Discovery of ‘comet’ communities in temporal and labeled graphs (Com²)

Miguel Araujo¹,², Stephan Günnemann³, Spiros Papadimitriou³,
Christos Faloutsos¹, Prithwish Basu⁴, Ananthram Swami⁵,
Evangelos E. Papalexakis¹ and Danai Koutra¹

¹iLab & School of Computer Science, Carnegie Mellon University, Pittsburgh PA, USA;
²CRACS/INESC-TEC, University of Porto, Porto, Portugal;
³Rutgers University, New Brunswick NJ, USA;
⁴Raytheon BBN Technologies, Cambridge MA, USA;
⁵Army Research Laboratory, Adelphi MD, USA

Abstract. While the analysis of unlabeled networks has been studied extensively in the past, finding patterns in different kinds of labeled graphs is still an open challenge. Given a large edge-labeled network, e.g. a time-evolving network, how can we find interesting patterns? We propose Com², a novel, fast and incremental tensor analysis approach which can discover communities appearing over subsets of the labels. The method is (a) scalable, being linear on the input size, (b) general, (c) needs no user-defined parameters and (d) effective, returning results that agree with intuition.

We apply our method to real datasets, including a phone-call network, a computer-traffic network and a flight information network. The phone call network consists of 4 million mobile users, with 31 million edges (phonecalls), over 14 days, while the flights dataset consists of 7 733 airports and 5 995 airline companies flying 67 663 different routes. We show that Com² spots intuitive patterns regarding edge labels that carry temporal or other discrete information. Our findings include large ‘star’-like patterns, near-bipartite-cores, as well as tiny groups (5 users), calling each other hundreds of times within a few days. We also show that we are able to automatically identify competing airline companies.

Keywords: community detection, temporal data, edge labels, tensor decomposition

Received xxx
Revised xxx
Accepted xxx
1. Introduction

Nodes in real networks naturally organize into communities or clusters exhibiting a high degree of cohesiveness, a phenomenon reported not only in social graphs (Wasserman and Faust; 1994), but also in protein-protein interaction networks (Sen et al.; 2006) and in the world wide web (Flake et al.; 2000). Many community detection methods have been developed to detect such structures in simple unlabeled graphs (Fortunato; 2010).

However, in reality, interactions are not all the same and we are able to characterize them along different vectors: when they take place, the mean of communication used, the duration of the communication or the content of the interaction are just a few examples. Incorporating this additional information in community detection methods would allow us to characterize communities on these dimensions and we would be able to detect communities whose nodes have similar interactions, improving community quality. In a social network, for example, we observe nodes corresponding to users and edges correspond to phone calls, emails or text messages. By classifying these interactions in simple categories such as “work”, “school”, “leisure” and “family”, and then grouping people with similar interactions, we are able to significantly increase community quality. Standard techniques would ignore this extra information and mix, e.g., work and family relations.

Here we focus on exactly this problem: how to find communities in an edge-labeled network, in a scalable way without user-defined parameters. We analyze a large, million-node graph, from an anonymous (and anonymized) dataset of mobile customers of a large population and a bipartite computer network with hundreds of thousands of connections, available to the public, to detect time-varying communities. We also analyze flights data (where nodes correspond to airports and edges are labeled with the company operating the flight) to find which companies are the biggest competitors in different regions. Figure 1 illustrates a sample community, in which 3 big airlines (Lufthansa, Delta and United Airlines) heavily compete in 16 worldwide airports; we illustrate other specific regional competitors in Section 4. We shall refer to the communities we discover as comet communities, because they are only active over some labels; they (may) come and go, like comets.

The contributions of our method, Com², are the following:

- **Scalability**: Com² is linear on the input size, thanks to a careful, incremental tensor-analysis method, based on fast, iterated rank-1 decompositions.
- **No user-defined parameters**: Com² uses a novel Minimum Description Length (MDL) based formulation of the problem, to automatically guide the community discovery process.
- **Effectiveness**: We applied Com² on real and synthetic data, discovering edge-labeled communities that agree with intuition.
- **Generality**: Com² can be easily extended to handle higher-mode tensors.

This paper is an extended version of an initial conference version (Araujo, Papadimitriou, Gümennmann, Faloutsos, Basu, Papalexakis and Koutra; 2014). This version provides an extended model to deal with qualitative edge-labeled graphs instead of focusing on time-evolving networks. Furthermore, the algorithmic description has been enhanced and covers additional information such as proof that a small number of rejections suffices, algorithm pseudo-code,
Discovery of ‘comet’ communities in temporal and labeled graphs (Com²)

Fig. 1. Worldwide flights community: Com² is able to detect situations of competition in flight records without user-defined parameters. Lufthansa, Delta and United Airlines compete in the 16 biggest world airports flying 37% of the valid routes with significant overlap. In this figure, we only show the flights in this community connected to Charles de Gaule airport, France.

and a complexity analysis. Finally, the extended version contains new experiments on real world data showcasing the method’s ability to deal with non-temporal edge labels and a discussion on possible extensions of our method.

The rest of this paper is organized as follows: we summarize necessary background and related work in Section 2, describe our proposed method in Section 3, show our experimental results in Section 4 and finally conclude in Section 5.

2. Background and Related Work

In this section, we summarize related work on graph patterns, tensor decomposition methods, and general community detection algorithms for graphs.

Static community detection. The widespread notion of cohesiveness used to group nodes has typically reflected that community members are
1. well connected among themselves;
2. relatively well separated from the remaining nodes.

