
16-350

Planning Techniques for Robotics

Search Algorithms:

A* Search, Multi-goal A*

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

2

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; //compute least-cost path using g-values

S2 S1

Sgoal

2
g= g=

g= 2

S4 S3

3

g=  g= 

1

Sstart

1

1

g=0

Uninformed A* Search

Carnegie Mellon University

3

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2
g= g=

g= 2

S4 S3

3

g=  g= 

1

Sstart

1

1

g=0

4

• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Uninformed A* Search

Carnegie Mellon University

S2 S1

Sgoal

2
g= g=

g= 2

S4 S3

3

g=  g= 

1

Sstart

1

1

g=0

clarification: updates g(s’) if s’ is already in OPEN

5

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

at any point of time:

A* Search [Hart, Nillson, Raphael, ‘68]

Carnegie Mellon University

6

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

at any point of time:

A* Search [Hart, Nillson, Raphael, ‘68]

heuristic function

one popular heuristic function – Euclidean distance

Carnegie Mellon University

7

• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality):

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility provably follows from consistency and often (not

always) consistency follows from admissibility

A* Search [Hart, Nillson, Raphael, ‘68]

minimal cost from s to sgoal

Carnegie Mellon University

8

• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality):

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility provably follows from consistency and often (not

always) consistency follows from admissibility

A* Search [Hart, Nillson, Raphael, ‘68]

minimal cost from s to sgoal

Carnegie Mellon University

More on this in the later lecture

Why triangle inequality?

9

• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality):

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility provably follows from consistency and often (not

always) consistency follows from admissibility

A* Search [Hart, Nillson, Raphael, ‘68]

minimal cost from s to sgoal

Carnegie Mellon University

Consistency also implies:

h(sgoal,sgoal) = 0 and for every s≠sgoal and s’ , h(s) ≤ c*(s,s’) + h(s’)

10

• A*: expands states in the order of f = g+h values

• Uninformed A*: expands states in the order of g values

A*: Uninformed vs. Informed Search

Carnegie Mellon University

11

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

12

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

13

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

14

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

15

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

A* Search

Carnegie Mellon University

16

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

17

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2}

OPEN = {s1,s4}

next state to expand: s1

A* Search

Carnegie Mellon University

18

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1}

OPEN = {s4,sgoal}

next state to expand: s4

A* Search

Carnegie Mellon University

19

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* Search

Carnegie Mellon University

20

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}

OPEN = {s3}

done

A* Search

Carnegie Mellon University

21

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University

22

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University

23

• A*: expands states in the order of f = g+h values

• Uninformed A*: expands states in the order of g values

• Intuitively: f(s) – estimate of the cost of a least cost path

from start to goal via state s

A*: Uninformed vs. Informed Search

Carnegie Mellon University

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

24

• A*: expands states in the order of f = g+h values

• Uninformed A*: expands states in the order of g values

• Intuitively: f(s) – estimate of the cost of a least cost path

from start to goal via state sA* with h= 0

A*: Uninformed vs. Informed Search

Carnegie Mellon University

sgoal

sstart

Uninformed A*

25

• A*: expands states in the order of f = g+h values

• Uninformed A*: expands states in the order of g values

• Intuitively: f(s) – estimate of the cost of a least cost path

from start to goal via state s

A*: Uninformed vs. Informed Search

Carnegie Mellon University

sgoal

sstart

A* with Heuristics=Euclidean Distance

26

• Example on a Grid-based Graph:

A* Search

Carnegie Mellon University

h=5

h=5

h=5

h=4

h=4

h=4

h=3

h=3

h=3

h=2

h=2

2.4

h=2

h=1

h=1

h=1

h=2

h=1

h=0

h=1

h=2

h=4h=5 3.4

1

1

1

1
1.4

1.4
1.4

1.4

8-connected grid

h(cell <x,y>) = max(|x-xgoal|,|y-ygoal|)

goal

robot

A B C D E F

1

2

3

4

27

Theorem 1. For every expanded state s, it is guaranteed

that g(s)=g*(s)

Sketch of proof by induction:
- assume all previously expanded states have optimal g-values

- next state to expand is s: f(s) = g(s)+h(s) – min among states in OPEN

- assume g(s) is suboptimal (we will prove that it is impossible by contradiction)

- then there must be at least one state s’ on an optimal path from start to s such

that it is in OPEN but wasn’t expanded

- g(s’) + h(s’) ≥ g(s)+h(s)

- but g(s’) + c*(s’,s) < g(s) =>

- g(s’) + c*(s’,s) + h(s) < g(s) + h(s) => (from consistency of h-values)

- g(s’) + h(s’) < g(s) + h(s) => CONTRADICTION

- thus it must be the case that g(s) is optimal

A* Search: Proofs

Carnegie Mellon University

28

Theorem 2. Once the search terminates, it is guaranteed that

g(sgoal)=g*(sgoal)

Sketch of proof:

A* Search: Proofs

Carnegie Mellon University

Proof?

