Com?2: Fast Automatic Discovery of
Temporal (’Comet’) Communities

Miguel Araujo'®, Spiros Papadimitriou?, Stephan Giinnemann!, Christos
Faloutsos', Prithwish Basu®, Ananthram Swami*, Evangelos E. Papalexakis®,
and Danai Koutra!

! iLab & School of Computer Science, Carnegie Mellon University, Pittsburgh, USA.
{maraujo, sguennem, christos, epapalex, danai}@cs.cmu.edu
2 Rutgers University, New Brunswick, USA. spapadim@business.rutgers.edu
3 BBN Technologies, Cambridge, USA. pbasu@bbn.com
4 Army Research Laboratory, Adelphi, USA. ananthram.swami.civ@mail. mil
5 University of Porto, Porto, Portugal

Abstract. Given a large network, changing over time, how can we find
patterns and anomalies? We propose COM2, a novel and fast, incremen-
tal tensor analysis approach, which can discover both transient and pe-
riodic/repeating communities. The method is (a) scalable, being linear
on the input size (b) general, (¢) needs no user-defined parameters and
(d) effective, returning results that agree with intuition.

We apply our method on real datasets, including a phone-call network
and a computer-traffic network. The phone call network consists of 4
million mobile users, with 51 million edges (phonecalls), over 14 days.
CoM2 spots intuitive patterns, that is, temporal communities (comet
communities).

We report our findings, which include large ’star’-like patterns, near-
bipartite-cores, as well as tiny groups (5 users), calling each other hun-
dreds of times within a few days.

Keywords: community detection, temporal data, tensor decomposition

1 Introduction

Given a large time-evolving network, how can we find patterns and communities?
How do the communities change over time? One would expect to see strongly
connected communities (say, groups of people, calling each other) with near-
stable behavior—possibly a weekly periodicity. Is this true? Are there other
types of patterns we should expect to see, like stars? How do they evolve over
time? Is the central node fixed with different leaves every day or are they fixed
over time? Perhaps the star appears on some days but not others?

Here we focus on exactly this problem: how to find time-varying commu-
nities, in a scalable way without user-defined parameters. We analyze a large,
million-node graph, from an anonymous (and anonymized) dataset of mobile
customers of a large population and a bipartite computer network with hun-
dreds of thousands of connections, available to the public. We shall refer to

time-varying communities as comet communities, because they (may) come and
go, like comets.

Spotting communities and understanding how they evolve are crucial for fore-
casting, provisioning and anomaly detection. The contributions of our method,
CoM2, are the following:

— Scalability: CoM2 is linear on the input size, thanks to a careful, incremen-
tal tensor-analysis method, based on fast, iterated rank-1 decompositions.

— No user-defined parameters: CoM2 utilizes a novel Minimum Descrip-
tion Length (MDL) based formulation of the problem, to automatically guide
the community discovery process.

— Effectiveness: We applied CoM2 on real and synthetic data, discovering
time-varying communities that agree with intuition.

— Generality: CoM2 can be easily extended to handle higher-mode tensors.

2 Background and Related Work

In this section, we summarize related work on graph patterns, tensor decompo-
sition methods, and general anomaly detection algorithms for graphs.

Tensor Decomposition An n-mode tensor is a generalization of the con-
cept of matrices: a 2-mode tensor is just a matrix, a 3-mode tensor looks like a
data-cube, and a 1-mode tensor is a vector. Among the several flavors of ten-
sor decompositions (see [1]), the most intuitive one is the so called Canonical
Polyadic (CP) or PARAFAC decomposition [2]. PARAFAC is the generalization
of SVD (Singular Value Decomposition) in higher modes.

Tensors have been used for anomaly detection in computer networks [3] and
Facebook interactions [4] and for clustering of web pages [5].

Static community detection Static community detection methods are
closely related to graph partitioning and clustering problems. Using a more al-
gebraic approach, community detection can also be seen as a feature identifica-
tion problem in the adjacency matrix of a graph and several algorithms based
on spectral clustering have been developed. Santo Fortunato wrote a detailed
report on community detection [6].

