15-466 Computer Game Programming
Fall 2011
Project 4

For this assignment you will be implementing a checkers game from the ground up
for a mobile device. This project will involve several components: visualization of
the game, user interface, the game mechanics (rules), and an Al player. We have
simplified the rules of the game slightly so that you don’t have to focus on the Al as
much as the other parts.

Rules

've taken the rules of the game of checkers from here (credit to Erik Arneson):
http://boardgames.about.com/cs/checkersdraughts/ht/play_checkers.htm

['ve put our changes in bold. We are basically disallowing multiple jumps.

1.

v

®©

Checkers is played by two players. Each player begins the game with 12
colored discs. (Typically, one set of pieces is black and the other red.)

The board consists of 64 squares, alternating between 32 dark and 32 light
squares. It is positioned so that each player has a light square on the right
side corner closest to him or her.

Each player places his or her pieces on the 12 dark squares closest to him or
her.

Black moves first. Players then alternate moves.

Moves are allowed only on the dark squares, so pieces always move
diagonally. Normal pieces are always limited to forward moves (toward the
opponent).

A piece making a non-capturing move (not involving a jump) may move only
one square.

A piece making a capturing move (a jump) leaps over one of the opponent's
pieces, landing in a straight diagonal line on the other side. Only one piece
may be captured in a single jump. We are not allowing multiple jumps.
When a piece is captured, it is removed from the board.

If a player is able to make a capture, there is no option -- the jump must be
made. If more than one capture is available, the player is free to choose
whichever he or she prefers.

10. When a piece reaches the furthest row from the player who controls that

piece, it is crowned and becomes a king. You should some how show the
piece is “crowned”.

11. Kings are limited to moving diagonally, but may move both forward and

backward. (Remember that single pieces, i.e. non-kings, are always limited to
forward moves.)

12. In addition to moving, kings may also capture forward and backward

(diagonally), but still only one jump is allowed.

13. A player wins the game when the opponent cannot make a move. In most

cases, this is because all of the opponent's pieces have been captured, but it
could also be because all of his pieces are blocked in.

Visualizations

You are free to make the appearance of the game whatever you like as long as it is
still relatively clear how to play checkers on it. It is possible to make all of the
visuals from within Unity by using basic shapes (cubes, cylinders, etc.) and coloring
them with basic rgb materials. You are free to make your own textures for your
objects outside of Unity (Photoshop, Gimp, etc). You may also model your own
objects (Maya, Blender, etc.) or use content from online (as long as you cite them).
Here are some links to 3D models should you choose to use them.
http://www.blendswap.com/

http://www.turbosquid.com/
http://e2-productions.com/repository/modules/PDdownloads/topten.php?list=hit

Interface

The basic interface of the game will involve tapping on the screen of a mobile device
to select the piece you want to move and then tapping again to tell it where to go (in
accordance with the rules). You may change the interface to work some other way,
but if you do your game must provide clear instructions on how the interface
works.

Conveniently, a single block of unity code allows you to do this on a tablet as well as
with the mouse on your computer. Therefore, you should be able to test your code
on your computer using the mouse and when you put it on a mobile device, the
interface should work with no changes to the code. Here is the code for getting what
GameObject the player has clicked on (this is the only code we will be giving you for
the assignment).

//check if the user clicked
if(Input.GetMouseButtonDown(0)){
//take the pixel clicked in the screen image and covert it to a ray
Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
RaycastHit hitInfo = new RaycastHit();
//ray trace and return true if it collides with a GameObject’s collider
if(Physics.Raycast(ray, out hitinfo)){
//when Physics.Raycast succeeds, it fills out the hitInfo object
//get the GameObject that the collider belongs to
GameObject g = hitInfo.collider.gameObject;
//print out the GameObject’s name
Debug.Log(g.name);

}

The way this code works is by raycasting out of the game’s main camera through the
pixel the user clicked on. The ray stops at the first collider it hits. If you want an
object to not be clickable (the ray to pass through it) then turn off it’s collider. On
the other hand if you want the user to be able to click on it (like a game piece or
board square) make sure it has a collider component that covers all parts of the
object that the user can click on. This is generally set up by default when using a

basic Unity object like cube or cylinder. However, it may not be the case for an
arbitrary 3D model you download.

Al Player

You will have an Al player, which the user can play against. Your player must abide
by the rules of the game and should play reasonably well. You may use any approach
you would like for the Al though we recommend a game tree of some kind
(minimax, negamax, alpha-beta pruning).

Extra Credit

We are hoping you will spend a substantial amount of time on the extra credit of this
assignment. Extra credit will be awarded to students for adding audio or fancier
visual effects to the game. You can also get extra credit for making use of mobile
device hardware (accelerometer, gyro, cameras, etc) or coming up with a better or
more fun user interface. We will be giving out up to 30% extra credit and the
number points you get will be based on how cool your bells and whistles are
compared to your classmates. Imagine you are writing a game for a competitive
market, and your goal is to make the game as cool as possible, so that users choose
your game over the others. Be creative and have fun!

Mobile Device

We have purchased Acer Iconia Tabs, which you will be able to use to try your game
on a mobile device. These tablets have a 7-inch display and run android
(honeycomb). The free version of Unity does not allow you to compile your code for
mobile devices. We will have laptops in our lab (NSH 1612) which have the full
version that you can use to do this. If you want to be able to do it yourself you can
either purchase Unity or use your free 30-day trial. Also, if you would prefer to use
your own android device (instead of ours) you may.

You should be able to make and debug your game using your own computers and
then it should port easily to the mobile device. The only change I made was zooming
out the main camera a bit to accommodate the smaller screen. The only exception
would be if you choose to use some additional tablet hardware for the extra credit
(then you may need to spend more time with the device).

What to submit
* A short write-up. I'm expecting less than a page and certainly no more than
two (your game should speak for itself!). Briefly indicate how your Al works
and then talk about anything interesting you implemented!
* Avideo showing your game in action. This can be recorded on your computer
or on a mobile device.
* Your code

Grading

25% The game state is visualized in an understandable way

20% The user interface works and pieces move according to the rules of the game
35% The Al player performs reasonably well

10% The game runs on one of our mobile devices

5% Your write-up

5% Your video

Extra Credit will be given out as described above (up to 30%).