Building on this intuition, various principles have been introduced, ranging from adaptations of hierarchical and spectral clustering (Gkantsidis et al.; 2003; Shi and Malik; 2000; Günemann et al.; 2013), over block-modeling (Wasserman and Faust; 1994) and generative models (Yang and Leskovec; 2012), to information theoretic principles (Rosvall and Bergstrom; 2007; Koutra et al.; 2014) and the detection of quasi-cliques in node-labeled graphs (Günemann et al.; 2014). We kindly refer to the excellent survey of Fortunato (2010) for a thorough discussion of community detection methods. Notably, recent work has shown that, unlike previously assumed, big communities tend to have a hyperbolic shape and their members are not as tightly connected (Araujo, Günemann, Mateos and Faloutsos; 2014).
Community detection in categorical edge-labeled graphs. The detection of communities using categorical edge-labels has been studied less extensively in the literature, but the general idea is that these methods try to simultaneously co-cluster nodes and labels. MUTURANK and GMM-NK (Wu et al.; 2013) start by determining weights of various relation types and objects that are then use to create a single-level network by combining the different probability distributions. PMM (Tang et al.; 2009) is a spectral method that starts by calculating the eigen-decomposition of the individual adjacency matrices (i.e. considering labels independently), and then clusters the feature vectors of the different nodes together using k-means. This way, they find nodes that have a similar “profile” along different edge-labels, but the method is severely penalized as the number of labels increases. In Boden et al. (2012, 2013), extensions of the quasi-clique definition have been introduced to detect communities where nodes show similarity in subsets of the edge labels.

Other approaches rely on sparsifying the dense and real-valued PARAFAC decomposition in order to identify communities. Possibilities include thresholding the values in the component vectors after the initial decomposition, or modifying the decomposition itself by imposing sparsity using L1 penalty terms. As an example, GRAPHFUSE (Papalexakis, Akoglu and Ience; 2013) starts by calculating a sparse PARAFAC decomposition of the tensor and then assigning each node to the cluster in which it has the highest weight in the decomposition, effectively partitioning the nodes. Because it creates a hard clustering (with no overlapping), GRAPHFUSE is more closely related to graph partitioning than to community detection.

Community detection in time evolving graphs. Graph evolution has been a topic of interest for some time, particularly in the context of web data (Kumar et al.; 2003; Leskovec et al.; 2007). MDL-based approaches for detecting non-overlapping communities in time-evolving graphs (Sun et al.; 2007) have been previously proposed, however, this work focuses on incremental, streaming community discovery, imposing segmentation constraints over time, rather than on discovering comet communities. Liu et al. (2008) study the problem of detecting changing communities, but require selection of a small number of parameters. Furthermore, broadly related work uses tensor-based methods for analysis and prediction of time-evolving “multi-aspect” structures, e.g. Sun et al. (2006); Dunlavy et al. (2011). Aggarwal and Subbian (2014) published a very recent survey on evolutionary network analysis, in which they classify evolutionary clustering methods in eight categories (spectral, probabilistic, density-based, matrix factorization, modularity, information theoretic, pattern mining and others). We refer the reader to this survey for a more detailed analysis.

Table 1 compares some of the most common static and label-aware community detection methods.

Tensor Decompositions. An n-mode tensor is a generalization of the concept of matrices: a 2-mode tensor is just a matrix, a 3-mode tensor looks like a data-cube, and a 1-mode tensor is a vector. Among the several flavors of tensor decompositions (see Kolda and Bader; 2009), the most intuitive one is the so called Canonical Polyadic (CP) or PARAFAC decomposition (Harshman; 1970). PARAFAC is the generalization of SVD (Singular Value Decomposition) in higher modes. See Fig. 2 for an example, where the 3 modes are caller-id, callee-id and timestamp.
Discovery of ‘comet’ communities in temporal and labeled graphs (Com2)

Table 1. Comparison of community detection methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Scalable</th>
<th>Label-aware</th>
<th>Label subsets*</th>
<th>No user-defined parameters</th>
<th>Interpretability†</th>
<th>Overlapping communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenspokes (Prakash et al.; 2010)</td>
<td>✓</td>
<td>×</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>METIS (Karypis and Kumar; 1995)</td>
<td>✓</td>
<td>×</td>
<td>N/A</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Graphscope (Sun et al.; 2007)</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PARAFAC (Harshman; 1970)</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SDP + Rounding (Tantipathananand and Berger-Wolf; 2011)</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>GMM-NK (Wu et al.; 2013)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>PMM (Tang et al.; 2009)</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>GraphFuse (Papalexakis, Akoglu and Ience; 2013)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Communities found in subsets of labels; temporal communities do not need to be contiguous.
† Results are easy to interpret; elements of the community can be identified easily.

Fig. 2. PARAFAC decomposition of a three-way tensor as a sum of F outer products (rank-one tensors), generalizing the rank-F singular value decomposition of a matrix.

Tensors methods have been successfully used for anomaly detection in computer networks (Maruhashi et al.; 2011), Facebook interactions (Papalexakis et al.; 2012; Koutra et al.; 2012) and for clustering of web pages (Kolda et al.; 2005). Papalexakis, Sidiropoulos and Bro (2013) provide evidence that when the factors of the CP/PARAFAC decomposition are sparse, then doing the decomposition by extracting a rank-one component each time approximates the ‘batch’, full rank decomposition with very high accuracy; this premise is key to the present paper, since it allows us to perform community detection very quickly, by extracting only rank-one components.
3. Proposed Principle

In this section, we formalize our problem, present the proposed method and analyze its properties. We first describe our MDL-based formalization which guides the community discovery process. Next, we describe a novel, fast, and efficient search strategy, based on iterated rank-1 tensor decompositions which can discover communities in edge-labeled networks in a fast and effective manner. While our method generalizes to tensors with an arbitrary number of modes, we illustrate our method using 3-mode tensors to simplify its understanding.

3.1. Formal objective

We are given a (possibly directed) network consisting of sources S, destinations D and edge-labels L. We represent this network via a 3-mode tensor $X \in \{0, 1\}^{S \times D \times L}$ where $X_{i,j,l} = 1$ if source i is connected to destination j via an edge with label l. As abbreviations we use $N = |S|$, $M = |D|$, and $K = |L|$. In many practical scenarios, the set of sources S equals the set of destinations D. The goal is to automatically detect the set of communities $C = \{C_1, ..., C_k\}$ that best describes the tensor X, where k is part of the optimization and not known a priori.

Definition 1. Community

A community is a triplet $C = (S,D,L)$ with $S \subseteq S$, $D \subseteq D$, and $L \subseteq L$ such that elements in S are well connected to elements in D using edges with labels in L. An edge is part of the community if both nodes and the corresponding label are part of the community, i.e., $E(C)_{i,j,l} = 1 \iff i \in S, j \in D, l \in L$.