Time evolving graphs Graph evolution has been a topic of interest for some
time, particularly in the context of web data [7,8]. MDL-based approaches for
detecting overlapping communities in static graphs [9] as well as non-overlapping
communities in time-evolving graphs [10] have been previously proposed. How-
ever, the former cannot be easily generalized to time-evolving graphs, whereas
the latter focuses on incremental, streaming community discovery, imposing seg-
mentation constraints over time, rather than on discovering comet communities.
Other work, e.g. [11], studies the problem of detecting changing communities,
but requires selection of a small number of parameters. Furthermore, broadly
related work uses tensor-based methods for analysis and prediction of time-
evolving “multi-aspect” structures, e.g., [12].

Table 1 compares some of the most common static and temporal community
detection methods.

\ o1 %&eé\ .\\d&
«O\e O’ﬁ‘b' 60\)' K)Q/‘ \)’(;O\
%C){Z} @Q’&Q 000 © Q‘fe
$o« <Q &° \‘S@&
Com2 v v v v v
Graphscope[10] v v X v v
CP X v v X X
SDP + Rounding[13]| x v v X v
Eigenspokes[14] v X N/A v v
METIS[15] v X N/A X v

* Temporal communities do not need to be contiguous.
t No user-defined parameter.
1 Results are easy to interpret; elements of the community can be identified easily.

Table 1: Comparison of common (temporal) community detection methods

3 Proposed Method

In this section, we formalize our problem, present the proposed method and
analyze it. We first describe our MDL-based formalization which guides the
community discovery process. Next, we describe a novel, fast, and efficient search
strategy, based on iterated rank-1 tensor decompositions which can discover time
varying communities in a fast and effective manner.

3.1 Formal objective

We are given a temporal directed network consisting of sources S, destinations
D, and time stamps 7. We represent this network via a 3-mode tensor X €
{0, 1}ISIXIPIXITI where X, ;j; = 1 if source i is connected to destination j at
time ¢. As abbreviations we use N = |S|, M = |D|, and K = |T|. The goal is to
automatically detect communities:

Definition 1. Community
A community is a triplet C = (S,D,T) with S CS, D CD, and T C T such
that each triplet describes an ‘tmportant’ time-varying aspect.

We propose to measure the ‘importance’ of a community via the principle
of compression, i.e. by the community’s ability to help us compress the 3-mode
tensor: if most of the sources are connected to most of the destinations during
most of the indicated times, then we can compress this ’comet-community’ easily.
By finding the set of communities leading to the best compression of the tensor,
we get the overall most important communities.

More specifically, we use MDL (Minimum Description Length) [16]. That is,
we aim to minimize the number of bits required to encode the detected patterns
(i.e. the model) and to describe the data given these patterns (corresponding to
the effects of the data which are not captured by the model). Thus, the overall
description cost automatically trades off the model’s complexity and its goodness
of fit. In the following, we provide more details about the description cost:

Description cost. The first part of the description cost accounts for encoding
the detected patterns C = {C4,...,C;} (where [is part of the optimization and
not a priori given). Each pattern C; = (S;, D;,T;) can completely be described by
the cardinalities of the three included sets and by the information which vertices
and time stamps belong to these sets. Thus, the coding cost for a pattern C; is

L1(C;) = log™ |Si| + log™ | D;| + log™ |T;| + |Si| - log N + | D;| - log M + |T;] - log K

The first three terms encode the cardinalities of the sets via the function log*
using the universal code length for integers [17]%. The last three terms encode the
actual membership information of the sets: e.g., since the original graph contains
N sources, each source included in the pattern can be encoded by log N bits,
which overall leads to |.S;|-log N bits to encode all sources included in the pattern.

Correspondingly, a set of patterns C = {C1,...,C;} can be encoded by the
following number of bits:

Ly (C) =log™ |C] + Z Li(C)
cec

That is, we encode the number of patterns and sum up the bits required to
encode each individual pattern.

