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• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; //compute least-cost path using g-values
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Uninformed A* Search

Carnegie Mellon University
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• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Uninformed A* Search

Carnegie Mellon University
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• Computes g*-values for relevant (not all) states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Uninformed A* Search

Carnegie Mellon University
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clarification: updates g(s’) if s’ is already in OPEN
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• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path 

from sstart to s found so far

an (under) estimate of the cost 

of a shortest path from s to sgoal

at any point of time:

A* Search [Hart, Nillson, Raphael, ‘68]

Carnegie Mellon University
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• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

at any point of time:

A* Search [Hart, Nillson, Raphael, ‘68]

heuristic function

one popular heuristic function – Euclidean distance

Carnegie Mellon University
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• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality): 

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility provably follows from consistency and often (not 

always) consistency follows from admissibility

A* Search [Hart, Nillson, Raphael, ‘68]

minimal cost from s to sgoal

Carnegie Mellon University
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• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality): 

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility provably follows from consistency and often (not 

always) consistency follows from admissibility

A* Search [Hart, Nillson, Raphael, ‘68]

minimal cost from s to sgoal

Carnegie Mellon University

More on this in the later lecture

Why triangle inequality?
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• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality): 

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility provably follows from consistency and often (not 

always) consistency follows from admissibility

A* Search [Hart, Nillson, Raphael, ‘68]

minimal cost from s to sgoal

Carnegie Mellon University

Consistency also implies:

h(sgoal,sgoal) = 0 and for every s≠sgoal and s’ , h(s) ≤ c*(s,s’) + h(s’)
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• A*: expands states in the order of f = g+h values

• Uninformed A*: expands states in the order of g values

A*: Uninformed vs. Informed Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;
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A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;
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A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart
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A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)
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A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states
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ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2
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A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states
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ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2}

OPEN = {s1,s4}

next state to expand: s1

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states
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ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1}

OPEN = {s4,sgoal}

next state to expand: s4

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states
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ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}

OPEN = {s3}

done

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1
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ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states
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ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University
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• A*: expands states in the order of f = g+h values

• Uninformed A*: expands states in the order of g values

• Intuitively: f(s) – estimate of the cost of a least cost path 

from start to goal via state s

A*: Uninformed vs. Informed Search

Carnegie Mellon University

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path 

from sstart to s found so far

an (under) estimate of the cost 

of a shortest path from s to sgoal
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• A*: expands states in the order of f = g+h values

• Uninformed A*: expands states in the order of g values

• Intuitively: f(s) – estimate of the cost of a least cost path 

from start to goal via state sA* with h= 0

A*: Uninformed vs. Informed Search

Carnegie Mellon University

sgoal

sstart

Uninformed A*
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• A*: expands states in the order of f = g+h values

• Uninformed A*: expands states in the order of g values

• Intuitively: f(s) – estimate of the cost of a least cost path 

from start to goal via state s

A*: Uninformed vs. Informed Search

Carnegie Mellon University

sgoal

sstart

A* with Heuristics=Euclidean Distance
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• Example on a Grid-based Graph: 

A* Search

Carnegie Mellon University
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Theorem 1. For every expanded state s,  it is guaranteed 

that g(s)=g*(s)

Sketch of proof by induction:
- assume all previously expanded states have optimal g-values

- next state to expand is s: f(s) = g(s)+h(s) – min among states in OPEN

- assume g(s) is suboptimal (we will prove that it is impossible by contradiction)

- then there must be at least one state s’ on an optimal path from start to s such 

that it is in OPEN but wasn’t expanded

- g(s’) + h(s’) ≥ g(s)+h(s)

- but g(s’) + c*(s’,s) < g(s) => 

- g(s’) + c*(s’,s) + h(s) < g(s) + h(s) => (from consistency of h-values)

