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Uninformed A* Search

« Computes g*-values for relevant (not all) states

Main function

g(S..,) = 0, all other g-values are infinite;, OPEN = {s_, .},
ComputePath();

publish solution; //compute least-cost path using g-values

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest g(s) from OPEN;
expand s;

@—@ |

%@
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Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s, . 1s not expanded and OPEN # 0)

goal
remove s with the smallest g(s) from OPEN;,
isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

it g(s’) > g(s) +c(s,s)

g(s’) = g(s) +c(s.s);
%@

insert s ' into OPEN;
Carnegie Mellon University 3



Uninformed A* Search

« Computes g*-values for relevant (not all) states

ComputePath function
while(s, . 1s not expanded and OPEN # 0)

goal
remove s with the smallest g(s) from OPEN;,

isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED

if g(s’) > g(s) + c(s,s’
8(5) > 865) + <5 /l@tgmf@

g(s’) = g(s) + c(s,8);

insert s ” into OPEN;
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A* Search [Hart, Nillson, Raphael, ‘68]

« Computes optimal g-values for relevant states

at any point of time:

the cost of a shortest path

from s, to s found so far

start

/g(s)

.
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an (under) estimate of the cost

of a shortest path from s 10 s,
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A* Search [Hart, Nillson, Raphael, ‘68]

« Computes optimal g-values for relevant states

at any point of time:

heuristic function

| o)

L

6w

one popular heuristic function — Euclidean distance
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A* Search [Hart, Nillson, Raphael, ‘68]

minimal cost from s 10 s,

« Heuristic function must be:
— admussible: for every state s, /1(s) < c*(s,5,,,)
— consistent (satisfy triangle inequality):
RS gourSgoa) = 0 and for every s#s,,,, h(s) < c(s,succ(s)) + h(succ(s))

— admussibility provably follows from consistency and often (not
always) consistency follows from admissibility
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A* Search [Hart, Nillson, Raphael, ‘68]
minimal cost from s to s

goal

« Heuristic function must be:
— admussible: for every state s, i(s) < c*(s,8,,,)
— consistent (satisfy triangle inequality) -
RS gourSgoa) = 0 and for every s#s,,,, h(s) < c(s,succ(s)) + h(succ(s))
— admussibility provably follows from consistency and often (not
always) consistency follows from admissibility

More on this in the later lecture
1T
T 11 |
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A* Search [Hart, Nillson, Raphael, ‘68]

minimal cost from s 10 s,

Heuristic function must be:
— admussible: for every state s, i(s) < c*(s,8,,,)
— consistent (satisfy triangle inequality):
RS gourSgoa) = 0 and for every s#s,,,, h(s) < c(s,succ(s)) + h(succ(s))

— admussibility provably follows from consistency and often (not
always) consistency follows from admissibility

Consistency also implies

@ = 0 and for every s5,,, and s’, h(s) <c*(s,s’) + h(s’)
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A*: Uninformed vs. Informed Search

* A*: expands states in the order of f= g+h values
« Uninformed A*: expands states in the order of g values

Carnegie Mellon University
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A* Search

« Computes optimal g-values for relevant states

Main function

g(S..,) = 0, all other g-values are infinite;, OPEN = {s_, .},
ComputePath();

publish solution;

ComputePath function

while(s,,, 1s not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
expand s; o
=1
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

g=x g= ®

h=2 h=1
20 (),
@ 1 Sgoa

—@/
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

OPEN = {Sguyf

next state to expand: s, .. @ @/

g
h=
=0 (s >_. .
CLOSED = {} , | % }glzo
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s, . 1s not expanded and OPEN # 0)

goal
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

. y _|_ ’
lfg(S’) > g(s) C(S’S’) g(53) > &(Ssar) T (S5
g(s’) =g(s) +c(s,s), /
insert s ' into OPEN;
= 00
=1

OPEN = {Sguyf

next state to expand: s, .. @
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

ji
w D

Q:

w2

C,@#@K 8
o
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

g= oo
h=1I
g=0 @—. g=
— h:3 2 h=0
CLOSED ={s,,.}
OPEN = {s,} &

next state to expand: s, @ @/
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

ji
w D

Q:

CL OSE D {S start’ }

@ % ‘220
OPEN = {s,s,} ,

next state to expand: s, @ @/

w2
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@—
CLOSED = {5,555} , % h=0