The second part of the description cost encodes the data given the model.
That is, we have to provide a lossless reconstruction of the data based on the
detected patterns. Since in real world data we expect to find overlapping com-
munities, our model should not be restricted to disjoint patterns. But how to
reconstruct the data based on overlapping patterns? As an approach, we refer
to the principle of Boolean algebra: multiple patterns are combined by a logical
disjunction. That is, if an edge occurs in at least one of the patterns, it is also
present in the reconstructed data. This idea related to the paradigm of Boolean
tensor factorization. More formally, the reconstructed tensor is given by:

Definition 2. Tensor reconstruction

Given a pattern C = (S, D, T). We define the indicator tensor I¢ € {0, 1}V xMxK
to be the 3-mode tensor with Igj’k =leieSNjeDANkeT.

Given a set of patterns C, the reconstructed tensor XC is defined as X¢ =
Ve I¢ where V denotes element-wise disjunction.

The tensor X¢ might not perfectly reconstruct the data. Since MDL, however,
requires a lossless compression, a complete description of the data has to encode
the ’errors’ made by the model. Here, an error might either be an edge appearing
in X but not in X¢, or vice versa. Since we consider a binary tensor, the number
of errors can be computed based on the squared Frobenius norm of the residual
tensor, i.e. HX — XcHi.

Since each ’error’ corresponds to one triplet (source, destination, time stamp),
the description cost of the data can now be computed as

La(X|C) = log™ [|[X = X°|% + [|X — X°|[%. - (log N +log M +log K)

5 Not to be confused with the iterated logarithm (log*). log* is defined as log*z =
log z 4 loglog x + ..., where only the positive terms are included in the sum.

Technically, we also have to encode the cardinalities of the set S, D, and T
(i.e. the size of the original tensor). Given a specific dataset, however, these values
are constant and thus do not influence the detection of the optimal solution.

Owverall model. Given the functions Lo and L3, we are now able to define the
communities that minimize the overall number of bits required to describe the
model and the data:

Definition 3. Finding comet communities
Given a tensor X € {0, 1}‘S|X|D‘X|T‘. The problem of finding comet communities
is defined as finding a set of patterns C* C (P(S) x P(D) x P(T)) such that

¢* = argmin[Lx(C) + Ly(XIC)]

Again, it is worth mentioning that the patterns detected based on this definition
are not necessarily disjoint, thus better representing the properties of real data.

Obviously, computing the optimal solution to the above problem is infeasi-
ble as it is NP-hard. In the following, we present an approximate but scalable
solution based on an iterative processing scheme.

3.2 Algorithmic Solution

We approximate the optimal solution via an iterative algorithm, i.e., we sequen-
tially detect important communities. However, given the extremely large search
space of the patterns (with most of the patterns leading to only low compres-
sion), the question is how to spot the 'good’ communities?

Our idea is to exploit the paradigm of tensor decomposition [2]. Tensor de-
composition provides us with a principled solution to detect patterns in a tensor
while simultaneously considering the global characteristics of the data. It is worth
mentioning that tensor decomposition cannot directly be used to solve our prob-
lem: (1) Tensor decomposition methods usually require the specification of the
number of components in advance, while we are interested in a parameter-free so-
lution. (2) Traditional tensor decomposition does not support the idea of Boolean
disjunctions as proposed in our method, and Boolean tensor factorization meth-
ods [18] are still limited and a new field to explore. (3) Tensor decomposition
does not scale to large datasets if the number of components is large as many
local maxima exist. In our case, we expect to find many communities in the data.

Thus, in this work, we propose a novel, incremental tensor analysis for the
detection of temporal communities. The outline of our method is as follows:

— Step 1: Candidate ‘comet’ community: We spot candidates by using
an efficient rank-1 tensor decomposition. This step provides 3 vectors that
represent the score of each source, destination and time stamp.

— Step 2: Ordering and community construction: The scores from step 1
are used to guide the search for important communities. We order the can-
didates and use MDL to determine the correct community size.

— Step 3: Tensor deflation: Based on the communities already detected, we
deflate the tensor so that the rank-1 approximation is steered to find novel
communities in later iterations.

In the following, we discuss each step of the method.

