• Robot models and simple world interactions can be pre-encoded

• Planning on those models enables the robots to operate under

benign/narrow conditions right away

• Real-world: real-time + going beyond what’s given

Carnegie Mellon University 2

Waseda/Mitsubishi robot

Learning in Search-based Planning

Carnegie Mellon University 3

Speeding up

planning

Learning

cost function

Going beyond

the given model

Waseda/

Mitsubishi

Re-use of previous results within search (Phillips et al.,’12; Islam et al.,‘18)

Learning heuristic functions (Bhardwaj et al.,’17; Paden & Frazzoli,’17; Thayer et al.,’11)

Learning order of expansions (Choudhary et al.,’17)

Learning in Search-based Planning

Carnegie Mellon University 4

Speeding up

planning

Learning

cost function

Going beyond

the given model

Learning a cost function from demonstrations (Ratliff et al.,’09; Wulfmeier et al.,’17)

Crusher (from Ratliff et a., ‘09 paper)

Learning in Search-based Planning

Carnegie Mellon University 5

Speeding up

planning

Learning

cost function

Going beyond

the given model

Online adaptation/learning of a prior model (e.g., Ordonez et al., ‘17)

Learning additional dimensions to reason over (Phillips et al.,’13)

Planning over learned skills (G. Konidaris et al., ‘18)

Learning in Search-based Planning

Carnegie Mellon University 6

Speeding up

planning

Learning

cost function

Going beyond

the given model

Waseda/

Mitsubishi

Re-use of previous results within search (Phillips et al.,’12; Islam et al.,’18)

Learning heuristic functions (Bhardwaj et al.,’17; Paden & Frazzoli,’17; Thayer et al.,’11)

Learning order of expansions (Choudhary et al.,’17)

Experience Graphs [Phillips et al., RSS’12]

• Many planning tasks are repetitive

- loading a dishwasher

- opening doors

- moving objects around a warehouse

- …

• Can we re-use prior experience to

accelerate planning, in the context of

search-based planning?

• Especially useful for high-dimensional

problems such as mobile manipulation!

Carnegie Mellon University 7

Experience Graphs [Phillips et al., RSS’12]

Given a set of previous paths (experiences)…

Carnegie Mellon University 8

Experience Graphs [Phillips et al., RSS’12]

Put them together into an E-graph (Experience graph)

Carnegie Mellon University 9

Given a new planning query…

Carnegie Mellon University 10

Experience Graphs [Phillips et al., RSS’12]

…would like to re-use E-graph to speed up planning in similar situations

goal

start

Carnegie Mellon University 11

Experience Graphs [Phillips et al., RSS’12]

…would like to re-use E-graph to speed up planning in similar situations

goal

start

Carnegie Mellon University 12

Re-use is via focusing search with a recomputed hε() heuristic function:

Experience Graphs [Phillips et al., RSS’12]

…would like to re-use E-graph to speed up planning in similar situations

goal

start

Carnegie Mellon University 13

Re-use is via focusing search with a recomputed hε() heuristic function:

Experience Graphs [Phillips et al., RSS’12]

General idea:
Instead of biasing the search towards the goal, heuristics
hε(s) biases it towards a set of paths in Experience Graph

General idea:
Instead of biasing the search towards the goal, heuristics
hε(s) biases it towards a set of paths in Experience Graph

…would like to re-use E-graph to speed up planning in similar situations

goal

start

Carnegie Mellon University 14

Re-use is via focusing search with a recomputed hε() heuristic function:

Experience Graphs [Phillips et al., RSS’12]

Can be computed via a single Dijkstra’s search on the
Experience Graph

Can be computed via a single Dijkstra’s search on the
Experience Graph

…would like to re-use E-graph to speed up planning in similar situations

goal

start

Carnegie Mellon University 16

Re-use is via focusing search with a recomputed hε() heuristic function:

heuristics hε(s) is guaranteed to be ε-consistentheuristics hε(s) is guaranteed to be ε-consistent

Experience Graphs [Phillips et al., RSS’12]

…would like to re-use E-graph to speed up planning in similar situations

goal

start

Carnegie Mellon University 17

Re-use is via focusing search with a recomputed hε() heuristic function:

Theorem 1: Algorithm is complete with respect
to the original graph

Theorem 2: The cost of the solution is within a
given bound on sub-optimality

Theorem 1: Algorithm is complete with respect
to the original graph

Theorem 2: The cost of the solution is within a
given bound on sub-optimality

Experience Graphs [Phillips et al., RSS’12]

Carnegie Mellon University 18

Experience Graphs [Phillips et al., RSS’12]

Learning in Search-based Planning

Carnegie Mellon University 19

Speeding up

planning

Learning

cost function

Going beyond

the prior model

Learning a cost function from demonstrations (Ratliff et al.,’09; Wulfmeier et al.,’17)

