
 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

 Matteo Matteucci
matteucc@elet.polimi.it

Common Object Request
Broker Architecture
An overview of theAn overview of the

OMG way in OMG way in Component Software Software

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Table of contents
• Component Programming

– Component Programming
– OMG (Object Management Group)
– OMA and CORBA

• Object Request Broker
– Role and Architecture

• Interface Definition Language
– Syntax and Examples

• Object Management Architecture
– CORBAservices
– CORBAfacilities
– Domain Applications

• Bibliography and References

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Component Programming
• Definition (ECOOP 96)

– Standard interface (contractual)
– Explicit context dependencies
– Independent deployment and composition

• Motivations
– User:

• Integration of component independently developed
• Reuse of common features
• Wrapping of user applications (legacy)

– Developer:
• Modularization of application
• Incremental developement
• Reuse

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Object Management Group
• OMG (Object Management Group)

– No-profit consortium of several hundred members founded in 1989 to
promote the development and diffusion of object-oriented software

– Definition of an extensible infrastructure to support services:
• Interoperability
• Security
• Concurrency
• ...

• Object-oriented and Component Programming
– Objects or components as production, distribution and

management units
– The objects became also deployment units
– Objects interoperate using a software bus sending requests and

results in a distributed system

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

OMA and CORBA
• The problem to face:

• The OMG solution
– OMA (1992)

• Reference architecture to guarantee component reuse and
interoperability

– CORBA (1995)
• Open interconnection of languages implementations and platforms
• Bus software for component wiring
• Interface definition language

“How can distributed object-oriented systems
implemented in different languages and running on

different platforms interact?”

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

CORBA
• Reference architecture to ORB implementation

– Specification of architecture
– No implementation defined

• Middleware Object Oriented
– Marshaling
– Implementation hiding
– References management
– Localization hiding
– OO RPC

• Object Request Broker
– Communication infrastructure
– Platform independent primitives
– Implementation independent primitives

Object Request Broker (ORB)

Language/Implementation/Platform
Barrier

Object
Adapter

Invocation
Interface

Object

method_1
...

method_n

ORB interface ORB interface

obj.m(args)

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Object Request Broker

Object Request Broker (ORB)

ORB interface

IDL
Stubs

IDL
Skeletons

DII
DSI Object

Adapter_..

IDL CompilerApplication
Programs

Server
Programs

IDL Source

Interface
Repository

Implementation
Repository

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: Client and Services
• Client Application

– Written in a language with a binding to IDL
– Not necessarily an object oriented language (es. VB, 4GL, …)
– Client does not know the location of an object implementation
– An object can act as a client and as a server at the same time
– The client can call a method of a remote object by its reference and

knowing its interface

• Object Reference
– Identify univocally an object in distributed system based on an ORB
– CORBA specifies the standard of IOR (Interoperable Object Reference)

but not its implementation
– How to map Object Reference is defined by the binding of IDL to a

specific language (pointers in C++, object references in SmallTalk, …)

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: ORB Interface

• API to services implemented by the ORB used by the
client and by the server
– Allow operations on Object References

• get_interface: to obtain the description of the interface of an object
• get_implementation: to obtain the description of the object

implementation of an object
• is_nil: to verify if the Object Reference really identify an object

Object Request Broker (ORB)

ORB interface

Application
Programs

Sever
Programs

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: Repositories
• Interface Repository

– Contains the description of the interfaces defined in the system
– Can be queried to obtain information about interfaces, methods and

parameters
– Information can be used to dynamically compose the requests (DII)
– Its services are described using IDL

• Implementation Repository
– Contains information on the object implementation, object instances,

identifiers and management information

Object Request Broker (ORB)

ORB interface

Interface
Repository

Implementation
Repository

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: IDL Stubs and DII (1)
• Stub (static)

– Represents operations of the server that the client can invoke using its
implementation language

– It is compiled from the IDL description of the interface to the specific
implementation language