Candidate generation. As explained, exhaustive search of all candidate
communities is not possible. We propose to find a good initial candidate com-
munity using a fast implementation of rank-1 tensor decomposition. We aim at
finding vectors a € RY, b € R™, and ¢ € RX providing a low rank approx-
imation of the community. Intuitively, sources connected to highly-connected
destinations at highly active times get a higher score in the vector a and sim-
ilarly for the other two vectors. Specifically, to find these vectors, a scalable
extension of the matrix-power-method only needs to iterate over the equations:

MK N,K N,M
a; < E Xi,j7kbjck s bj — E Xi,j7kaick , Cp < E Xm-,kaibj
j=1,k=1 i=1,k=1 i=1,j=1

1)
where a;, b; and c;, are the scores of source ¢, destination j and time k. These
vectors are then normalized and the process is repeated until convergence.

Lemma 1. ALS [19] reduces to Equation 1, when we ask for rank-1 results.

Proof. Substituting vectors a, b, ¢, instead of matrices (A, B, C), and carefully
handling the Khatri-Rao products, we obtain the result.

Notice that the complexity is linear in the size of the input tensor: Let E be
the number of non zeros in the tensor, we can easily show that each iteration
has complexity O(FE) as we only need to consider the non zero X ;. values.
In practice, we select an ¢ and compare two consecutive iterations in order to
stop the method when convergence is achieved. In our experimental analysis in
Section 4 (using networks with millions of nodes) we saw that a relatively small
number of iterations (about 10) is sufficient to provide reasonable convergence.

We can now use the score vectors a, b and c¢ as a heuristic to guide our
community construction.

Community construction using MDL. Since the tensor decomposition
provides numerical values for each node/time stamp, its result cannot be directly
used to specify the communities. Additionally, there might be no clear threshold
to distinguish between the nodes/time stamps belonging to the community and
the rest. Our goal is to find a single community C’ € (P(S)x P (D) x P(T)) lead-
ing to the best compression, based on a local (i.e. community-wise) evaluation
based on MDL (see Definition 3).

The definition of L3(X|C) can be adapted to represent the MDL of this single
community. By using the Hadamard product (X o IC'), we restrict the tensor to
the edges of the pattern:

~ 7 ’ 2 ’ ’ 2
Ls(X|C)) = log™ |X 019" —1° H +onIC ¢ H (log |S| + log | D| + log)
F

F

7112 7112
X —XoIC H —&-HX—XOIC H (log N + log M + log K)
F

F

+ log*

Even though we now only have to find a single community, minimizing this
equation is still hard. Therefore, we exploit the result of the tensor decomposition
to design a good search strategy.

We first sort the sources, destination, and time stamps according to the scores
provided by the tensor decomposition. Let §'=(s1,...,sn), D'=(d1,...,dn) and
T'=(t1,...,tx) denote the lists storing the sorted elements. We start construct-
ing the community by selecting the most promising triplet first, i.e., we form the
community using the most promising edge and we evaluate its description cost.

Given the current community, we incrementally let the community grow. For
each mode, we randomly select an element that is not currently part of the
community using the score vectors as sampling bias. For each of these elements,
we calculate the description length considering that we would add it to the
community. The lowest description length is then selected, and the corresponding
element is added to the community. If none of these elements decreases the overall
description length, we reject them, proceed with the old community and repeat
this process. If we observe [consecutive rejections, the method stops. It can be
shown that the probability that an element that should have been included in
the community was not included decreases exponentially as a function of [and
of its initial score, thus a relatively small value of [is sufficient to identify a
vast majority of the elements in the community. In our experimental analysis,
a default value of | = 20 was seen to be enough, i.e. larger values have not
led to the addition of further elements even when considering communities with
thousands of elements. Therefore, we consider this parameter to be general and
it does not need to be defined by the user of the algorithm.

Tensor deflation. The output of the previous two steps is a single com-
munity. To detect multiple communities, multiple iterations are performed. The
challenge of such an iterative processing is to avoid generating the same com-
munity repeatedly: we have to explore different regions of the search space.