29

Theorem 3. Once the search terminates, the least-cost path

from sstart to sgoal can be re-constructed by backtracking

(start with sgoal and from any state s backtrack to the predecessor state

s’ such that)

Sketch of proof:
- every backtracking step from state s moves to a predecessor state s’ that

continues to be on a least-cost path (because all predecessors u not on a least-

cost path will have have g(u)+cost(u,s) that are strictly larger than

g(s’)+cost(s’,s))

A* Search: Proofs

Carnegie Mellon University

)),''()''((minarg')('' sscsgs spreds += 

30

Theorem 4 (complexity). No state is expanded more than

once by A*

Sketch of proof:

A* Search: Proofs

Carnegie Mellon University

Proof?

31

Theorem 5. Given a graph and a heuristic function, A*

performs a minimal number of expansions to find a

provably optimal path (provided goal state is always

expanded first among the states with the same f-values in

OPEN)

A* Search: Proofs

Carnegie Mellon University

32

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Implementation Details of A* Search

Carnegie Mellon University

How to implement OPEN?

How to implement CLOSED?

33

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Implementation Details of A* Search

Carnegie Mellon University

How to implement OPEN?

How to implement CLOSED?

Typically, a priority queue built using a binary heap

Typically, each state has a Boolean flag indicating

if it was already closed

34

• After search terminates, least-cost path is given by

backtracking backpointers from sgoal to sstart

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’); bp(s’) = s;

insert s’ into OPEN;

A* Search with Backpointers

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

set all backpointers bp to NULL;

ComputePath();

publish solution; //backtrack least-cost path using backpointers bp

35

Support for Multiple Goal Candidates

• How to compute a least-cost path to any one of the possible goals?

– Example 1: Computing a least-cost path to a parking spot given multiple parking

spaces (some are better, some are worse, some are closer, some are further)

– Example 2: Catching a moving target whose future trajectory is known (i.e.,

multiple potential intercept points)

– Example 3: Mapping/exploration (covered in future lectures)

Carnegie Mellon University

36

A* Search

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 Sgoal1

4

g=

h=1

g= 

h=0

S4 Sgoal2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

How to find a least-cost path that is

lowest across all possible goals?

37

Introducing “imaginary” goal

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

1

1

Equivalent problem but with a single goal!

g= 

h=0

38

Introducing “imaginary” goal

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Equivalent problem but with a single goal!

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

1

1

g= 

h=0

How to prove it?

39

Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 Sgoal1

4

g=

h=1

g= 

h=0

S4 Sgoal2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

What if some goals

are better than others?

40

Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 Sgoal1

4

g=

h=1

g= 

h=0

S4 Sgoal2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

What if some goals

are better than others?

goalcost=3

goalcost=5

41

Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

5

3

g= 

h=0

Equivalent problem but with a single goal!

How to prove it?

42

Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

5

3

g= 

h=0

Once the graph transformation is done,

you can run A* search

(or any other search for that matter)

43

Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

5

3

g= 

h=0

Once the graph transformation is done,

you can run A* search

(or any other search for that matter)

Any impact on how

heuristics is computed?

44

What You Should Know…

• Operation of A*

• Understand why A* returns an optimal solution (e.g., understand the

sketch of proof)

• Theoretical properties of A*

• Properties of heuristics (e.g., admissibility, consistency)

• Multi-goal A*

Carnegie Mellon University

	Slide 1: 16-350 Planning Techniques for Robotics Search Algorithms: A* Search, Multi-goal A*
	Slide 2: Uninformed A* Search
	Slide 3: Uninformed A* Search
	Slide 4: Uninformed A* Search
	Slide 5: A* Search [Hart, Nillson, Raphael, ‘68]
	Slide 6: A* Search [Hart, Nillson, Raphael, ‘68]
	Slide 7: A* Search [Hart, Nillson, Raphael, ‘68]
	Slide 8: A* Search [Hart, Nillson, Raphael, ‘68]
	Slide 9: A* Search [Hart, Nillson, Raphael, ‘68]
	Slide 10: A*: Uninformed vs. Informed Search
	Slide 11: A* Search
	Slide 12: A* Search
	Slide 13: A* Search
	Slide 14: A* Search
	Slide 15: A* Search
	Slide 16: A* Search
	Slide 17: A* Search
	Slide 18: A* Search
	Slide 19: A* Search
	Slide 20: A* Search
	Slide 21: A* Search
	Slide 22: A* Search
	Slide 23: A*: Uninformed vs. Informed Search
	Slide 24: A*: Uninformed vs. Informed Search
	Slide 25: A*: Uninformed vs. Informed Search
	Slide 26: A* Search
	Slide 27: A* Search: Proofs
	Slide 28: A* Search: Proofs
	Slide 29: A* Search: Proofs
	Slide 30: A* Search: Proofs
	Slide 31: A* Search: Proofs
	Slide 32: Implementation Details of A* Search
	Slide 33: Implementation Details of A* Search
	Slide 34: A* Search with Backpointers
	Slide 35: Support for Multiple Goal Candidates
	Slide 36: A* Search
	Slide 37: Introducing “imaginary” goal
	Slide 38: Introducing “imaginary” goal
	Slide 39: Support for “unequal” goals
	Slide 40: Support for “unequal” goals
	Slide 41: Support for “unequal” goals
	Slide 42: Support for “unequal” goals
	Slide 43: Support for “unequal” goals
	Slide 44: What You Should Know…