Crusher (from Ratliff et a., ‘09 paper)

• Imitation Learning/Apprenticeship Learning/Learning from

Demonstrations/Robot Programming by Demonstrations

– Methods for programming robot behavior via demonstrations [Schaal & Atkeson,

‘94], [Abbeel & Ng, ’04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [Billard,

Calinon & Dillmann, ’13], [Sammut et al., ‘92],…

• Major classes of Imitation Learning:

– Learning policies directly from demonstrated trajectories or supervised learning

[Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],…

– Learning a cost function (or reward function) from demonstrations and then using it

to generate plans (policies) [Abbeel & Ng, ’04], [Ratliff & Bagnell, ‘06], ...

A bit of terminology

Carnegie Mellon University 20

• Imitation Learning/Apprenticeship Learning/Learning from

Demonstrations/Robot Programming by Demonstrations

– Methods for programming robot behavior via demonstrations [Schaal & Atkeson,

‘94], [Abbeel & Ng, ’04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [Billard,

Calinon & Dillmann, ’13], [Sammut et al., ‘92],…

• Major classes of Imitation Learning:

– Learning policies directly from demonstrated trajectories or supervised learning

[Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],…

– Learning a cost function (or reward function) from demonstrations and then using it

to generate plans (policies) [Abbeel & Ng, ’04], [Ratliff & Bagnell, ‘06], ...

A bit of terminology

Carnegie Mellon University 21

Inverse Reinforcement Learning (IRL), Inverse Optimal ControlInverse Reinforcement Learning (IRL), Inverse Optimal Control

• Recover a cost function that makes given demonstrations optimal

plans [Ratliff, Silver & Bagnell, ’09]

Learning a cost function

Carnegie Mellon University 22

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 23

R G
slippery area

cliff

Modeled as graph search

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 24

R G
slippery area

cliff

Can we teach the planner to avoid slippery areas and driving close to the

cliff (without manually tweaking a cost function)?

Modeled as graph search

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 25

R G
slippery area

cliff

Can we teach the planner to avoid slippery areas and driving close to the

cliff (without manually tweaking a cost function)?

?

?

?

?

?

?
?

?

= learning the “right” cost function

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 26

R

G

slippery area

Can we teach the planner to avoid slippery areas and driving close to the

cliff (without manually tweaking a cost function)?

R

G

cliff

A user gives N demonstrations of what paths are good.

We want a cost function for which these demonstrated trajectories are least-cost plans

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 27

R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 28

R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that
makes these demonstrations
optimal paths

Compute cost function that
makes these demonstrations
optimal paths

Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))

Why not learn edge costs directly?

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 29

R

G

cliff

R

G

slippery area

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that
makes these demonstrations
optimal paths

Compute cost function that
makes these demonstrations
optimal paths

Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))

What Φ would make sense in this example?

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 30

R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that
makes these demonstrations
optimal paths

Compute cost function that
makes these demonstrations
optimal paths

Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))

Example of f()?

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 31

R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that
makes these demonstrations
optimal paths

Compute cost function that
makes these demonstrations
optimal paths

Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))

Example of f()?

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 32

R

G

cliff

Demonstration d2 on graph G2

S

G

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

For example:
ɸ0 : 1/(distance to slippery area)
ɸ1 : 1/(distance to cliff)
ɸ2 : length of the transition

Need to compute (learn) w0,w1,w2 based on demonstrations

LEARCH (LEArning to searCH)
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 33

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

 for i=1…N

 update edge costs in graph Gi using the current function f(ɸ(,))

 plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

𝑐(𝑠𝑘 , 𝑠𝑘+1)

 increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

 decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

LEARCH (LEArning to searCH)
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 34

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

 for i=1…N

 update edge costs in graph Gi using the current function f(ɸ(,))

 plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

𝑐(𝑠𝑘 , 𝑠𝑘+1)

 increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

 decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Is 𝜋𝑖
∗ always guaranteed to converge to di?

LEARCH (LEArning to searCH)
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 35

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

 for i=1…N

 update edge costs in graph Gi using the current function f(ɸ(,))

 plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

𝑐(𝑠𝑘 , 𝑠𝑘+1)

 increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

 decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Any problem with arbitrary decrease of f(ɸ(,))?

Any solutions?

LEARCH (LEArning to searCH)
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 36

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

 for i=1…N

 update edge costs in graph Gi using the current function f(ɸ(,))

 plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

𝑐(𝑠𝑘 , 𝑠𝑘+1)

 increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

 decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 37

Demonstration d1 on graph G1

S

G

R

G

slippery area

Suppose initial w0 = 0. Any problem learning W?

