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Abstract

We propose an architecture to implement coordina-
tion among fuzzy behaviors for autonomous robots,
in real-time tasks. We consider a four-layer cog-
nitive reference model to define the knowledge flow
from sensor to behavior. Behaviour coordination is
obtained by fuzzy context conditions evaluated on in-
formation provided by intelligent sensors (1% layer)
and a world modeler (2"? layer). In our architecture
it is possible to define activation conditions and mo-
tivations to coordinate fuzzy behaviors (37¢ layer) to
achieve local goals. More complex tasks with multi-
ple, interacting goals, can be accomplished reasoning
on abstract, symbolic models (4t* layer). We adopt
this system in different applications such as robotic
soccer (Robocup), document delivery in office envi-
ronments, and surveillance.

Keywords. Behavior-based Robotics, Cognitive
Robotics, Fuzzy Systems, Robotic Architecture.

1 Introduction

A general architecture for the definition of the cogni-
tive apparatus for autonomous systems [10] consists
of a four—layered model. We consider this model as a
reference for the definition of our behavior architec-
ture and we focus in this paper on the implementation
of the knowledge processing level where inference on
symbolic concepts, derived from lower levels and rep-
resented by fuzzy predicates, produces actions for an
autonomous agent. We have implemented this mech-
anism by independent modules each corresponding to
a fuzzy behavior.

The activation conditions for each behavior are
fuzzy predicates which should be verified in order
to enable the corresponding behavior; we call these
predicates CANDO conditions. Coordination among

*This research has been partially supported by the MURST
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behaviors enabled at same time is implemented by
a different set of predicates which represent motiva-
tions to actually execute the action proposed by each
inference module (WANT conditions).

We propose to consider both CANDO and WANT
conditions since they correspond to semantically dif-
ferent aspects. CANDO conditions are intrinsically
related to the behavior definition: if they are not
verified the behavior activation does not make sense.
WANT conditions are context dependent, they can
represent either goals for the agent or environmental
situations.

We represent symbolic concepts by fuzzy models
to face the issue of uncertain perception; a fuzzy
model implements a classification of the available in-
formation and knowledge in terms of fuzzy predicates,
which have been demonstrated to be a powerful and
robust representation paradigm [7][12].

We adopt this architecture on different robots in-
volved in a wide variety of tasks, such as: soccer play-
ing in Robocup [2], document delivery in an office
environment, and surveillance.

2 The reference model

In this section, we summarize the main features of the
above mentioned cognitive reference model, highlight-
ing how such model can be instanced in a complete
architecture for autonomous robot control.

The four layers of the cognitive model are:

o data layer: extracts from raw data streams ba-
sic features as a basis of eventual understand-
ing; this layer is the only agent’s interface to the
environment (the other layers work on features
extracted by this one)

e concept layer: interprets and abstracts features
to basic concepts and notions which are at a
higher level of representation (symbolic con-
cepts)
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Figure 1: The agent architecture

o knowledge processing layer: processes symbolic
concepts to obtain more complex information to
be used for planning actions, communicating and
other reasoning activities

e theory/models layer: contains structured ab-
stract models and theories

Our architecture is mapped on this cognitive model
(Figure 1).

Intelligent sensors implement the data layer. For
instance, omnidirectional vision [4] provides relative
positions and distance of colored objects in the envi-
ronment in our Robocup application, and the angular
position of vertical edges in our service robotics ap-
plications.

These features are interpreted in terms of fuzzy,
ground predicates to generate the symbolic concepts
of the second layer (e.g., “the ball is close”, “the door
is on the left”). This is done according to a cog-
nitive background model which is conceptually part
of the fourth layer. A World Modeler operates at the
second layer to produce a conceptual model of the en-
vironment and to infer symbolic concepts from data
features using theoretical models (4% layer).

Complex predicates are built from the ground ones
to describe less basic aspects such as: ”I have the
possess of the ball”, ”’I’'m in a good position to kick”.
These predicates, together with the ground ones are
used as CANDO and WANT conditions, and to infer
actions, by the behavior engine BRIAN (Brian Reacts
by Inferring ActioNs).