As a solution, we propose the principle of tensor deflation. Informally, we
remove the previously detected communities from the tensor, to steer the tensor
decomposition to different regions. More formally: Let X() = X be the original
tensor. In iteration i of our method we analyze the tensor X leading to the
community C;. The tensor used in iteration i 4+ 1 is recursively computed as

X+ — x(@ _ 10 o xX@

where o is once again the Hadamard product. This deflated tensor might either
be used in both the candidate generation and community construction stages, in
case we want to penalize overlapping communities, or in the candidate generation
stage alone if overlapping communities are not to be penalized.

The method might terminate when the tensor is fully deflated (if possible),
or when a specific number of communities has been found, or when some other
measure of community quality was not achieved in the most recent communities
(e.g. community size).

Complexity Analysis

Lemma 2. Our algorithm has a runtime complexity of O(M -(k-E+ N -log N)),
where M is the number of communities we obtain, E is the number of non-zeros
of the tensor, N is the length of the biggest mode, and k the number of iterations
to obtain convergence. Thus, our method scales linearly w.r.t. the input E.

Proof. Omitted for brevity.

4 Experiments

We tested our method on a variety of synthetic tensors to assess it’s quality and
scalability. We also applied CoM2 on two realworld datasets: a large phone call
network and a public computer communications network, demonstrating that
it can find interesting patterns in challenging, real-world scenarios. This section
details the experiments on the datasets summarized in Table 2.

Abbr‘ Nodes‘#Non zeros‘Time‘Description
OLB 10-20| 1000-2000| 100|Overlapping blocks.
DJB 1000 50000| 500|Disjoint blocks.
LBNL|1647 4+ 13782 113030| 30(Bipartite Internet traces from LBNL.
PHONE 3952632| 51119177 14|Phone call network.

Table 2: Networks used: Two small, synthetic networks; two large real networks.

4.1 Quality of the solutions

The characterization of the temporal communities identified by the method is
important. In particular we want to answer the following questions: How are
“overlapping blocks” identified? How “dense” are the communities found?

Impact of overlap. A tensor with two disjoint communities was constructed
and, iteratively, elements from each of the modes of one of the communities were
replaced with elements of the other. Our tests show that the communities are
reported as independent until there is an overlap of about 70% of the elements in
each mode, in which case they start being reported as a single community. This
corresponds to an overlapping of slightly over 20% of the non-zero values of the
two communities and the global community formed has 63% of non-zeros. This
clearly demonstrates that CoM2 has high discriminative power: it can detect
the existence of communities that share some of their members and it is able to
report them independently, regardless of their size (the method is scale-free).

Impact of block density. We also performed experiments to determine how
density impacts the number of communities found. Fifty disjoint communities
were created in a tensor and non-zeros were sampled without repetition from
each community with different probabilities and random noise was then added.
We analyzed the number of non-zeros in the first fifty communities reported by
our method in order to calculate its accuracy. As we show in Figure la, CoM2
has high discriminative power even with respect to varying density.

100 100

30 f(x) = 8E-05x + 1.0516

> 2 R?=0.9918
8 60 < 60
=
8 40 £ 0
© =

20 2 20

0 0

0 50 100 0 500,000 1,000,000
density number of non-zeros

(a) Tensor with disjoint blocks - Com2 (b) Com?2 scales linearly with input
identifies communities even at low size: Running time versus number of non-
densities. zeros for random tensors.

Fig. 1: Experiments on synthetic data.

4.2 Scalability

As detailed before, CoOM2’s running time is linear on the number of communities
and in the number of non-zero values in the tensor. We constructed a tensor of
size 10000 x 10000 x 10000 and randomly created connections between sources
and destinations at different timesteps. Figure 1b shows the runtime versus the
number of non-zeros in the tensor when calculating the first 200 communities of
the tensor. We consider random insertion to be a good worst-case scenario for
many real-life applications, as the lack of pre-defined structure will force many
small communities to be found, effectively penalizing the running time of Com2.

In addition to its almost linear runtime, COM2 is also easily parallelizable.
By selecting different random seeds in the tensor decomposition step, different
communities can be found in parallel.