We propose to measure the ‘importance’ of a community via the principle of compression, i.e. by the community’s ability to help us compress the 3-mode tensor: if most of the sources are connected to most of the destinations using most of the indicated labels, then we can compress this ‘comet-community’ easily. By finding the set of communities leading to the best compression of the tensor, we get the overall most important communities.

More specifically, we use the MDL (Minimum Description Length) principle (Grünwald; 2007). That is, we aim to minimize the number of bits required to encode the detected patterns (i.e. the model) and to describe the data given these patterns (corresponding to the effects of the data which are not captured by the model). Thus, the overall description cost automatically trades off the model’s complexity and its goodness of fit. In the following, we provide more details about the description cost:

Description cost. The first part of the description cost accounts for encoding the detected patterns $C = \{C_1, ..., C_k\}$. Each pattern $C_i = (S_i, D_i, L_i)$ can be completely described by the cardinalities of the three included sets and by the information of which nodes and labels belong to these sets. Thus, the coding cost for a pattern C_i is

$$L_1(C_i) = L_N(|S_i|) + L_M(|D_i|) + L_K(|L_i|) + |S_i| \cdot \log N + |D_i| \cdot \log M + |L_i| \cdot \log K \quad (1)$$

The first three terms encode the cardinalities of the sets using the MDL optimal universal codelength L_N for integers (Rissanen; 1983). The last three terms encode the actual membership information of the sets using block-encoding: e.g., since the original graph contains N sources, each source included in the pattern...
can be encoded by \(\log N \) bits, which overall leads to \(|S_1| \cdot \log N \) bits to encode all sources included in the pattern.

Correspondingly, a set of patterns \(\mathcal{C} = \{C_1, \ldots, C_k\} \) can be encoded by the following number of bits:

\[
L_2(\mathcal{C}) = L_N(|\mathcal{C}|) + \sum_{C \in \mathcal{C}} L_1(C)
\]

That is, we encode the number of patterns and sum up the bits required to encode each individual pattern.

Since in real world data we expect to find overlapping communities, our model should not be restricted to disjoint patterns. But how to reconstruct the data based on overlapping patterns? As an approach, we refer to the principle of Boolean algebra: multiple patterns are combined by a logical disjunction. That is, if an edge occurs in at least one of the patterns, it is also present in the reconstructed data. This idea is related to the paradigm of Boolean tensor factorization. More formally, the reconstructed tensor is given by:

Definition 2. Tensor reconstruction

Given a community \(C \), we define the indicator tensor \(I^C \in \{0,1\}^{N \times M \times K} \) to be the 3-mode tensor with \(I^C_{i,j,l} = 1 \Leftrightarrow (i,j,l) \in E(C) \).

Given a set of patterns \(\mathcal{C} \), the reconstructed tensor \(\tilde{X}^C \) is defined as \(\tilde{X}^C = \bigvee_{C \in \mathcal{C}} I^C \), where \(\bigvee \) denotes element-wise disjunction.

The second part of the description cost encodes the data given the model. Given that the MDL principle requires a lossless reconstruction of the data and since the reconstructed tensor, \(\tilde{X}^C \), unlikely reconstructs the data perfectly, we also have to encode the ‘errors’ made by the model. Here, an error might either be an edge appearing in \(X \) but not in \(\tilde{X}^C \), or vice versa. Since we consider a binary tensor, the number of errors can be computed based on the squared Frobenius norm of the residual tensor, i.e. \(\|X - \tilde{X}^C\|_F^2 \).

Finally, as ‘errors’ correspond to edges in the graph, the description cost of the data can now be computed as

\[
L_3(X|\mathcal{C}) = L_N \left(\|X - \tilde{X}^C\|_F^2 \right) + \|X - \tilde{X}^C\|_F^2 \cdot (\log N + \log M + \log K)
\]

Technically, we also have to encode the cardinalities of the set \(S, D, \) and \(L \) (i.e. the size of the original tensor). Given a specific dataset, however, these values are constant and thus do not influence the detection of the optimal solution.

Overall model. Given the functions \(L_2 \) and \(L_3 \), we are now able to define the communities that minimize the overall number of bits required to describe the model and the data:

Definition 3. Community model

Given a tensor \(X \in \{0,1\}^{|S| \times |D| \times |L|} \), the set of communities is defined as the set of patterns \(\mathcal{C}^* \subseteq (\mathcal{P}(S) \times \mathcal{P}(D) \times \mathcal{P}(L)) \) fulfilling

\[
\mathcal{C}^* = \arg \min \{L_2(\mathcal{C}) + L_3(X|\mathcal{C})\}
\]

Again, it is worth mentioning that the patterns detected based on this definition are not necessarily disjoint, thus better representing the properties of real data.
3.2. Algorithmic solution

Computing the optimal solution of Equation 4 is infeasible as it is NP-hard, given that the column reordering problem in two dimensions is NP-hard as well (Johnson et al., 2004). Therefore, in the following, we introduce a scalable and efficient algorithm that approximates the optimal solution via an iterative method of sequentially detecting important communities. The general idea is to find in each step a single community \(C_i \) that contributes the most to the MDL-compression based on local evaluation. That is, given the already detected communities \(\{C_1, \ldots, C_{i-1}\} \), we are interested in finding a novel community \(C_i \) which minimizes \(L_2(\{C_i\} \cup C_{i-1}) + L_3(X|\{C_i\} \cup C_{i-1}) \). Since \(C_{i-1} \) is given, this is equivalent to minimizing

\[
L_1(C_i) + L_3(X|\{C_i\} \cup C_{i-1}).
\]

(5)

Obviously, enumerating all possible communities is infeasible. Therefore, to detect a single community \(C_i \), the following steps are performed:

- **Step 1: Community candidates:** We spot candidate nodes and labels by performing a rank-1 approximation of the tensor \(X \). This step provides a normalized vector for each dimension with the score of each element.

- **Step 2: Community construction:** The scores from the previous step are used in a hill climbing search as a bias for connectivity, while minimizing the MDL costs is used as the objective function for determining the correct community size.