Fuzzy Ground Predicates

Pr 4

Enabling
Conditions

Cando

Behavior Engine

= S T

Lo wemiorn ]

Composer

Behavior Commands
R

Weighting

Behavior Weigths

Figure 2: The behaviour management system

The Planner module reasons on models on the
4th layer to produce goals as symbolic concepts for
BRIAN, which are included in the behavior motiva-
tions. These models are abstract maps, graph rep-
resentations, or state diagrams, used to forecast or
simulate future actions.

In this architecture, BRIAN implements local, re-
active behaviors whose activation is ruled also by
strategic directions coming from the Planner through
the WANT conditions. In other terms, BRIAN imple-
ments a kind of local reasoning influenced by context
information and strategic information, in turn imple-
mented by the planner (global reasoning). This, while
generating strategic directions, should solve possibly
arising conflicts between multiple goals.

3 BRIAN: the behavior man-
agement system

BRIAN, our behavior management system, shown in
details in figure 2 uses fuzzy predicates to repre-
sent the activation conditions, the motivation condi-
tions and internal knowledge. Fuzzy predicates are
a general and robust [7] modeling paradigm, close
to the designer’s mental models [13]. Other re-
searchers [12][8] have adopted them to implement
control systems for autonomous robots for analogous
reasons. Fuzzy predicates may represent aspects of
the world, goals, and information coming from other
agents. Their general shape consists of a fuzzy vari-
able name, a label corresponding to a fuzzy set de-
fined on the range of the variable, a degree of match-
ing of the corresponding data to the mentioned fuzzy
set, and a reliability value to take into account the
quality of the data source. For instance, we may have
a predicate represented as

< BallDistance, VeryClose,0.8,0.9 >



which can be expressed as: “the ball is considered
very close, with a truth value of 0.8 (coming from the
fuzzyfication of the incoming data, namely the real-
valued distance from the ball), and a reliability value
of 0.9,which qualifies the data as highly reliable”.

We consider ground and complex fuzzy predicates.
Ground fuzzy predicates range on data available to
the agent, and have a truth value corresponding to
the degree of membership of the incoming data to a
labeled fuzzy set. This is equivalent to classify the
incoming data into categories defined by the fuzzy
sets, and to assign to this classification a weight be-
tween 0 and 1. Fuzzy ground predicates are defined
on features elaborated by the world modeler and goals
from the planner; the reliability of data is provided,
respectively, by the world modeler (basing on feature
analysis), and the planner stating the goals.

A complex fuzzy predicate is a composition (ob-
tained by fuzzy logic operators) of fuzzy predicates.
Complex fuzzy predicates extend the basic informa-
tion contained in ground predicates into a more ab-
stract model. In RoboCup, for instance, we can
model the concept of ball possession by the Have Ball
predicate, joining by the AN D operator the ground
predicates

< BallDistance, VeryClose > and

< BallDirection, Front >,

the first deriving from the fuzzyfication of the ball
distance perception, the second from the fuzzyfication
of the perception of ball direction.

We define for each behavior module a set of pred-
icates that enable its activation: the CANDO pre-
conditions. The designer has to put in this set all
the conditions which have to be true, at least to a
significant extent, to give sense to the behavior ac-
tivation. For instance, in order to consider to kick
a ball into the opponent goal, the agent should have
the ball control.

Another set of fuzzy predicates is associated to
each behavior module: the WANT conditions. These
are predicates that represent the motivation for the
agent to activate a behavior in relation with a con-
text. They may come either from the environmen-
tal context (e.g., “there is an opponent in front of
me”), or from strategic goals (e.g., “I have to score
a goal”). All these predicates are composed by fuzzy
operators, and contribute to compute a motivational
state for each behavior. The agent knows that it could
play a set of behaviors (those enabled by the CANDO
conditions), but it has to select among them the be-
haviors consistent with its present motivations. We
have two possibilities, to be selected according to the
specific situation: we can either combine the actions
proposed by the selected behaviors, weighted by the
respective motivations, or select the best motivated