4.3 Discoveries on real data

We applied CoM2 to a dataset from a european mobile carrier, to character-
ize the communities found in real phone call data. We considered the network
formed by calls between clients of this company over a period of 14 days. During
this period, 3952632 unique clients made 210237095 phone calls, 51119177 of
which formed unique (caller, callee, day) triplets. The tensor is very sparse, with
density in the order of 10~7. We extracted 900 communities using Com2. These
communities contain a total of 229 287 unique non-zeros. 293 unique callers and
97 677 unique callees are represented, so the first observation is that the temporal
communities are usually heavy on one side with large outgoing stars.

We also applied CoM2 to a public computer network dataset captured in
1993, made available by the Lawrence Berkeley National Laboratory. 30 days of
TCP connections between 1647 IP addresses inside the laboratory and 13 782
external IP addresses were recorded. This tensor was totally deflated and a total
of 19046 communities were found (1930 of them having at least 10 non-zeros).

In both, fairly different, realworld scenarios, COM2 uses the default parame-
ters (cf. Sec. 3), showing it can be applied without any user-defined parameters.

Observation 1 The biggest communities are more active during weekdays.

Figure 2 shows the number of active communities per day of the week on both
datasets and we can see that most communities are significantly more active
during weekdays. In the phone call data, we are led to believe that these are
mostly companies with reduced activity during weekends, while the reduced
activity during the weekends in the research laboratory is to be expected.

o]
o
o

1000

[o2)
o
o

800

600

N
o
o

400

active communities
ey
o
o

active communities

o

200
0 2 4 6 8 10 12 14 0 5 10 15 20 25 30
days days
(a) Weekly periodicity phone (b) Weekend activity computer
call data. network data.

Fig. 2: Weekly periodicity: number of active communities vs time. Notice the
weekend dives on a) days 4, 5 and 11, 12 and b) days 3, 4, 10, 11, 17, 18, 24, 25

Observation 2 A typical pattern is the “Flickering stars”.

When analyzing a phone call network, a pattern to be expected is the marketeer
pattern in which a number calls many others a very small number of times (1 or
2). Surprisingly, the stars reported by CoM2 were not of this type. Two callers
stand out in an analysis of the communities reported: one participated in 78 279
(source, destination, time) triplets as a caller but only in 10 triplets as a receiver,
while the other participated in 8 909 triplets as a caller and in none as a receiver.
These two nodes are centers of two distinct outgoing stars and were detected
by the algorithm. However, the time component of these stars was not a single
day but rather spanned almost all the weekdays. This behavior does not seem
typical of a marketeer, so we hypothesize that it is a big company communicating
with employees. Many of the reported communities are stars of this type: a caller
calling a few hundred people in a subset of the weekdays - we call them flickering
because there is still some activity during the rest of the weekdays, only reduced
so that those days are not considered part of the community.

In the LBNL dataset, one star was particularly surprising. It received con-
nections from over 750 different IP addresses inside the laboratory but only on a
single day. One of the other big stars corresponded to 40 connections on a single
day to an IP address attributed to the Stanford Research Institute, which is not
surprising given the geographical proximity.

We define Flickering stars as a common temporal-community that has a
varying number of receivers. These communities are active on different days, not
necessarily consecutive. Stars active on many days (e.g. every weekday) are more
common than single day stars.

Observation 3 A typical pattern is the “Temporal Bipartite Cores”.

Several near-bipartite cores were detected as communities in the phone call
dataset. These are communities with about 5 callers and receivers that are active
on nearly each day under analysis. These communities represent between 75 and
150 of the non-zeros of the original tensor, with a block density of around 40%.

An example of such communities can also be shown for the LBNL data.
7 machines of the laboratory communicated with 6 external IP addresses on
every weekday of the month. After analyzing the IP addresses, the outside ma-
chines were found to be part of the Stanford National Accelerator Laboratory,
the University of California in San Francisco, the UC Davis, the John Hopkins
University, and the U.S. Dept. of Energy. COM2 was able to detect this research
group (possibly in particle physics) using communications data alone.