- **Step 3: Tensor deflation:** Based on the current community detected, we deflate the tensor so that the rank-1 approximation is steered to find novel communities in later iterations.

In the following, we discuss each step of the method.

Community candidates. As mentioned, exhaustively enumerating all possible communities is infeasible. Therefore we propose to iteratively let the communities grow. The challenge, however, is how to spot nodes and/or labels that should be added to a community. For this purpose, we refer to the idea of tensor decomposition. Given the tensor \(X \) (or as we will explain in step 3, the deflated tensor \(X^{(i)} \)), we compute vectors \(a \in \mathbb{R}^N \), \(b \in \mathbb{R}^M \), and \(c \in \mathbb{R}^K \) providing a low rank approximation of the community. Intuitively, sources connected to highly-connected destinations at highly active labels get a higher score in the vector \(a \) and similarly for the other two vectors.

Specifically, to find these vectors, a scalable extension of the matrix-power-method only needs to iterate over the equations:

\[
a_i \leftarrow \sum_{j=1}^{M} \sum_{k=1}^{K} X_{i,j,k} b_j c_k \\
b_j \leftarrow \sum_{i=1}^{N} \sum_{k=1}^{K} X_{i,j,k} a_i c_k \\
c_k \leftarrow \sum_{i=1}^{N} \sum_{j=1}^{M} X_{i,j,k} a_i b_j
\]

(6)

where \(a_i, b_j \) and \(c_k \) are the scores of source \(i \), destination \(j \) and label \(k \). These
vectors are then normalized and the process is repeated until convergence. Initial values are assigned randomly from the range 0 to 1.

Lemma 1. ALS (Carroll and Chang; 1970) reduces to Equations 6, when we ask for rank-1 results.

Proof. According to the Alternating Least Squares method, one fixes matrices B and C and solves for A through the minimization of

$$
\min_A \| X(1) - \hat{A} (C \otimes B)^T \|_F \tag{7}
$$

Due to properties of the PARAFAC decomposition (Kolda and Bader; 2009) \hat{A} has closed form solution of the form $\hat{A} = X(1)(C \otimes B)(C^T C \ast B^T B)^\dagger$.

When A, B and C are vectors (a, b and c, resp.), the Khatri-Rao product $(c \otimes b)$ is equivalent to the Kronecker product $(c \otimes b)$. The inner products $c^T c$ and $b^T b$ are scalars and so is $(c^T c \ast b^T b)^\dagger$. The product of $X(1)$, the $N \times MK$ matricization of X, and $c \otimes b$, the $MK \times 1$ column vector, reduces to Eq. 6. □

Notice that the complexity is linear in the size of the input tensor: Let E be the number of non zeros in the tensor, we can easily show that each iteration has complexity $O(E)$ as we only need to consider the non zero $X_{i,j,k}$ values. In practice, we select an ϵ and compare two consecutive iterations in order to stop the method when convergence is achieved. In our experimental analysis in Section 4 (using networks with millions of nodes) we saw that a relatively small number of iterations (about 10) is sufficient to provide reasonable convergence.

Community construction. Since the tensor decomposition provides numerical values for each node/label, its result cannot be directly used to specify communities. Additionally, there might be no clear threshold to distinguish those nodes/labels belonging to the community and the rest. Algorithm 1 illustrates the construction process in pseudo-code.

We exploit the vectors a, b and c as bias in a hill climbing search, with the goal of minimizing the MDL cost. Algorithm 1 shows an overview of this step. We start by selecting a highly connected entry (a_0, b_0, c_0) in the tensor as the initial seed $S_a = \{a_0\}$, $S_b = \{b_0\}$, $S_c = \{c_0\}$. We then let the community grow incrementally: we randomly select nodes v_a, v_b and label v_c that are not currently part of the community but connected to it, using the score vectors a, b and c as sampling bias. That is, given the current nodes S_a, S_b and labels S_c, we sample according to

$$
P(v_a = i) \propto \begin{cases} a_i & i \notin S_a \land \exists y \in S_b, z \in S_c : X_{i,y,z} = 1 \\ 0 & \text{else} \end{cases}
$$

$$
P(v_b = j) \propto \begin{cases} b_j & j \notin S_b \land \exists x \in S_a, z \in S_c : X_{x,j,z} = 1 \\ 0 & \text{else} \end{cases}
$$

$$
P(v_c = k) \propto \begin{cases} c_k & k \notin S_c \land \exists x \in S_a, y \in S_b : X_{x,y,k} = 1 \\ 0 & \text{else} \end{cases}
$$

We tested different methods with no significant differences found in the results since the subsequent steps of growing and shrinking lead to the selection of the most relevant edges and the removal of irrelevant ones. Selecting the edge (i, j, k) with highest $\min(a_i, b_j, c_k)$ provides a good initial seed.
nodes initially selected to be part of the community (when it was small) is not
description cost by removing elements. Intuitively, it is possible that one of the
user of the algorithm.
we consider this parameter to be general and it does not need to be defined by
that we would add the element to the community. That is, we calculate MDL
a
the probability that the element has not been chosen is upper-bounded by (1 −
Given that vector
Proof.
Lemma 2. Let i be an element that was not included in the community when
it should have been included. Let u be the vector corresponding to i’s mode (i.e.
u is one of the vectors a, b, or c). Then the probability that i does not belong
to this community decreases exponentially with ∆.
\[P(\text{"i not selected" | i should have been selected"}) \leq (1 − u_i)^\Delta. \quad (9) \]
Proof. Given that vector u is normalized (see step 1), at each iteration, the probability that the element i is not chosen is given by (1 − u_i). After ∆ iterations, the probability that the element has not been chosen is upper-bounded by (1 − u_i)^\Delta. The exact probability is actually lower as the sampling is done without replacement, ignoring the elements currently in the community.

In our experimental analysis, a value of ∆ = 50 has proven to be sufficient; we consider this parameter to be general and it does not need to be defined by the user of the algorithm.

