16-350
Planning Techniques for Robotics

Case Study:
Planning for Autonomous Driving

Maxim Likhachev
Robotics Institute
Carnegie Mellon University
Typical Planning Architecture for Autonomous Vehicle

- **Route Planner**
 - Input: world model
 - Output: next road segment to follow

- **Lane Trajectory Planner**
 - Input: world model, perception data
 - Output: trajectory represented as series of \(<x, y, \theta, v> \) points

- **Path/Motion Planner for Free Spaces**
 - Input: world model, perception data
 - Output: trajectory represented as series of \(<x, y, \theta, v> \) points

- **Trajectory Follower & Low-level Collision Avoidance**
 - Input: world model, perception data
 - Output: Control inputs (e.g., speed and steering angle) for execution
Typical Planning Architecture for Autonomous Vehicle

How do you think the graph is constructed?
Typical Planning Architecture for Autonomous Vehicle

- **Route Planner**
 - next road segment to follow
- **Lane Trajectory Planner**
 - world model
- **Path/Motion Planner for Free Spaces**
 - world model

Planning states defined by: \(x, y, \Theta, v \)

Tartanracing, CMU
Typical Planning Architecture for Autonomous Vehicle

Lane Trajectory Planner

- World model perception data
- Trajectory represented as series of \(<x, y, \theta, v> \) points

Trajectory Follower & Low-level Collision Avoidance

- World model perception data
- Control inputs (e.g., speed and steering angle) for execution
- Trajectory represented as series of \(<x, y, \theta, v> \) points

for Free Spaces

perception data
How do you think the graph is constructed?

Lane Trajectory Planner

Trajectory represented as series of \(x, y, \theta, v \) points

Trajectory Follower & Low-level Collision Avoidance

Control inputs (e.g., speed and steering angle) for execution

world model perception data

perception data

perception data

trajectory represented as series of \(x, y, \theta, v \) points
planning states defined by: discretization along a lane (=x) and perpendicular to it (=y), lane ID, v, time
Typical Planning Architecture for Autonomous Vehicle

We’ll look into the version used for Urban Challenge in ‘07 [Likhachev & Ferguson, ‘09]
Motivation

• Planning **long complex maneuvers** for the Urban Challenge vehicle from CMU (Tartanracing team)

![Urban Challenge vehicle](image)

• Planner suitable for
 – autonomous parking in very large (200m by 200m) cluttered parking lots
 – navigating in off-road conditions
 – navigating cluttered intersections/driveways
Desired Properties

• Generate a path that can be tracked well (at up to 5m/sec):
 – path is a 4-dimensional trajectory:
 \[(x, y, \theta, v)\]
 - orientation
 - speed
Desired Properties

• Generate a path that can be tracked well (at up to 5m/sec):

 - path is a 4-dimensional trajectory:
 \[
 (x, y, \theta, v)
 \]
 \[\text{orientation} \quad \text{speed}\]

 Orientation of the wheels is not included. When will that be a problem?
Desired Properties

• Fast (2D-like) planning in trivial environments:

200 by 200m parking lot
Desired Properties

- But can also handle large non-trivial environments:

200 by 200m parking lot
Desired Properties

- Anytime property: finds the best path it can within X secs and then improves the path while following it.
Desired Properties

- Fast replanning, especially since we need to avoid other vehicles

planning a path that avoids other vehicles
Desired Properties

- Fast replanning, especially since we need to avoid other vehicles

Time is not part of the state-space. When will that be a problem?
The Approach

• Define an Implicit graph
 – multi-resolution version of a lattice graph

• Search the graph for a least-cost path
 – Anytime D* (ARA* + D* Lite)
Building the Graph

- Lattice-based graph:

 - Each transition is feasible (constructed beforehand)
 - Outcome state is the center of the corresponding cell

(action template)

\[(x, y, \theta, v) \]
Building the Graph

- Lattice-based graph:
 - Outcome state is the center of the corresponding cell
 - Each transition is feasible (constructed beforehand)
 - Action template

(x, y, \theta, v) \rightarrow \text{replicate it online}
Building the Graph

• Lattice-based graph:

 outcome state is the center of the corresponding cell

 each transition is feasible (constructed beforehand)

 we will be searching this graph for a least-cost path from \(s_{\text{start}} \) to \(s_{\text{goal}} \)

\[(x, y, \theta, v) \]

replicate it online
Building the Graph

• Multi-resolution lattice:
 – high density in the most constrained areas (e.g., around start/goal)
 – low density in areas with higher freedom for motions

most constrained areas
Building the Graph

• The construction of multi-resolution lattice:
 – the action space of a low-resolution lattice is a strict subset of the action space of the high-resolution lattice

reduces the branching factor for the low-res. lattice
Building the Graph

- The construction of multi-resolution lattice:
 - the action space of a low-resolution lattice is a strict subset of the action space of the high-resolution lattice
 - reduces the branching factor for the low-res. lattice
 - the state-space of a low-resolution lattice is discretized to be a subset of the possible discretized values of the state variables in the high-resolution lattice
 - reduces the size of the state-space for the low-res. lattice
 - both allow for seamless transitions
Building the Graph

