
 matteucc@elet.polimi.it  www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

 Matteo Matteucci
matteucc@elet.polimi.it

Common Object Request
Broker Architecture
An overview of theAn overview of the

OMG way in OMG way in Component Software Software

 matteucc@elet.polimi.it  www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Table of contents
• Component Programming

– Component Programming
– OMG (Object Management Group)
– OMA and CORBA

• Object Request Broker
– Role and Architecture

• Interface Definition Language
– Syntax and Examples

• Object Management Architecture
– CORBAservices
– CORBAfacilities
– Domain Applications

• Bibliography and References



 matteucc@elet.polimi.it  www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Component Programming
• Definition (ECOOP 96)

– Standard interface (contractual)
– Explicit  context dependencies
– Independent deployment and composition

• Motivations
– User:

• Integration of component independently developed
• Reuse of common features
• Wrapping of user applications (legacy)

– Developer:
• Modularization of application
• Incremental developement
• Reuse

 matteucc@elet.polimi.it  www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

Object Management Group
• OMG (Object Management Group)

– No-profit consortium of several hundred members founded in 1989 to
promote the development and diffusion of object-oriented software

– Definition of an extensible infrastructure to support services:
• Interoperability
• Security
• Concurrency
• ...

• Object-oriented and Component Programming
– Objects or components as production, distribution and

management  units
– The objects became also deployment units
– Objects interoperate using a software bus sending requests and

results in a distributed system
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OMA and CORBA
• The problem to face:

• The OMG solution
– OMA (1992)

• Reference architecture to  guarantee component reuse and
interoperability

– CORBA (1995)
• Open interconnection of languages implementations and platforms
• Bus software for component wiring
• Interface definition language

“How can distributed object-oriented systems
implemented in different languages and running on

different platforms interact?”
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CORBA
• Reference architecture to ORB implementation

– Specification of architecture
– No implementation defined

• Middleware Object Oriented
– Marshaling
– Implementation hiding
– References management
– Localization hiding
– OO RPC

• Object Request Broker
– Communication infrastructure
– Platform independent primitives
– Implementation independent primitives

Object Request Broker (ORB)
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Object Request Broker
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ORB: Client and Services
• Client Application

– Written in a language with a binding to IDL
– Not necessarily an object oriented language (es. VB,  4GL, …)
– Client does not know the location of an object implementation
– An object can act as a client and as a server at the same time
– The client can call a method of a remote object by its reference and

knowing its interface

• Object Reference
– Identify univocally an object in distributed system based on an ORB
– CORBA specifies the standard of IOR (Interoperable Object Reference)

but not its implementation
– How to map Object Reference is defined by the binding of IDL to a

specific language (pointers in C++, object references in SmallTalk, …)
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ORB: ORB Interface

• API to services implemented by the ORB used by the
client and by the server
– Allow operations on Object References

• get_interface: to obtain the description of the interface of an object
• get_implementation: to obtain the description of the object

implementation of an object
• is_nil: to verify if the Object Reference really identify an object

Object Request Broker (ORB)
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ORB: Repositories
• Interface Repository

– Contains the description of the interfaces defined in the system
– Can be queried to obtain information about interfaces, methods and

parameters
– Information can be used to dynamically compose the requests (DII)
– Its services are described using IDL

• Implementation Repository
– Contains information on the object implementation, object instances,

identifiers and management information

Object Request Broker (ORB)
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ORB: IDL Stubs and DII (1)
• Stub (static)

– Represents operations of the server that the client can invoke using its
implementation language

– It is compiled from the IDL description of the interface to the specific
implementation language

– From client point of view it is a local procedure call
– The Stub codifies the parameters (marshaling), de-codifies the results and

re-raises exception from the server

• Dynamic Invocation Interface
– The client may know the interface of an object during the execution
– The client can built dynamically the request for a service
– Server cannot distinguish if the request came from a static stub or a

dynamic invocation
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ORB: IDL Stubs and DII (2)
• Stubs (static)

– Can be used only if methods are known a-priori (compile time)
– They are totally transparent to the programmer
– They allow static type checking
– They are efficient

• Dynamic Invocation Interface
– They do not require to know objects’ methods (interface) before execution
– Allow to write generic code

Object Request Broker (ORB)

ORB interface

DII

Skeleton

Stub

DSI

Application
Programs

Sever
Programs



 matteucc@elet.polimi.it  www.elet.polimi.it/~matteucc

Politecnico di Milano - 9 maggio, 2000

ORB: IDL Skeletons and DSI
• Skeleton (static)

– Analogous to the Stub but from the server side
– It is compiled from the IDL description of the interface to the specific

implementation language
– The Skeleton de-codifies the parameters (marshaling) passing them to the

invoked method
– Once executed the method, codifies the results and exceptions sending

them to the client

• Dynamic Skeleton Interface
– The server may know the interface of an object during the execution
– The server receive the request also if  it has not yet compiled the IDL

interface
– Client cannot distinguish if the result came from a static skeleton or a

dynamic skeleton
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ORB: Object Adapter (1)
• Layer between the ORB and the object implementation

– Supply common operations on the objects (IDL)
• Instances of new objects
• Management of Object References
• Routing of requests
• Registration in the Implementation Repository