After growing the community (i.e. after ∆ rejections), we try to improve its description cost by removing elements. Intuitively, it is possible that one of the nodes initially selected to be part of the community (when it was small) is not

\begin{algorithm}
\caption{Community Construction}
\begin{algorithmic}
\Function{CommunityConstruction}{ScoreVector a, b, and c}
\State $[S_a, S_b, S_c] \leftarrow \text{initialSeed}(a, b, c)$
\Repeat
\State $t \leftarrow 0$
\While{$t < \Delta$} \Comment{Try to grow the community}
\State $v_a \leftarrow \text{newBiasedNode}([S_a, S_b, S_c], a)$ \Comment{Mode 1}
\State $v_b \leftarrow \text{newBiasedNode}([S_a, S_b, S_c], b)$ \Comment{Mode 2}
\State $v_c \leftarrow \text{newBiasedNode}([S_a, S_b, S_c], c)$ \Comment{Mode 3}
\State \text{MDL}_a \leftarrow L_3(S_a \cup \{v_a\}, S_b, S_c)
\State \text{MDL}_b \leftarrow L_3(S_a, S_b \cup \{v_b\}, S_c)
\State \text{MDL}_c \leftarrow L_3(S_a, S_b, S_c \cup \{v_c\})
\State \text{value, index} = \text{min}($\text{MDL}_a, \text{MDL}_b, \text{MDL}_c$)
\If{value < $L_3(S_a, S_b, S_c)$} \Comment{Try to shrink the community}
\State $S_{index} \leftarrow S_{index} \cup \{v_{index}\}$ \Comment{Mode 1}
\Else
\State $t \leftarrow t + 1$
\EndIf
\ForAll{elements n in S_a}
\If{$L_3(S_a \setminus \{n\}, S_b, S_c) < L_3(S_a, S_b, S_c)$} \Comment{Try to shrink the community}
\State $S_a \leftarrow S_a \setminus \{n\}$
\EndIf
\EndFor
\ForAll{elements n in S_b}
\If{$L_3(S_a, S_b \setminus \{n\}, S_c) < L_3(S_a, S_b, S_c)$} \Comment{Try to shrink the community}
\State $S_b \leftarrow S_b \setminus \{n\}$
\EndIf
\EndFor
\ForAll{elements n in S_c}
\If{$L_3(S_a, S_b, S_c \setminus \{n\}) < L_3(S_a, S_b, S_c)$} \Comment{Try to shrink the community}
\State $S_c \leftarrow S_c \setminus \{n\}$
\EndIf
\EndFor
\Until{$[S_a, S_b, S_c]$ has converged}
\Return{$[S_a, S_b, S_c]$}
\EndFunction
\end{algorithmic}
\end{algorithm}

For each of these elements, we calculate the description length considering that we would add the element to the community. That is, we calculate MDL_a, MDL_b, and MDL_c based on the sets $S_a \cup \{v_a\}$, $S_b \cup \{v_b\}$, and $S_c \cup \{v_c\}$, respectively. If the smallest of these MDL scores is smaller than the score of the community detected so far, the corresponding element is accepted and the next round of sampling is performed. This process is repeated until ∆ consecutive rejections have been observed. We can show that a small number of rejections ∆ is sufficient:

\textbf{Lemma 2.} Let i be an element that was not included in the community when it should have been included. Let u be the vector corresponding to i’s mode (i.e. u is one of the vectors a, b, or c). Then the probability that i does not belong to this community decreases exponentially with ∆.

\[P(\text{"i not selected" | i should have been selected"}) \leq (1 − u_i)^\Delta. \quad (9) \]

\textbf{Proof.} Given that vector u is normalized (see step 1), at each iteration, the probability that the element i is not chosen is given by (1 − u_i). After ∆ iterations, the probability that the element has not been chosen is upper-bounded by (1 − u_i)^\Delta. The exact probability is actually lower as the sampling is done without replacement, ignoring the elements currently in the community. \qed

In our experimental analysis, a value of ∆ = 50 has proven to be sufficient; we consider this parameter to be general and it does not need to be defined by the user of the algorithm.

After growing the community (i.e. after ∆ rejections), we try to improve its description cost by removing elements. Intuitively, it is possible that one of the nodes initially selected to be part of the community (when it was small) is not
that well connected to the nodes that have since been added. Instead of penalizing the current MDL score and “blocking” the addition of new nodes, we check whether the removal of any node/label currently in the community improves the description cost. This growing/shrinking alternating process is repeated until the community stabilizes, and it is guaranteed to converge as the description cost is strictly decreasing.

Tensor deflation. While the output of the previous two steps is a single community, the goal of this step is to transform the tensor so that novel communities can be found in future iterations. The challenge of such an iterative processing is to avoid generating the same community repeatedly: we have to explore different regions of the search space.

As described in Section 2, Papalexakis, Sidiropoulos and Bro (2013) indicate that extracting one rank (i.e. community) at a time approximates the full-rank decomposition with very high accuracy when the factors are sparse. Therefore, we propose the principle of tensor deflation. Starting with the original tensor $\mathbf{X}^{(1)} := \mathbf{X}$, after each iteration, we remove the community C_i whose edges were already described. We obtain the recursion

$$\mathbf{X}^{(i+1)} := \mathbf{X}^{(i)} - \mathbf{1}^{C_i} \odot \mathbf{X}^{(i)} \quad \text{or} \quad \mathbf{X} - \mathbf{X}^{C_i} \odot \mathbf{X}$$ (10)

where \odot denotes the Hadamard product.

The method might terminate when the tensor is fully deflated (if possible), or when a pre-defined number of communities has been found, or when some other measure of community quality (e.g. community size) was not achieved in the most recent communities.

3.2.1. Complexity Analysis

Lemma 3. Our algorithm has a runtime complexity of

$$O(C \cdot (E + |P| \cdot \log N \cdot \log |P|)),$$

where C is the number of communities we obtain, E is the number of non-zeros of the tensor, N is the length of the biggest mode, and $|P|$ is the size of the biggest community. Thus, our method scales linearly w.r.t. the input E.