– From client point of view it is a local procedure call
– The Stub codifies the parameters (marshaling), de-codifies the results and

re-raises exception from the server

• Dynamic Invocation Interface
– The client may know the interface of an object during the execution
– The client can built dynamically the request for a service
– Server cannot distinguish if the request came from a static stub or a

dynamic invocation

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: IDL Stubs and DII (2)
• Stubs (static)

– Can be used only if methods are known a-priori (compile time)
– They are totally transparent to the programmer
– They allow static type checking
– They are efficient

• Dynamic Invocation Interface
– They do not require to know objects’ methods (interface) before execution
– Allow to write generic code

Object Request Broker (ORB)

ORB interface

DII

Skeleton

Stub

DSI

Application
Programs

Sever
Programs

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: IDL Skeletons and DSI
• Skeleton (static)

– Analogous to the Stub but from the server side
– It is compiled from the IDL description of the interface to the specific

implementation language
– The Skeleton de-codifies the parameters (marshaling) passing them to the

invoked method
– Once executed the method, codifies the results and exceptions sending

them to the client

• Dynamic Skeleton Interface
– The server may know the interface of an object during the execution
– The server receive the request also if it has not yet compiled the IDL

interface
– Client cannot distinguish if the result came from a static skeleton or a

dynamic skeleton

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: Object Adapter (1)
• Layer between the ORB and the object implementation

– Supply common operations on the objects (IDL)
• Instances of new objects
• Management of Object References
• Routing of requests
• Registration in the Implementation Repository

• CORBA defines BOA a standard object adapter (Basic
Object Adapter)

Object Request Broker (ORB)

ORB interface

DII

Skeleton

Stub

DSI Obje ct ..
Adapter _

Application
Programs

Sever
Programs

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: Object Adapter (2)
• Examples of adapters

– Basic Object Adapter (BOA):generation and management of object
references, invocation of methods, request delivery, registration …

– Library Object Adapter (LOA): can substitute BOA if client and server
belong to the same process (ORB == Library), few services but optimized
for the particular use (in-process)

– Object-Oriented Database Adapter (OODA): implements a connection to
an object-oriented database

• Different types of BOA
– Shared server: actives the server when requested and manages more

objects
– Unshared server: a different server for each object when requested
– Server-per-method: a server for each request
– Persistent server: a shared sever not managed by BOA

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: ORB Interoperability
• CORBA 2.0 defines a standard to connect ORB on

different (sub)systems by different developer
– General Inter-ORB Protocol (GIOP)

• Defines the exchange format
• Defines a common format for the data (Common Data Representation)

– Internet Inter-ORB Protocol (IIOP)
• Specifies messages of GIOP on TCP/IP
• Allow to connect different ORBs using Internet

– Environment Specific Inter-ORB Protocol (ESIOP)
• Allow the use of different transport protocols

Object Request Broker (ORB) Object Request Broker (ORB)

Object Request Broker (ORB)

GIOP/IIP

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Interface Definition Language
• Separation among interface and implementation
• The language to define interfaces of OMA components

– To use services implemented by an object a client application has to know
its interface

– Used to define objects in CORBA-compliant applications

• An interface specified by IDL can be implemented by
different languages
– CORBA specifies mapping to several languages

Object Request Broker (ORB)

C C++ Smalltalk Ada COBOL Java

IDL IDL IDL IDL IDL IDL

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

IDL: Main features
• Main features

– Specification language (not programming)
– Independent from implementation language
– Multiple Inheritance
– Static type checking for interfaces
– Allow static and dynamic use
– C++ like syntax
– IDL compiler support pre-processing (#include)
– An IDL specific includes

• types
• constants
• exceptions
• interfaces
• modules

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

IDL: Interfaces (1)
• An interface defines types, constants, exceptions, attributes

and operation supported by a server objects
• Any interface has a name and can be defined from one or

more existing interfaces (multiple inheritance)
– Derived interfaces can add new elements or redefine existing ones
– It is not possible to derive from interface defining the same

attributes or operations
– Ambiguities are resolved by operator::

• Objects implements an interface if implements all the
operations (may be more than one interface)

• The object reference supplied by the ORB and mapped on
the specific implementation language feature

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

IDL: Interfaces (2)
• An example:

interface BASE
{

const int N;
…

}

interface Derived: Base
{

const int N;
typedef …

}

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

IDL: Modules
• Modules implements modularization of programming

languages (modules, namespaces, packages …)

• An example:

module Global
{

typedef ...;
interface B ...