NOQ
Il
on

OPEN = {54800/

next state to expand: s, @ @/

Carnegie Mellon University h 2 /’l ] 18



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@—
CLOSED = {s, . .,5,5,5, , % h=0

NOQ
Il
on

OPEN = {s 3,Sg0al}

next state to expand: S g0al @ @/
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

g=3
h=I
g=0 @—> g=)
B h=3 2 p=0
CLOSED = {sm,sz,sl,s4,sgoaz}
OPEN = {s,} =

done _» @/
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s " into OPEN;,

g=1 g=3
h=2 ) h=1
TR O RN G
h=3 % h—0
|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound —>3 @/

we can now compute a least-cost path g=2 g=5
Carnegie Mellon University /h=2 h=1 21



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s " into OPEN;,

g=1 g=3
h=2 ) h=1
0 G, e
h=3 % h=0
e |
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound _ 3 @ /

we can now compute a least-cost path g=2 g=5
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A*: Uninformed vs. Informed Search

* A*: expands states in the order of f= g+h values

« Uninformed A*: expands states in the order of g values

* Intuitively: f(s) — estimate of the cost of a least cost path
from start to goal via state s

an (under) estimate of the cost
of a shortest path from s to s

goal

the cost of a shortest path
from s, . to s found so far

start

/g(S) —

—=a A

h(s)
—®—.
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A*: Uninformed vs. Informed Search

* A*: expands states in the order of f= g+h values
« Uninformed A*: expands states in the order of g values

* Intuitively: f(s) — estimate of the cost of a least cost path
from start to goal via state s

A* with Heuristics=Euclidean Distance

Carnegie Mellon University
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A* Search

« Example on a Grid-based Graph:

h(Céll <X,y>) — max(|x- goall’ y_ygoal|)
A B C D E F
8-connected grid 1
h=5| h=4| h=3| h=2| h=1| h=I goal
4 4l
T /1v 4 2| b3 h=d h=3 h=2 h1| no]
1‘{4— 1 3 | h=5| h=4 h=1| h=1
v 11 ﬁ‘ 4| h=5| h=4{ h=3 h—2| h=2| h=2
/
robot
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A* Search: Proofs

Theorem 1. For every expanded state s, it is guaranteed
that g(s)=g*(s)

Sketch of proof by induction:

assume all previously expanded states have optimal g-values
next state to expand is s: f(s) = g(s)+h(s) — min among states in OPEN
assume g(s) is suboptimal (we will prove that it is impossible by contradiction)

then there must be at least one state s’ on an optimal path from start to s such
that it is in OPEN but wasn’t expanded

g(s) + h(s’) 2g(s)th(s)

but g(s’) + c*(s’,s) < g(s) =>

g(s’) +c*(s’,s) + h(s) < g(s) + h(s) => (from consistency of h-values)
a(s’) + h(s’) < g(s) + h(s) => CONTRADICTION

thus it must be the case that g(s) is optimal
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A* Search: Proofs

Theorem 2. Once the search terminates, it 1s guaranteed that
&(5g0a) =8 *(8 gouat)

Sketch of proof:
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A* Search: Proofs

Theorem 3. Once the search terminates, the least-cost path
from s, t0 5,,, can be re-constructed by backtracking

start
(start with s, and from any state s backtrack to the predecessor state
s” such that s'=argmin ,_ ., (g(s") +c(s",5)))

Sketch of proof:

- every backtracking step from state s moves to a predecessor state s’ that
continues to be on a least-cost path (because all predecessors u not on a least-
cost path will have have g(u)+cost(u,s) that are strictly larger than

g(s’)+cost(s’,s))
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A* Search: Proofs

Theorem 4 (complexity). No state 1s expanded more than
once by A*

Sketch of proof:
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A* Search: Proofs

Theorem 5. Given a graph and a heuristic function, A*
performs a minimal number of expansions to find a
provably optimal path (provided goal state is always

expanded first among the states with the same f-values in
OPEN)
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Implementation Details of A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s, , 1s not expanded and OPEN # 0)

oal
remoie s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
8(5) = 8() + 5 ); -

insert s ' into OPEN;
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Implementation Details of A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s, , 1s not expanded and OPEN # 0)

goal
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

ifg(s’) > g(s) + c(s,s)

insert s ” into OPEN;
Typically, a priority queue built using a binary heap

Typically, each state has a Boolean flag indicating
if it was already closed
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A* Search with Backpointers

« After search terminates, least-cost path 1s given by
backtracking backpointers from s, to s

goa start
Main function

g(S,.» = 0, all other g-values are infinite; OPEN = {s, .},

set all backpointers bp to NULL;

ComputePath();

publish solution; //backtrack least-cost path using backpointers bp
ComputePath function
while(s,,,, 1s not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
if g(s’) > g(s) + c(s.s”)
g(s) =g(s) +c(s,s); bp(s’) =s;
insert s into OPEN;
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Support for Multiple Goal Candidates

 How to compute a least-cost path to any one of the possible goals?