Proof. Steps 1 to 3 are repeated C times, the number of communities to be obtained. Step 1, the rank-1 approximation, requires $O(E)$ time. Step 2, the core of the algorithm, can be executed using $O(|P|)$ addition and removals, each with the complexity required to calculate the new Minimum Description Length of the community: $O(\log N \cdot \log |P|)$. Finally, step 3, the matrix deflation, can be done in $O(E)$ with a single pass over the edges of the community. □

3.2.2. Algorithm parameters

Despite the existence of two parameters in the algorithm, their variation has no significant impact when analyzing specific networks.

The first parameter, ϵ, impacts the number of iterations in the rank-1 approximation in step 1. In practice, a fixed value of 10 iterations provides very good results regardless of the network under consideration. This effect can be explained due to two reasons: First, the vectors \mathbf{a}, \mathbf{b} and \mathbf{c} are only used as approximations for community candidates and don’t require high precision. Sec-
<table>
<thead>
<tr>
<th>Name</th>
<th># Nodes</th>
<th># Non zeros</th>
<th># Labels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLB</td>
<td>10-20</td>
<td>1,000 - 2,000</td>
<td>100</td>
<td>Overlapping blocks.</td>
</tr>
<tr>
<td>DJB</td>
<td>1,000</td>
<td>50,000</td>
<td>500</td>
<td>Disjoint blocks.</td>
</tr>
<tr>
<td>LBNL</td>
<td>1,647 + 13,782</td>
<td>113,030</td>
<td>30</td>
<td>Internet traces from LBNL</td>
</tr>
<tr>
<td>PHONE</td>
<td>3,952,632</td>
<td>51,119,177</td>
<td>14</td>
<td>Phone call network.</td>
</tr>
<tr>
<td>FLIGHTS</td>
<td>7,733</td>
<td>67,663</td>
<td>5,995</td>
<td>Flights network.</td>
</tr>
</tbody>
</table>

Table 2. Networks used: Two small, synthetic networks; three large real networks.

and, since real graphs are scale-free having small diameter, the changes in these vectors propagate very quickly through the network.

The impact of the second parameter, Δ, has been analyzed in Lemma 2. The exponential decrease in a node’s probability to be wrongly left out of the community implies that a relatively small and fixed value for Δ can be used.

Therefore, we conclude that these parameters do not need to be defined by the user (and provide no such means in the software package made available).

4. Experiments

Com2 was tested on a variety of real and synthetic tensors in order to assess its effectiveness, robustness and scalability. Table 2 summarizes the networks used, a more detailed description of each dataset is provided later in this section.

In the three fairly different real-world datasets, Com2 was run using the default parameters (cf. Sec. 3.2.2), showing that it can be applied without any user-defined parameters.

4.1. Quality of the solutions

Characterizing the quality and robustness of the communities identified by the method is important. In particular we want to answer the following questions: How are “overlapping blocks” identified? How much overlapping can occur so that consecutive rank-1 decompositions can identify them separately? How “dense” are the communities found? We rely on synthetic datasets with ground-truth information to answer these questions.

Overlapping communities. Analyzing the impact of overlap helps us predict when two distinct communities will be reported as a single entity and, equivalently, how connected internally a community needs to be so that it will not be split in two separate communities by the algorithm.

A tensor with two disjoint and cubic communities was constructed and, iteratively, elements from each of the modes of one of the communities were replaced with elements of the other (see Fig. 3(a)). Our tests show that the communities are reported as independent until there is an overlap of about 70% of the elements in each mode, in which case they start being reported as a single community. This corresponds to an overlap of slightly over 20% of the non-zero values of the two communities and the global community formed has 63% of non-zeros. This clearly demonstrates that Com2 has high discriminative power: it can detect the existence of communities that share some of their members and it is able to report them independently, regardless of their size. Note that, due to the
Discovery of ‘comet’ communities in temporal and labeled graphs (Com^2) 13

(a) Tensor with overlapping blocks: Illustration of the tensors used in the first experiment, the number of overlapping edges of the two blocks was variable.

(b) Communities with different densities: Illustration of the tensors used in the second experiment. Opacity indicates the non-zeros density in the blocks.

Fig. 3. Synthetic datasets.

3-dimensional nature of our data, a relatively high overlap of the modes does not immediately correspond to an high overlap of the non-zeros.

Impact of block density. We also performed experiments to determine how density impacts the number of communities found (see Fig. 3(b)). Fifty disjoint communities were created in a tensor with random noise and non-zeros were sampled without repetition from each community with different probabilities. We then analyzed the first fifty communities reported by Com^2 in order to calculate its accuracy. As we show in Figure 4(a), the discriminative power remains high, even with respect to varying density.

4.2. Scalability

As detailed before, Com^2’s running time is linear on the number of communities and in the number of non-zero values in the tensor. We constructed a tensor of size 10000 × 10000 × 10000 and randomly created connections between sources and destinations using random labels. Figure 4(b) shows the runtime versus the number of non-zeros in the tensor when calculating the first 200 communities of the tensor. In addition to its almost linear runtime, Com^2 is also easily parallelizable. By selecting different random seeds in the tensor decomposition step, different communities can be found in parallel.

4.3. Discoveries on edge-labeled graphs

Com^2 was applied to a dataset of flight routes from 2012 available at \texttt{http://openflights.org/data.html} (cf. Table 2, FLIGHTS). In this setting, nodes correspond to airports and edges are labeled with the airline company performing the route (i.e. there might be more than one edge between each pair of nodes). Our goal is to find a set of companies flying several routes between a set of airports, a strong indicator of local competition. Even though the underlying graph is directed, we chose to work with a single set of airports instead of separating origin and destination sets. For this purpose, we adapted the previously
described algorithm so that the sampled vertex is added to both modes: the origin and destination set.

Figure 1, depicted in the introduction, illustrates the most international of these communities, with 16 worldwide airports and 3 companies well known for intercontinental travel: Lufthansa, Delta and United Airlines. In order to show Com²’s effectiveness, we showcase three regional communities of competing companies:

- Figures 5(a) and 5(b) represent the major competing companies in the United States of America and China, along with respective airports. The community pictured in Figure 5(a) corresponds to 26 American airports; US Airways, United and American Airlines operate 915 different routes between these 26 airports. Figure 5(b) shows 25 Chinese airports; Hanan Airlines, Air China, China Southern Airlines and China Eastern Airlines operate 1,150 routes between these airports. These two examples show Com²’s effectiveness in identifying dense subgraphs sharing similar edge-labels.