Need a loss function that makes the algorithm learn
harder to stay on the demonstrated paths (related to
maximizing the margin in a classifier)

Need a loss function that makes the algorithm learn
harder to stay on the demonstrated paths (related to
maximizing the margin in a classifier)

LEARCH (LEArning to searCH)
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 38

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

 for i=1…N

 update edge costs in graph Gi using the current function f(ɸ(,))

 plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝒍 𝐬𝐤, 𝐬𝐤+𝟏 }

 increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

 decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Loss function penalizes being NOT on a demonstration path.
For example, 𝑙(s,s’)=0 if (s,s’) on di and 𝑙(s,s’)>1 otherwise

Loss function penalizes being NOT on a demonstration path.
For example, 𝑙(s,s’)=0 if (s,s’) on di and 𝑙(s,s’)>1 otherwise

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

 for i=1…N

 update edge costs in graph Gi using the current function f(ɸ(,))

 plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝑙 𝑠𝑘 , 𝑠𝑘+1 }

 increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

 decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

LEARCH (LEArning to searCH)
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 39

How do we decide how to increase/decrease f(ɸ(,))?

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = arg min
𝜋𝑖

σ𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

 for i=1…N

 update edge costs in graph Gi using the current function f(ɸ(,))

 plan an optimal path 𝜋𝑖
∗ = arg min

𝜋𝑖

σ𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1

{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝑙 𝑠𝑘 , 𝑠𝑘+1 }

 increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

 decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

LEARCH (LEArning to searCH)
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 40

How do we decide how to increase/decrease f(ɸ(,))?

Set dC vector as: +1 for all edges that need to be increased,
and -1 for all edges that need to be decreased.

Recompute f(ɸ(,)) to make a step in the direction of dC

Set dC vector as: +1 for all edges that need to be increased,
and -1 for all edges that need to be decreased.

Recompute f(ɸ(,)) to make a step in the direction of dC

For example, if f(ɸ(s,s’)) = Σwiɸi(s,s’)=ΦW, then:
1. Solve for vector dW from ΦdW = dC (e.g., dW = (ΦTΦ)-1Φ T dC)

2. Update W: W = W + ηdW

For example, if f(ɸ(s,s’)) = Σwiɸi(s,s’)=ΦW, then:
1. Solve for vector dW from ΦdW = dC (e.g., dW = (ΦTΦ)-1Φ T dC)

2. Update W: W = W + ηdW

Learning in Search-based Planning

Carnegie Mellon University 42

Speeding up

planning

Learning

cost function

Going beyond

the given model

Online adaptation/learning of a prior model (e.g., Ordonez et al., ‘17)

Learning additional dimensions to reason over (Phillips et al.,’13)

Planning over learned skills (G. Konidaris et al., ‘18)

Planning directly in sensor space (Huan et al., ‘25)

Points2Plans
[Huang, Agia, Wu, Herman, and Bohg, ‘25]

Carnegie Mellon University 43

Input:

 - instruction l

 - segmented partial-view point clouds o1,

Compute plan τ = [ψ1,...,ψH] that maximizes the probability of the goal implied by instruction l:

 τ = argmax G,ψ p(l | G,o1) p(G | ψ1:H,o1)

• Types of learning in planning

• Why and when learning in planning is useful

• General idea for methods to learn plan faster

• General idea for learning cost function from

demonstrations

What You Should Know…

Carnegie Mellon University 44

	Default Section
	Slide 1: 16-350 Planning & Decision-making in Robotics Learning in Planning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: A bit of terminology
	Slide 21: A bit of terminology
	Slide 22: Learning a cost function
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example
	Slide 26: Example
	Slide 27: Example
	Slide 28: Example
	Slide 29: Example
	Slide 30: Example
	Slide 31: Example
	Slide 32: Example
	Slide 33: LEARCH (LEArning to searCH) [Ratliff, Silver, Bagnell, 09]
	Slide 34: LEARCH (LEArning to searCH) [Ratliff, Silver, Bagnell, 09]
	Slide 35: LEARCH (LEArning to searCH) [Ratliff, Silver, Bagnell, 09]
	Slide 36: LEARCH (LEArning to searCH) [Ratliff, Silver, Bagnell, 09]
	Slide 37: Example
	Slide 38: LEARCH (LEArning to searCH) [Ratliff, Silver, Bagnell, 09]
	Slide 39: LEARCH (LEArning to searCH) [Ratliff, Silver, Bagnell, 09]
	Slide 40: LEARCH (LEArning to searCH) [Ratliff, Silver, Bagnell, 09]
	Slide 42

	Untitled Section
	Slide 43: Points2Plans [Huang, Agia, Wu, Herman, and Bohg, ‘25]
	Slide 44: What You Should Know…