behavior, and the corresponding action. The first ap-
proach is followed by the majority of the proposed
fuzzy behavior management systems presented in lit-
erature [11] [12] [8], since it is analogous to the tradi-
tional way of composing output from fuzzy rules; an
analogous method is adopted also in other non—fuzzy
architectures [1]. However, at least in principle, while
designing (or learning) behaviors, all the possible in-
teractions with other behaviors should be taken into
account since the vectorial combination of two actions
may produce undesired effects (think, for instance,
at the action that can result from the combination
of the actions proposed by the AvoidObstaclesFrom-
Left and the AvoidObstaclesFromRight behaviors). In
principle, this design approach is in contrast with
the behavior—independency principle, fundamental in
the behavior—based approach to robot control design.
The second approach, that is selecting the action pro-
posed by the best fitting behavior, prevents the pos-
sibility to pursuit multiple goals in parallel. Both the
approaches can be implemented in our architecture;
we decided to design the behaviors we will show in
section 5 adopting a mid-way approach: we compose
the actions proposed by each behavior, but we care-
fully designed the motivation conditions in order to
avoid the activation of two incompatible behaviors at
the same time.

4 Related work

Our behavior architecture is quite different from the
original Brooks’s [6] one: our behavior management
system works on fuzzy predicates obtaining the capa-
bility of coordinating the concurrent execution of sev-
eral behaviors. We consider the adoption of CANDO
and WANT predicates as an alternative choice to the
implementation of the subsumption architecture. It is
more general than Brook’s proposal and also more ef-
fective in strongly dynamic environments. In our im-
plementation the enabling connections among behav-
iors are context dependent, so relationships among
behaviors are not rigidly defined, but we can adapt
the emerging global behavior, depending also on ex-
ternal conditions and motivations.

Another reference we have considered is Arkin’s
schema-based behavior architecture [1]. It is possi-
ble to map the basic principles of our and Arkin’s
approaches into each other. The main difference is
the fuzzy model we put at the basis of our architec-
ture, whereas the analogous features are represented
by Arkin by different tools such as a gain value to
weight each behavior contribution, and their repre-
sentation in terms of potential fields. However the
gain has a different meaning, stating the a priori rel-



evance of a behavior with respect to another, while
we blend (or select) behaviors according to their con-
dition values and context.

Another difference between our architecture and
both Brooks’ and Arkin’s is the presence in ours of a
world modeler that interfaces the external world with
the behavior module. In the mentioned architectures,
world modeling is embedded in each behavior defini-
tion. We have implemented such a module to achieve
efficiency and to provide a unified interface from the
environment to the behaviors.

HEIR [9] is an architecture whose accent is on the
role played by different kind of knowledge: symbolic
knowledge is used to reason and plan actions, whereas
diagrammatic knowledge is used to maintain a repre-
sentation of the situation. A behavior level is also
present, but behaviors are dedicated to the low-level
implementation of actions, able to react to eventual,
unexpected events. We also have modules in charge
of planning and modeling the environment, but our
behaviors play a more complex role, actually imple-
menting also complex activities, triggered by the con-
text (evaluated on the world model) and by the goals
defined by the planner.

In our architecture we start from Saffiotti’s ap-
proach [12][8]to the use of fuzzy logic in robotics [11],
which tries to face the problem of designing an effec-
tive controller for mobile robots by combining goal-
specific strategies by resolution of conflicts between
multiple objectives. We keep separate the CANDO
from the WANT conditions, due to their different se-
mantics, while in [12] they are put together in the
desirability parameter.

5 Experimental results

We have applied our approach both in service
robotics, and in robot soccer playing. Here, we fo-
cus on this last, since a Robocup match provides a
rich and challenging environment where our approach
clearly shows its effectiveness. Our players Rullit and
Rakataa (see figure 3) are part of the Italian national
soccer team ART (Azzurra Robot Team). We imple-
mented ten fuzzy behaviors whose composition en-
ables the robots to play effectively in a match, fight-
ing for the possess of the ball, avoiding other robots
and fouls, kicking in the opponent goal, and taking a
defense behavior when the own goal-keeper has prob-
lems.