- Multi-resolution lattice used for Urban Challenge:

 dense-resolution lattice

 36 actions, 32 discrete values of heading 0.25m discretization for x,y

 low-resolution lattice

 24 actions, 16 discrete values of heading 0.25m discretization for x,y
Building the Graph

• Properties of multi-resolution lattice:
 – utilization of low-resolution lattice: every path that uses only the action space of the low-resolution lattice is guaranteed to be a valid path in the multi-resolution lattice

 – validity of paths: every path in the multi-resolution lattice is guaranteed to be a valid path in a lattice that uses only the action space of the high-resolution lattice
Building the Graph

• Benefit of the multi-resolution lattice:

<table>
<thead>
<tr>
<th>Lattice</th>
<th>States Expanded</th>
<th>Planning Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-resolution</td>
<td>2,933</td>
<td>0.19</td>
</tr>
<tr>
<td>Multi-resolution</td>
<td>1,228</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Searching the Graph

• Anytime D*:
 – anytime incremental version of A*

 – **anytime**: computes the best path it can within provided time and improves it while the robot starts execution.

 – **incremental**: it reuses its previous planning efforts and as a result, re-computes a solution much faster
Searching the Graph

• Anytime D*: computes a path reusing all of the previous search efforts

 - set ε to large value;
 - until goal is reached
 ComputePathwithReuse();
 publish ε-suboptimal path for execution;
 update the map based on new sensory information;
 update current state of the agent;
 - if significant changes were observed
 increase ε or replan from scratch;
 - else
 decrease ε;

 makes it improve the solution

guarantees that
$\text{cost}(\text{path}) \leq \varepsilon \text{ cost(optimal path)}$

desired bound on the
Searching the Graph

- Anytime behavior of Anytime D*:

![Diagram showing solution cost and time](image)

- Solution cost and time graph:
 - Cost: 133,736
 - Time: 0.3 s
 - ε: 3.0
 - # expands: 1,715

- Solution cost and time graph:
 - Cost: 77,345
 - Time: 0.6 s
 - ε: 1.0
 - # expands: 14,132
Searching the Graph

- Incremental behavior of Anytime D*:

 initial path

 a path after re-planning
Searching the Graph

• Performance of Anytime D* depends strongly on heuristics $h(s)$: estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)
Searching the Graph

- Performance of Anytime D* depends strongly on heuristics $h(s)$: estimates of cost-to-goal

$S = (x, y, \theta, v)$

$h(s)$

S_{goal}

Any ideas?

should be consistent and admissible (never overestimate cost-to-goal)
Searching the Graph

- In our planner: $h(s) = \max(h_{\text{mech}}(s), h_{\text{env}}(s))$, where
 - $h_{\text{mech}}(s)$ – mechanism-constrained heuristic
 - $h_{\text{env}}(s)$ – environment-constrained heuristic

$h_{\text{mech}}(s)$ – considers only dynamics constraints and ignores environment

$h_{\text{env}}(s)$ – considers only environment constraints and ignores dynamics
Searching the Graph

- In our planner: $h(s) = \max(h_{mech}(s), h_{env}(s))$, where
 - $h_{mech}(s)$ – mechanism-constrained heuristic
 - $h_{env}(s)$ – environment-constrained heuristic

$h_{mech}(s)$ – considers only dynamics constraints and ignores environment

$h_{env}(s)$ – considers only environment constraints and ignores dynamics

pre-computed as a table lookup for high-res. lattice

computed online by running a 2D A* with late termination
Searching the Graph

- In our planner: $h(s) = \max(h_{mech}(s), h_{env}(s))$, where
 - $h_{mech}(s)$ – mechanism-constrained heuristic
 - $h_{env}(s)$ – environment-constrained heuristic

$h_{mech}(s)$ – considers only dynamics constraints and ignores environment

$h_{env}(s)$ – considers only environment constraints and ignores dynamics

pre-computed as a table lookup for high-res. lattice

computed online by running a 2D A* with late termination
Searching the Graph

• In our planner: \(h(s) = \max(h_{mech}(s), h_{env}(s)) \)

• \(h_{mech}(s) \) – admissible and consistent

• \(h_{env}(s) \) – admissible and consistent

• \(h(s) \) – admissible and consistent

Theorem. The cost of a path returned by Anytime D* is no more than \(\varepsilon \) times the cost of a least-cost path from the vehicle configuration to the goal configuration using actions in the multi-resolution lattice, where \(\varepsilon \) is the current value by which Anytime D* inflates heuristics.
Searching the Graph

• Benefit of the combined heuristics:

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>States Expanded</th>
<th>Planning Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment-constrained only</td>
<td>26,108</td>
<td>1.30</td>
</tr>
<tr>
<td>Mechanism-constrained only</td>
<td>124,794</td>
<td>3.49</td>
</tr>
<tr>
<td>Combined</td>
<td>2,019</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Optimizations

- Pre-compute as much as possible
 - convolution cells for each action for each initial heading
Results

• Plan improvement

Tartanracing, CMU
Results

- Replanning in a large parking lot (200 by 200m)

Tartanracing, CMU
What You Should Know…

• Typical hierarch of planners used in self-driving

• Multi-resolution lattice

• Benefits of anytime and incremental planning

• Ways to generate informative heuristics for motion planning for self-driving