- Figure 6 shows that Com² is also able to find single-label communities. Ryanair alone operates 988 different routes between 47 European airports. This community can be seen as a dense subsection of the tensor, which is the equivalent to a big star in the unlabeled case (i.e. a dense row/column in a matrix).

Please note that neither standard community detection algorithms operating on the unlabeled graph, nor multiple runs considering each company independently, could possibly find the competing companies scenario as it requires interaction between several different edge-labels.

4.4. Discoveries on time-labeled graphs

To characterize communities found in real phone-call data, we applied Com² to a dataset from an anonymous European mobile carrier. We considered the network formed by calls between clients of this company over a period of 14 days. During this period, 3,952,632 unique clients made 210,237,095 phone calls, 51,119,177 of which formed unique (caller, callee, day) triplets (cf. Table 2, PHONE). Here, each label corresponds to a specific day. The tensor is very sparse, with density in the order of 10^{-7}. We extracted 900 communities using Com². These
communities contain a total of 229,287 unique non-zeros, 293 unique callers and 97,677 unique callees are represented, so the first observation is that the temporal communities are usually heavy on one side with large outgoing stars.

We also applied Com2 to a public computer network dataset captured in 1993, made available by the Lawrence Berkeley National Laboratory (Paxson and Floyd; 1995). 30 days (i.e. edge labels) of TCP connections between 1,647 IP addresses inside the laboratory and 13,782 external IP addresses were recorded.
Fig. 6. Community in Europe: Ryanair creates near-cliques on its own. It operates 988 unique routes (46% of total possible) between these 47 airports.

(cf. Table 2, LBNL). This tensor was completely deflated and a total of 19,046 communities were found (1,930 of them having more than 9 non-zeros).

Observation 1. The biggest communities are more active during weekdays.

Figure 7 shows the number of active communities per day of the week on both datasets and we can see that most communities are significantly more active during weekdays. In the phone call data, we are led to believe that these are mostly companies with reduced activity during weekends, while the reduced activity during the weekends in the research laboratory is to be expected.

Observation 2. A typical pattern is the “Flickering stars”.

When analyzing a phone call network, a pattern to be expected is the marketeer pattern in which a single number calls many others a very small number of times (1 or 2). Surprisingly, the stars reported by Com2 were not of this type. Two callers stand out in an analysis of the communities reported: one participated in 78,279 (source, destination, time) triplets as a caller but only in 10 triplets as a receiver, while the other participated in 8,909 triplets as a caller and in none as a receiver. These two nodes are centers of two distinct outgoing stars and were detected by the algorithm. However, the time component of these stars was not a single day but rather spanned almost all the weekdays. This behavior does not seem typical of a marketeer, so we hypothesize that it is a big company communicating with employees. Many of the reported communities are stars of this type: a caller calling a few hundred people in a subset of the weekdays - we call them flickering because, even though there is some activity during the rest of the weekdays, it is significantly reduced and those days are not reported as part of the community.

In the LBNL dataset, one star was particularly surprising. It received connections from over 750 different IP addresses inside the laboratory but only on a
Discovery of ‘comet’ communities in temporal and labeled graphs (Com²) 17

![Graphs showing weekly and weekend activity](image)

(a) **Weekly periodicity** phone call data. (b) **Weekend activity** computer network data.

Fig. 7. Weekly periodicity: number of active communities vs time. Notice the weekend dives on a) days 4, 5 and 11, 12 and b) days 3, 4, 10, 11, 17, 18, 24, 25.

![Diagram of LBNL community](image)

Fig. 8. LBNL community: Com² detects research group collaborations using computer communications data.

single day. One of the other big stars corresponded to 40 connections on a single day to an IP address attributed to the Stanford Research Institute, which is not surprising given the geographical proximity.

We define **Flickering stars** as a common temporal-community that has a varying number of receivers. These communities are active on different days, not necessarily consecutive. Stars active on many days (e.g. every weekday) are more common than single day stars.

Observation 3. A typical pattern is the “Temporal Bipartite Cores”.

Several near-bipartite cores were detected as communities in the phone call dataset. These are communities with about 5 callers and receivers that are active on nearly each day under analysis, and each represents between 75 and 150 of the non-zeros of the original tensor, with a block density of around 40%.

An example of such communities can also be shown for the LBNL data. 7 machines of the laboratory communicated with 6 external IP addresses on every weekday of the month. After analyzing the IP addresses, the outside machines were found to be part of the Stanford National Accelerator Laboratory, the University of California in San Francisco, the UC Davis, the John Hopkins University, and the U.S. Dept. of Energy. Com² was able to detect this research group (possibly in particle physics) using communications data alone.
5. Conclusion

Com2 carefully combines a fast and efficient iterated rank-1 tensor decomposition to guide the search for nodes and labels that participate in communities, and a principled MDL-based model selection criterion that guides the expansion of communities and provides a stoppage mechanism. We have focused on binary tensors, which reveal structural (connectivity) community patterns over edge-labeled graphs, and have demonstrated interesting findings in a variety of real-world datasets. The main contributions are the following:

- **Scalability**: Our method, Com2, is linear on the input size; instead of relying on a complete tensor factorization, we carefully leverage rank-1 decompositions to incrementally guide the search process for community detection.

- **No user-defined parameters**: In addition to the above, efficient, incremental search process, we also proposed a novel MDL-based stopping criterion, which finds communities in a parameter-free fashion.

- **Effectiveness**: We applied Com2 on real and synthetic data, where it discovered communities that agree with intuition.

- **Generality**: Com2 can be easily extended to handle higher-mode tensors.

Com2 is available at http://www.cs.cmu.edu/~maraujo/comdet/com2.html.

Discussion and Future Work. Our current methods require categorical edge labels. Extending MDL to handle real numbers, as opposed to integer values, is a challenging problem. Furthermore, real-valued (possibly continuous, but non-categorical in general) edge labels render tensor representations impossible (i.e. we can’t represent non-categorical indices). However, tensor decompositions can be applied to weighted tensors (e.g. representing the strength of connections), potentially enabling interesting findings.