5 Conclusions

We focused on deriving patterns from time-evolving graphs, and specifically on
spotting comet communities, that come and go (possibly periodically). The main
contributions are the following;:

— Scalability: Our method, CoM2, is linear on the input size; instead of rely-
ing on a complete tensor factorization, we carefully leverage rank-1 decom-
positions to incrementally guide the search process for community detection.

— No user-defined parameters: In addition to the above, efficient, incre-
mental search process, we also proposed a novel MDL-based stopping crite-
rion, which finds such comet communities in a parameter-free fashion.

— Effectiveness: We applied CoOM2 on real and synthetic data, where it dis-
covered communities that agree with intuition.

— Generality: CoOM2 can be easily extended to handle higher-mode tensors.

CoM2 can also be applied on edge-labeled graphs, by considering the labels
as the third mode of the tensor. Future work could focus on exploiting side
information, like node-attributes (for example, demographic data for each node).
CoM2 is available at http://cs.cmu.edu/~maraujo/publications.html.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1247489. Research was sponsored by
the Defense Threat Reduction Agency and was accomplished under contract No.
HDTRA1-10-1-0120. Also, sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-2-0053. Addi-
tional funding was provided by the U.S. Army Research Office (ARO) and De-
fense Advanced Research Projects Agency (DARPA) under Contract Number
W911NF-11-C-0088. This work is also partially supported by a Google Focused
Research Award, by the Fundagdo para a Ciéncia e a Tecnologia (Portuguese
Foundation for Science and Technology) through the Carnegie Mellon Portugal
Program, and by a fellowship within the postdoc-program of the German Aca-
demic Exchange Service (DAAD). Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation, DARPA,
or other funding parties. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright no-
tation here on.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

Kolda, T., Bader, B.: Tensor decompositions and applications. STAM review 51(3)
(2009)

Harshman, R.: Foundations of the PARAFAC procedure: Models and conditions
for an ”explanatory” multimodal factor analysis. (1970)

Maruhashi, K., Guo, F., Faloutsos, C.: Multiaspectforensics: Pattern mining on
large-scale heterogeneous networks with tensor analysis. In: Proceedings of the
Third International Conference on Advances in Social Network Analysis and Min-
ing. (2011)

Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Parcube: Sparse parallelizable
tensor decompositions. In: ECML/PKDD (1). (2012) 521-536

Kolda, T.G., Bader, B.W., Kenny, J.P.: Higher-order web link analysis using mul-
tilinear algebra. In: ICDM, IEEE Computer Society (2005) 242-249

Fortunato, S.: Community detection in graphs. Physics Reports 486(35) (2010)
75— 174

Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of
blogspace. In: WWW. (2003)

Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. IEEE TKDD (2007)

Gionis, A., Mannila, H., Seppanen, J.K.: Geometric and combinatorial tiles in 0-1
data. In: PKDD. (2004)

Sun, J., Papadimitriou, S., Faloutsos, C., Yu, P.S.: Graphscope: Parameter-free
mining of large time-evolving graphs. In: KDD. (2007)

Liu, Z., Yu, J., Ke, Y., Lin, X., Chen, L.: Spotting significant changing subgraphs
in evolving graphs. In: ICDM. (2008)

Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: Dynamic tensor
analysis. In: KDD. (2006)

Tantipathananandh, C., Berger-Wolf, T.Y.: Finding communities in dynamic social
networks. In: ICDM. (2011)

Prakash, B.A., Sridharan, A., Seshadri, M., Machiraju, S., Faloutsos, C.: Eigen-
spokes: Surprising patterns and scalable community chipping in large graphs. In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD).
(2010)

Karypis, G., Kumar, V.: Metis: unstructured graph partitioning and sparse matrix
ordering system. Technical report (1995)

Griinwald, P.D.: The minimum description length principle. The MIT Press (2007)
Rissanen, J.: A universal prior for integers and estimation by minimum description
length. The Annals of statistics (1983) 416-431

Miettinen, P.: Boolean tensor factorizations. In: ICDM. (2011)

Takane, Y., Young, F.W., De Leeuw, J.: Nonmetric individual differences mul-
tidimensional scaling: an alternating least squares method with optimal scaling
features. Psychometrika 42(1) (1977) 7-67

