
15-466 Computer Game Programming
Project 1

For this assignment, you will be implementing in Unity some simple movement behaviors for virtual
agents.

1.) Movement Behaviors

We have provided a Unity project you must use as a framework for your code. It includes a couple of
simple environments, a 3d human character model (10 instances of it), and a framework for switching
environments and resetting the simulation. A download link will be emailed and will be available on
Max's class website.

To complete this part of the assignment, you need to find "BehaviorScript.cs" and fill in the blanks in
the switch statement inside the UpdateDesiredVelocity() method. There is a switch case for each
behavior you have to implement. That method returns, for every frame, the desired velocity for the
currently selected behavior. In class on 9/13 we may update the list of required behaviors.

Read the comments we have left for you in "BehaviorScript.cs"

Feel free to modify parts of the script outside of the UpdateDesiredVelocity() method itself. For
example, if you want to remember something between frames, add public or private members to that
script's class and use them to save information between frames. If you add anything outside of that
script, please make note of your changes in your submission. It also might not be a bad idea to talk to
John (drake@seas.upenn.edu) if you are thinking of changing something outside of that script. I do not
think you should have to.

We have provided for you, at the top of "BehaviorScript.cs", a variable name “goalRef”. Every time
the level is changed, the “LevelConfigurationScript” loads each character's goal GameObject into its
corresponding “goalRef”. For this assignment, you may assume that goalRef doesn't change after
initialization, however if you use this reference instead of caching its position, you could form complex
behaviors like “follow” by affixing one character's goal to something that moves.

Read the appendix section at the end of this document for more detailed information on how the
provided Unity project is set up and for tips.

2.) Obstacle Avoidance

On top of the behaviors themselves, you must also implement obstacle avoidance. Obstacle avoidance
should take some level of priority over the movement behaviors. That is, if a movement behavior
would have the character walk through a wall, do not allow the character to walk through the wall. Do
not rely on the physics engine for this; in grading, all collider components in obstacles will surely be
disabled or absent. It is okay if this produces situations where a character appears confused and stuck,
like in a maze. Later assignments will look at more intelligent movement.

Also, do not let characters fall off the edges of the map. For now, you can assume the map ground
planes will always be centered at the origin and have dimensions of 200m x 200m.

mailto:drake@seas.upenn.edu

For this assignment we will assume that all obstacles are cylindrical in shape (oriented vertically). We
have prepared for you two lists named “obstacleRefs” and “obstacleCollisionCylinderRefs” at the top
of "BehaviorScript.cs" for you to access the locations and sizes of the obstacles. You actually may only
need the latter list.

obstacleCollisionCylinderRefs[0].transform.position
yields the position of the collision cylinder for obstacle 0.

obstacleCollisionCylinderRefs[0].transform.lossyScale
yields the approximate scale (in world units) of the collision cylinder for obstacle 0. It is only

approximate because combinations of rotations and scale transformations in the hierarchy above that
collision cylinder might skew its shape. For our purposes, and since this is a cylinder, we should never
encounter this skewing or squashing (as long as you do not scale your obstacles non-uniformly), so you
can read either the X or Z component of lossyScale as the diameter of the collision cylinder.

3.) Documentation

Explain in a few short paragraphs what approach you took for each implemented behavior. Pseudocode
is not good enough; please use English.

Also, if you changed anything outside of the "BehaviorScript.cs" file, please let us know so that we do
not inadvertently break your project.

4.) Submission

Submit your entire Unity project by compressing it into a .zip or .rar archive. .tar.gz/.tgz is fine too.
If you have time, use a screen-recording program like CamStudio or Fraps (my favorite; works the
best) to record a short video of characters walking with each of your implemented movement behaviors
and include these in your submission archive. This is not required, but it may help resolve problems or
confusion while grading and would only act in your favor.

It will probably be too large to email it to John, so we are working on setting up something else. Look
for an email in the next few days about submission for Project 1.

The deadline is September 20 at 11:59PM

Grading Criteria

Your submission will be graded on these criteria:
– realism of the motion (e.g., no instantaneous velocity switching, no oscillations, no

collisions, no slowdowns due to computationally-intensive operations)
– concise/clear documentation
– support for all the required behaviors

Appendix: The Provided Unity Project

We will try to explain how the project is initially laid out and try to point out some tips and limitations
here. If you have any doubts, please email John (drake@seas.upenn.edu).

Scenes

To open the project, open “InitialScene.unity” in the “ProjectFiles\Assets\P1 Scenes” directory. To
change scenes while the game is running, click the “Show Load Buttons” button on the GUI.

“InitialScene.unity” has as its roots a blank flat environment (“Ground”), an object called “Level
Configuration”, and an aptly-named object “Stuff that won't get destroyed as levels are loaded”.