Future work can also focus on expanding our principle to coupled tensor-matrix data, in order to exploit node-related side information such as demographic data. This research direction would provide unified tools to find communities in networks with both edge labels and node attributes.

Acknowledgements. This material is based upon work supported by the National Science Foundation under Grant No. IIS-1247489 and IIS-1217559. Research was sponsored by the Defense Threat Reduction Agency and was accomplished under contract No. HDTRA1-10-1-0120. Also, sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-09-2-0053. Additional funding was provided by the U.S. Army Research Office (ARO) and Defense Advanced Research Projects Agency (DARPA) under Contract Number W911NF-11-C-0088. This work is also partially supported by a Google Focused Research Award, by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie Mellon Portugal Program under Grant SFRH/BD/52362/2013, by ERDF and FCT through the COMPETE Programme within project FCOMP-01-0124-FEDER-037281, and by a fellowship within the postdoc-program of the German Academic Exchange Service (DAAD). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, DARPA, or other funding parties. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
References

Author Biographies

Miguel Araújo is a PhD student in the CMU—Portugal dual degree program in Computer Science between Carnegie Mellon University and the University of Porto. He earned his M.Sc. in Informatics and Computing Engineering at the University of Porto where he also worked as a research assistant at the Laboratory of Artificial Intelligent and Decision Support. Miguel’s research is focused on mining patterns and anomalies in temporal graphs with applications on social network analysis and fraud discovery.

Stephan Günnemann is a Senior Researcher at the Department of Computer Science, Carnegie Mellon University, USA. In 2012 and 2013, he was granted a scholarship from the German Academic Exchange Service for his postdoctoral research in data mining. Before joining Carnegie Mellon University in October 2012, Dr. Günnemann was a research associate at the Data Management and Data Exploration group at RWTH Aachen University, Germany. Dr. Günnemann received his PhD in 2012 from RWTH Aachen University. His doctoral thesis on subspace clustering for complex data was awarded with the 2013 doctoral dissertation award of the German Computer Science Society, section on Databases and Information Systems. His research interests include efficient data mining algorithms for high-dimensional, temporal, and network data as well as statistical methods for modeling and assessing data mining results.

Spiros Papadimitriou is an Assistant Professor at the Department of Management Science & Information Systems at Rutgers Business School. Previously, he was a research scientist at Google, and a research staff member at IBM Research. His main interests are large scale data analysis, time series, graphs, and clustering. He has published more than forty papers on these topics and has three invited journal publications in best paper issues, several book chapters and he has filed multiple patents. He has also given a number of invited talks, keynotes, and tutorials. He was a Siebel scholarship recipient in 2005 and received the best paper award in SDM 2008.

Christos Faloutsos is a Professor at Carnegie Mellon University. He has received the Presidential Young Investigator Award by the National Science Foundation (1989), the Research Contributions Award in ICDM 2006, the SIGKDD Innovations Award (2010), twenty “best paper” awards (including two “test of time” awards), and four teaching awards. Five of his advisees have attracted KDD or SCS dissertation awards. He is an ACM Fellow, he has served as a member of the executive committee of SIGKDD; he has published over 300 refereed articles, 17 book chapters and two monographs. He holds eight patents and he has given over 35 tutorials and over 15 invited distinguished lectures. His research interests include data mining for graphs and streams, fractals, database performance, and indexing for multimedia and bio-informatics data.
Prithwish Basu is a Senior Scientist at Raytheon BBN Technologies. He holds a Ph.D. (2003) and an M.S. (1999) degree in Computer Engineering from Boston University, and a B.Tech. degree (1996) in Computer Science & Engineering from Indian Institute of Technology (IIT), Delhi. Prithwish has been leading several research and development programs at BBN over the past few years. He is a Principal Investigator of the ongoing Network Science Collaborative Technology Alliance (NS CTA) program. He published over 75 papers in leading network related journals and conferences, and is currently serving as an Associate Editor of the IEEE Transactions on Mobile Computing and the ACM Transactions on Internet Technology. In 2006, Prithwish received the MIT Technology Review’s TR35 award, given to top 35 innovators under the age of 35.

Ananthram Swami is the Army’s ST for Network Science and has been at ARL since 1998. Before joining ARL, he held research positions with Unocal Corporation, the University of Southern California (USC), CS-3 and Malgudi Systems. He was a statistical consultant to the California Lottery, developed a MATLAB-based toolbox for non-Gaussian signal processing, and has held visiting faculty positions at INP, Toulouse, and Imperial College, London. He holds degrees from IIT-Bombay, Rice University and USC. His research is in the broad area of Network Science. He is co-recipient of a Best Conference Paper award at IEEE TrustCom 2009 and IEEE ICDCS 2013. He is a Fellow of ARL and of the IEEE.

Evangelos E. Papalexakis is a PhD student in the Computer Science Department at Carnegie Mellon University. He earned a diploma and M.Sc. degree in electronic and computer engineering at the Technical University of Crete, Greece. His research interests include models and algorithms for tensor decompositions and coupled matrix/tensor decompositions, with applications to time evolving social network analysis, brain imaging, and knowledge base mining.

Danai Koutra is a final-year Ph.D. candidate at the Computer Science Department at Carnegie Mellon University. Her research interests include large-scale graph mining, graph similarity and matching, graph summarization and anomaly detection. Her research has been applied to social, collaboration and web networks, as well as brain connectivity graphs. She holds 1 “rate-1” patent and has 6 (pending) patents on bipartite graph alignment. She has multiple papers in top data mining conferences, 2 award-winning papers, and her work was covered by popular press, such as MIT Technology Review. She has also worked at IBM Hawthorne, Microsoft Research Redmond, and Technicolor Palo Alto/Los Altos. She earned her M.S. in Computer Science from CMU in 2013 and her diploma in ECE at the National Technical University of Athens in 2010.

Correspondence and offprint requests to: Miguel Araujo, Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto, Porto, Portugal. Email: maraujo@cs.cmu.edu