Example 1: Computing a least-cost path to a parking spot given multiple parking
spaces (some are better, some are worse, some are closer, some are further)

Example 2: Catching a moving target whose future trajectory is known (i.e.,
multiple potential intercept points)

Example 3: Mapping/exploration (covered in future lectures)
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A* Search

Main function

2(Sgqy) = 0, all other g-values are infinite;, OPEN = {s,,,,.}
ComputePath();

publish solution;

ComputePath function
while(s,, ,; 1s not expanded and OPEN # 0)

goal

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
if g(s) > g(s) +c(ss)
g(s’) =g(s) +c(s,s);
insert s’ into OPEN;

Carnegie Mellon University
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Introducing “imaginary” goal

Main function
2(Sgqy) = 0, all other g-values are infinite;, OPEN = {s,,,,.}

ComputePath();

publish solution;

ComputePath function @blem but with@
while(s,,,, is not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
ifg(s) > g(s) +c(s.s)
g(s’) =g(s) +c(s,s);
insert s’ into OPEN;

Carnegie Mellon University



Introducing “imaginary” goal

Main function
2(Sgqy) = 0, all other g-values are infinite;, OPEN = {s,,,,.}

ComputePath();

publish solution;

ComputePath function @blem but with@
while(s,,,, is not expanded and OPEN # 0)

remove s with the smallest [f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED; -
for every successor s’ of s such that s 'not in CLOSED

ifg(s) > g(s) +c(s.s)

g(s) =g(s) tcs.s);
insert s " into OPEN,;
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Support for “unequal” goals

Main function

2(Sgqy) = 0, all other g-values are infinite;, OPEN = {s,,,,.}
ComputePath();

publish solution;

ComputePath function
while(s,,,, is not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
if g(s) > g(s) +c(ss)
g(s’) =g(s) +c(s,s);
insert s’ into OPEN;

oy

T
8
T
8

Carnegie Mellon University

39



Support for “unequal” goals

Main function

g(Sya) = 0, all other g-values are infinite; OPEN = {s,,,.},
ComputePath();

publish solution;

ComputePath function
while(s,, ,; 1s not expanded and OPEN # 0)

goal

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
if g(s) > g(s) +c(ss)
g(s’) =g(s) +c(s,s);
insert s’ into OPEN;

=X g= @
h=1 h=0
@#» S goul goalcost=3
1 2
—1> goalcost=35
g~ X = ®©
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Support for “unequal” goals

Main function
2(Sgqy) = 0, all other g-values are infinite;, OPEN = {s,,,,.}

ComputePath();

publish solution;

ComputePath function @blem but with@
while(s,,,, is not expanded and OPEN # 0)

remove s with the smallest [f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED; -
for every successor s’ of s such that s 'not in CLOSED

ifg(s) > g(s) +c(s.s)

g(s) =g(s) tcs.s);
insert s " into OPEN,;
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Support for “unequal” goals

Main function

g(Sya) = 0, all other g-values are infinite; OPEN = {s,,,.},
ComputePath();

publish solution;

ComputePath function
while(s,,,, is not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
ifg(s) > g(s) +c(s.s)
g(s’) =g(s) +c(s,s);
insert s’ into OPEN;

Once the graph transformation is done,
you can run A* search
or any other search for that matter
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Support for “unequal” goals

Main function

g(Sya) = 0, all other g-values are infinite; OPEN = {s,,,.},
ComputePath();

publish solution;

ComputePath function
while(s,,,, is not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN:;
insert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
if g(s) > g(s) +c(ss)
g(s’) =g(s) +c(s,s);
insert s’ into OPEN;

Once the graph transformation is done,
you can run A* search
or any other search for that matter
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What You Should Know...

Operation of A*

Understand why A* returns an optimal solution (e.g., understand the
sketch of proof)

Theoretical properties of A*

Properties of heuristics (e.g., admissibility, consistency)

Multi-goal A*
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