We can identify subsets of behaviors which are in-
tended to be activated in sequence, and their condi-
tions have been designed to avoid interference. For
instance, AlignToBall aligns the robot to the direc-
tion of the line between the ball and the opponent

Figure 3: Our robot Rullit

goal (all our robots have an omnidirectional vision
system, so they almost always know where the ball
and the goal are); GoToBall brings the robot on the
ball when it is in the forward direction. The CANDO
conditions for AlignToBall include the fact the the
ball is visible and that the robot is not aligned nor
controls it. Notice how these are essential conditions
for the behavior. Among the WANT conditions for
GoToBall we have that the ball should be in the for-
ward direction. The AlignToBall behavior tends to
make this condition true, and, when this is the case,
the context is favorable to the activation of GoToBall.
Both the behaviors cooperate to bring the agent in a
position from where it can take the ball and bring it
towards the goal. The GoToGoal behavior has among
its CANDO conditions predicates corresponding to
have the control of the ball and to be aligned to ball
and goal: so it can be activated only when both the
other mentioned behaviors have achieved their goals.

We have also defined another kind of behaviors to
take care of the integrity of the robot: these inhibit
the others in order to handle critical situations. They
are devoted to solve possible problems such as the
presence of obstacles or walls in the desired directions.
As mentioned above, we have designed the behavior
conditions to implement exclusive activation. In par-
ticular, all the WANT conditions of the incompatible
behaviors contain the fact that none of the avoid be-
haviors should be active. In this way, if the robot has
to avoid something, it does this without interference
with the other behaviors.

Interesting behaviors emerge from the interaction
of behaviors belonging to the two sets. For instance,
we have seen Rakataa dribbling a couple of opponents
due to the appropriate switching between AwvoidOb-
stacle, Align and GoToGoal. The co-operation of



these behaviors made the robot react, when facing
an opponent, by throwing the ball aside (obtained by
a fast rotation decided by the Awvoid behavior in order
to get around the obstacle) and running to catch it
again (composition of Align first and GoToGoal then).

A second emergent behavior is a sort of defense
behaviour made by the co-operation between Awvoid-
Wall,AvoidObstacle and Defense behaviors. When
the ball is close to the wall with another robot that
is trying to catch it, our robot stays still covering
our goal watching the other robot and waiting that it
resolves the situation, since Avoid Wall prevents the
robot to get close to the wall. Once the opponent
brings the ball away from the wall, Rakataa is ready
to close it on the wall again, by applying the Defense
behavior.

The third emergent behavior we mention here
makes the robot catch the ball near an opponent or a
wall. It is obtained by the co-operation between Align
and AwvoidWall or AvoidObstacle. When the ball is
close to a wall (without any other robot in the neigh-
borhoods) or close to another robot, the switching
between behaviors makes the robot approach slowly
the ball with fast and impulsive rotations. When it
reaches it, the result is a sort of kick with the robot’s
hands that throws the ball away from the obstacle.

6 Conclusion

We have presented in this paper a general behavioral
architecture for autonomous robots based on fuzzy
models. We have focused on the behavior manage-
ment module, whose most relevant feature is the use
of fuzzy enabling and context conditions. It has been
designed to make it possible different types of inter-
action among behavior modules. Fuzzy models give
robustness to the system with respect to imprecision
in data acquisition and uncertainty. Moreover, it en-
ables smooth transitions between different behaviors,
a property highly desirable in learning and adapta-
tion [3].

We believe that learning may support the develop-
ment and adaptation of robotic agents. In particular,
we have shown elsewhere [5] how it could be possible
to adapt behaviors in a short time to new environ-
ments by tuning their context predicates. The ar-
chitecture here presented is essential in this activity,
since it makes distinct the different aspects (CANDO,
WANT, and behavior code) which can be separately
designed, learned or adapted.
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