• CORBA defines BOA a standard object adapter (Basic
Object Adapter)

Object Request Broker (ORB)
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ORB: Object Adapter (2)
• Examples of adapters

– Basic Object Adapter (BOA):generation and management of object
references, invocation of methods, request delivery, registration …

– Library Object Adapter (LOA): can substitute  BOA if client and server
belong to the same process (ORB == Library), few services but optimized
for the particular use (in-process)

– Object-Oriented Database Adapter (OODA): implements a connection to
an object-oriented database

• Different types of BOA
– Shared server: actives the server when requested and manages more

objects
– Unshared server:  a different server for each object when requested
– Server-per-method: a server for each request
– Persistent server: a shared sever not managed by BOA
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ORB: ORB Interoperability
• CORBA 2.0 defines a standard to connect ORB on

different (sub)systems by different developer
– General Inter-ORB Protocol (GIOP)

• Defines the exchange format
• Defines a common format for the data (Common Data Representation)

– Internet Inter-ORB Protocol (IIOP)
• Specifies messages of GIOP on TCP/IP
• Allow to connect different ORBs using Internet

– Environment Specific Inter-ORB Protocol (ESIOP)
• Allow the use of different transport protocols

Object Request Broker (ORB) Object Request Broker (ORB)

Object Request Broker (ORB)

GIOP/IIP
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Interface Definition Language
• Separation among interface and implementation
• The language to define interfaces of OMA components

– To use services implemented by an object a client application has to know
its interface

– Used to define objects in CORBA-compliant applications

• An interface specified by IDL can be implemented by
different languages
– CORBA specifies mapping to   several languages

Object Request Broker (ORB)

C C++ Smalltalk Ada COBOL Java

IDL IDL IDL IDL IDL IDL
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IDL: Main features
• Main features

– Specification language (not programming)
– Independent from implementation language
– Multiple Inheritance
– Static type checking for interfaces
– Allow static and dynamic use
– C++ like  syntax
– IDL compiler support pre-processing (#include)
– An IDL specific includes

• types
• constants
• exceptions
• interfaces
• modules
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IDL: Interfaces (1)
• An interface defines types, constants, exceptions, attributes

and operation supported by a server objects
• Any interface has a name and can be defined from one or

more existing interfaces (multiple inheritance)
– Derived interfaces can add new elements or redefine existing ones
– It is not possible to derive from interface defining the same

attributes or operations
– Ambiguities are resolved by operator::

• Objects implements an interface if implements all the
operations (may be more than one interface)

• The object reference supplied by the ORB and mapped on
the specific implementation language feature
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IDL: Interfaces (2)
• An example:

interface BASE
{

const int N;
…

}

interface  Derived: Base
{

const int N;
typedef …

}
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IDL: Modules
• Modules implements modularization of programming

languages (modules, namespaces, packages …)

• An example:

module Global
{

typedef ...;
interface B ...

}

Global::B ...
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IDL: Types
• Built-in types:

– [unsigned]short, long, long long
– float, double, long double
– char
– octet
– string
– boolean

• It is possible to define C++ like types
– enum
– struct, union
– array
– sequence

•  An example:
typedef sequence<sequence<long>> DblSeq;
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IDL: Attributes

• It is possible to declare constants data
• Attributes are declared in the interfaces

– attribute is the keyword to declare an attribute
– readonly the client cannot modify the attribute
– const also the server cannot modify the attribute
– attribute are public, any other value is private

• An example:
const int MAX = MIN + LEN;
attribute float radius;

readonly attribute position_t position;
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IDL: Exceptions & Operations
• Exceptions can be declared as structures

– Can be raised by operation called by the caller
– CORBA defines a set of standard exceptions

• An operation specifies a function in a C-like style
– The operation syntax is:

[oneway] <resultName> <opName> ([in|out|inout] par1, …)
[raises(exception1, …)][context(c1, …)];

– oneway  specifies that the result is not used by the client
– Overloading is non supported

• An example:
exception NotFound {string <N> what};

void search(in Code what, out Item el)
raises(NOTFound);
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Object Management Architecture
• OMA objects:

– Encapsulate data and operations
– Have a defined interface
– Univocally identifiable
– Execute services requested by a client (not necessary an object)

Object Request Broker (ORB)
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OMA: CORBAservices (1)

• Objects Services form the base to distributed applications
– Creation of distributed objects
– Access to object’s methods and attributes
– Security, transactions …

• CORBAservices
– OMA specifies the interfaces of objects implementing the Object Services
– OMA does not specify any implementation

• Object Services implementation is the base for any
CORBA platform
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OMA: CORBAservices (2)
• Naming Service
• Event Service
• Life Cycle Service
• Relationship Service
• Persistent Object Service
• Transaction Service
• Concurrency Service
• Externalization Service

• Licensing Service
• Query Service
• Property Service
• Security Service
• Time Service
• Collection Service
• Trader Service
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OMA: Frameworks
• CORBAfacilities

– Components that supply common application functionality
• Distributed help
• DBMS access
• e-mail services
• …

– OMA defines their interfaces non the implementation (not
necessary)

• Domain Interfaces
– Specific services for particular domain

• Medics
• Finance
• Manufactory
• e-commerce
• Telecommunications
• ...
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