As you might expect, the things which are organized within “Stuff that won't get destroyed as levels are
loaded” do not get destroyed when one level is loaded to replace the current level. This behavior is
courtesy of the “Don't Unload Me Script” script which is attached as a component to the “Stuff that
won't get destroyed as levels are loaded” object (you can see it there in the Inspector view). We put the
characters, camera, and sun light in there so that they do not have to be specified in each and every
level file. However, “Level Configuration” and its children must be present in every Scene (level file).
In this way, the Scenes or “Levels” which are not “Initial Scene” represent different simulation
configurations.

Loading “Initial Scene” is a special case: everything is destroyed (even the stuff in “Stuff that won't get
destroyed as levels are loaded”) so that when it is loaded, the things in “Stuff that won't get destroyed
as levels are loaded” are not duplicated as that scene is loaded on top of itself.

“Level Configuration” is organized into “Goals,” “Start Positions,” “Obstacles,” and “Behaviors”.
“Start Positions” are numbered to correspond with the characters in the scene. So, there should be at
least as many starting position objects as characters. The start position objects are flattened cylinders
with their Collider physics Components removed (so that characters can walk through them). The goal
objects are similar. “Behaviors” are also numbered to correspond with the characters in the scene.
Each “Behavior” GameObject has a “BehaviorContainer” script Component attached to it. This script
merely serves to hold a public variable named “Behavior” by which you can change the movement
behavior the corresponding character should perform. Its value is returned when you call
getDesiredBehavior() in "BehaviorScript.cs".

If you select “Level Configuration” you will see in the Inspector window that there is a script attached
to it. I wrote this to perform some setup actions whenever a level is loaded. This includes moving
characters to their start positions from wherever they happened to be before and starting the characters'
controller scripts (which starts them moving, which starts calling the code you write in
"BehaviorScript.cs"). In the inspector, you will see a “Number of Characters To Search For”
parameter. It should be left at 10, to match the number of characters instantiated in the scene.

Virtual Character

The included virtual character object is from the standard assets provided with Unity. It is already
textured, rigged, and animated; you will only have to write code. We modified the Unity-provided
controller script to take inputs from your code instead of keyboard or joystick input. We also changed
some of the tuning parameters to reduce smoothing effects, making the character respond essentially

instantaneously to changes in the output of your movement behavior code.

You probably want to leave the character objects alone except to edit their "BehaviorScript.cs" file. If
their placement makes it hard to click on something like a start or goal point, feel free to move the
character object out of the way. The “Level Configuration” script will reset the character's position
when the simulation starts anyway. When you edit the "BehaviorScript.cs" script, it changes it for all
characters (you don't have to go through changing the script for each character).

It would be in your best interest not to rename the characters, or a lot of the setup done in “Level
Configuration” will fail, since it looks for character objects by their names. The same precaution goes
for start and goal points; don't rename them. If you rename something and then stuff breaks, try
reverting the name change.

Creating a Custom Level/Environment

Copy one of the existing scenes which are not “Initial Scene” and give it a new name. Move around
the starting points and goals as you like. Move around obstacles as you like. Copy obstacles to make
new ones. The root of each obstacle must have the “Obstacle” tag selected at the top of the Inspector.
Change the Behavior object settings as you like. If you try to run the game, it will not automatically
recognize your new level. To get it to show up in the level load list that appears on the game's GUI
when the “Show Load Buttons” button is clicked, open your new custom scene and then click on “File-
>Build Settings”. On the window which pops up, click the “Add Current” button or drag your scene
from the Project pane onto the list. You can reorder the levels by dragging them around in the list.
Keep “Initial Scene” at the top of the list.

Some notes on Unity

The “Find” and “Get” methods you will find in Unity let you access other GameObjects and
Components in the scene, rather than the one the script is attached to. The GameObject the script is
attached to is accessible with “gameObject”. The scene graph hierarchy is available via a
GameObject's “.transform” member. For example to find a child of the object a script is running in, use
“gameObject.transform.FindChild()”. To find another component attached to the same object the script
is in, use “gameObject.getComponent()”. If you know the type of the component you want to get (for
example, another script named OtherScript), you can use the templated overload for getComponent (in
the example, “OtherScript ref_to_other_script = gameObject.getComponent<OtherScript>();”. This
avoids having to cast a Component to the type you need it to be.

These methods that search through the scene should not be called every frame. Call them once and
cache the result if it needs to be used again later. This is what the provided project does, for the most
part, in “LevelConfigurationScript.cs”. It finds and caches a number of important references to things
in the scene.

I have not quite figured out the most reliable way to get the debugger working. One time while running
my project in Unity with the debugger attached, I closed Unity and it asked if I would like to save my
changes so I clicked Yes. When I opened Unity again, the scene I had open before was entirely blank.
Another time with the debugger attached, Unity crashed. So, be careful and make backups.

To print information to a console, use “Debug.Log()” and open the Console view, available in Unity's
Window menu.