}

Global::B ...

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

IDL: Types
• Built-in types:

– [unsigned]short, long, long long
– float, double, long double
– char
– octet
– string
– boolean

• It is possible to define C++ like types
– enum
– struct, union
– array
– sequence

• An example:
typedef sequence<sequence<long>> DblSeq;

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

IDL: Attributes

• It is possible to declare constants data
• Attributes are declared in the interfaces

– attribute is the keyword to declare an attribute
– readonly the client cannot modify the attribute
– const also the server cannot modify the attribute
– attribute are public, any other value is private

• An example:
const int MAX = MIN + LEN;
attribute float radius;

readonly attribute position_t position;

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

IDL: Exceptions & Operations
• Exceptions can be declared as structures

– Can be raised by operation called by the caller
– CORBA defines a set of standard exceptions

• An operation specifies a function in a C-like style
– The operation syntax is:

[oneway] <resultName> <opName> ([in|out|inout] par1, …)
[raises(exception1, …)][context(c1, …)];

– oneway specifies that the result is not used by the client
– Overloading is non supported

• An example:
exception NotFound {string <N> what};

void search(in Code what, out Item el)
raises(NOTFound);

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Object Management Architecture
• OMA objects:

– Encapsulate data and operations
– Have a defined interface
– Univocally identifiable
– Execute services requested by a client (not necessary an object)

Object Request Broker (ORB)

...

CORBAservices

CORBAfacilities

Events
Life cycle

Persistence
Transactions

...

Time
Security
Licensing
Properties

...

Application
Objects

Standardized by vertical market
organization, possibly

organized as OMG SIGs

Compound documents
Descktop management

User interfaces
Object linking
Help facilities

CalendarDomain
Interfaces

Application domain specific
interfaces

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

OMA: CORBAservices (1)

• Objects Services form the base to distributed applications
– Creation of distributed objects
– Access to object’s methods and attributes
– Security, transactions …

• CORBAservices
– OMA specifies the interfaces of objects implementing the Object Services
– OMA does not specify any implementation

• Object Services implementation is the base for any
CORBA platform

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

OMA: CORBAservices (2)
• Naming Service
• Event Service
• Life Cycle Service
• Relationship Service
• Persistent Object Service
• Transaction Service
• Concurrency Service
• Externalization Service

• Licensing Service
• Query Service
• Property Service
• Security Service
• Time Service
• Collection Service
• Trader Service

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

OMA: Frameworks
• CORBAfacilities

– Components that supply common application functionality
• Distributed help
• DBMS access
• e-mail services
• …

– OMA defines their interfaces non the implementation (not
necessary)

• Domain Interfaces
– Specific services for particular domain

• Medics
• Finance
• Manufactory
• e-commerce
• Telecommunications
• ...

 matteucc@elet.polimi.it www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Bibliography and Resources
• C. Zypersky. Component Programming (beyond OOP).
• IONA Technologies. OrbiWeb Programming Guide. Release 2.0.
• OMG. A Discussion of the Object Management Architecture. 1997.
• OMG. The Common Object Request Broker: Architecture and

Specification. Revision 2.0, 1995-96.
• R. Orfali, D. Harley, J. Edwards. The Essential Distributed Object

Survival Guide. John Wiley & Sons, 1996.

• http://www.omg.org/corba
• http://www.cetus-links.org
• http://www.infosys.tuwien.ac.at/Research/Corba/OMG/cover.htm