- g(s’) + h(s’) < g(s) + h(s) => CONTRADICTION

- thus it must be the case that g(s) is optimal

A* Search: Proofs

Carnegie Mellon University
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Theorem 2. Once the search terminates, it is guaranteed that 

g(sgoal)=g*(sgoal)

Sketch of proof:

A* Search: Proofs

Carnegie Mellon University

Proof?
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Theorem 3. Once the search terminates, the least-cost path 

from sstart to sgoal can be re-constructed by backtracking 

(start with sgoal and from any state s backtrack to the predecessor state 

s’ such that                                                    )

Sketch of proof:
- every backtracking step from state s moves to a predecessor state s’ that 

continues to be on a least-cost path (because all predecessors u not on a least-

cost path will have have g(u)+cost(u,s) that are strictly larger than 

g(s’)+cost(s’,s))

A* Search: Proofs

Carnegie Mellon University

)),''()''((minarg' )('' sscsgs spreds += 
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Theorem 4 (complexity). No state is expanded more than 

once by A*

Sketch of proof:

A* Search: Proofs

Carnegie Mellon University

Proof?
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Theorem 5. Given a graph and a heuristic function, A* 

performs a minimal number of expansions to find a 

provably optimal path (provided goal state is always 

expanded first among the states with the same f-values in 

OPEN)

A* Search: Proofs

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Implementation Details of A* Search

Carnegie Mellon University

How to implement OPEN?

How to implement CLOSED?
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Implementation Details of A* Search

Carnegie Mellon University

How to implement OPEN?

How to implement CLOSED?

Typically, a priority queue built using a binary heap

Typically, each state has a Boolean flag indicating 

if it was already closed
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• After search terminates, least-cost path is given by 

backtracking backpointers from sgoal to sstart

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’); bp(s’) = s;

insert s’ into OPEN;

A* Search with Backpointers

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

set all backpointers bp to NULL;

ComputePath();

publish solution; //backtrack least-cost path using backpointers bp
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Support for Multiple Goal Candidates

• How to compute a least-cost path to any one of the possible goals?

– Example 1: Computing a least-cost path to a parking spot given multiple parking 

spaces (some are better, some are worse, some are closer, some are further)

– Example 2: Catching a moving target whose future trajectory is known (i.e., 

multiple potential intercept points)

– Example 3: Mapping/exploration (covered in future lectures)

Carnegie Mellon University
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A* Search

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; 

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 Sgoal1

4

g=

h=1

g= 

h=0

S4 Sgoal2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

How to find a least-cost path that is 

lowest across all possible goals?
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Introducing “imaginary” goal

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; 

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

1

1

Equivalent problem but with a single goal!

g= 

h=0
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Introducing “imaginary” goal

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; 

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Equivalent problem but with a single goal!

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

1

1

g= 

h=0

How to prove it?
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Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; 

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 Sgoal1

4

g=
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h=0

S4 Sgoal2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

What if some goals 

are better than others?
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Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; 

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 Sgoal1

4

g=

h=1

g= 

h=0

S4 Sgoal2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

What if some goals 

are better than others?

goalcost=3

goalcost=5
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Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; 

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

5

3

g= 

h=0

Equivalent problem but with a single goal!

How to prove it?
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Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; 

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

5

3

g= 

h=0

Once the graph transformation is done, 

you can run A* search 

(or any other search for that matter)
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Support for “unequal” goals

Carnegie Mellon University

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution; 

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S3 S1

4

g=

h=1

g= 

h=0

S4 S2

1

g= 

h=1

g= 

h=0

Sstart

1

1

g=0

h=2

2

Sgoal

5

3

g= 

h=0

Once the graph transformation is done, 

you can run A* search 

(or any other search for that matter)

Any impact on how 

heuristics is computed?
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What You Should Know…

• Operation of A*

• Understand why A* returns an optimal solution (e.g., understand the 

sketch of proof)

• Theoretical properties of A*

• Properties of heuristics (e.g., admissibility, consistency)

• Multi-goal A*

Carnegie Mellon University
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