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Abstract

We consider the problem of maintaining frequency counts for items occurring frequently in the union of multiple
distributed data streams. Naı̈ve methods of combining approximate frequency counts from multiple nodes tend
to result in excessively large data structures that are costly to transfer among nodes. To minimize communication
requirements, the degree of precision maintained by each node while counting item frequencies must be managed
carefully. We introduce the concept of aprecision gradientfor managing precision when nodes are arranged in a
hierarchical communication structure. We then study the optimization problem of how to set the precision gradient
so as to minimize communication, and provide optimal solutions that minimize worst-case communication load over
all possible inputs. We then introduce a variant designed to perform well in practice, with input data that does not
conform to worst-case characteristics. We verify the effectiveness of our approach empirically using real-world data,
and show that our methods incur substantially less communication than naı̈ve approaches while providing the same
error guarantees on answers.

In addition, we extend techniques for maintaining frequency counts of high-frequency items in one or more streams by
making them time-sensitive. Time-sensitivity is achieved by associating weights with items that decay exponentially
with time. We analyze the error bounds and worst-case space bounds for the extended algorithms.
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1 Introduction

The problem of identifying frequently occurring items in continuous data streams has attracted significant attention
recently [4, 9, 12, 14, 21, 24]. Potential applications include identifying large network flows [12], answering iceberg
queries [13], computing iceberg cubes [18] and finding frequent itemsets and association rules [1]. However, nearly
all prior work on identifying frequent items in data streams and estimating their occurrence frequencies falls short of
meeting the needs of the many real-world applications that exhibit one or both of the following two properties:

1. Distributed streams. Streams originate from multiple distributed sources. Data from all sources needs to be
aggregated to arrive at the final result, as in the distributed streams model of [15].

2. Time sensitivity. Recent data is more important than older data.

We briefly describe two real-world applications exhibiting the properties just mentioned:
1. Monitoring usage in large-scale distributed systems.Web content providers using the services of aContent
Delivery Network(CDN) like Akamai [2] may wish to monitor recent access frequencies of content served (e.g.,
HTML pages/images), to keep tabs on current “hot spots.” The CDN may serve requests from any of a number of
cache nodes (Akamai currently has over 10,000 such nodes); typically requests are served by the cache node closest
to the end-user making the request in order to minimize latency. Hence, keeping tabs on overall access frequencies
requires distributed monitoring across many CDN cache nodes.

2. Detecting malicious activities in networked systems:
(a) Detecting worms. Previously unknown Internet worms can be detected by discovering that a large number of

recent traffic flows contain the same bit string [22]. Distributed monitoring can reduce detection time.
(b) Detecting DDoS attacks.Early detection ofDistributed Denial of Service(DDoS) attacks is an important topic

in network security. While a DDoS attack typically targets a single “victim” node or organization, there is generally no
common path that all packets take. In fact, even packets sent to the same destination and originating from within the
same organization may follow different routes, due to so-called “hot potato” routing [3]. This property makes it very
difficult to detect distributed denial of service attacks effectively by only considering the traffic passing through any
single monitoring point, and motivates a distributed monitoring approach. Furthermore, techniques that weigh recent
data more than past data may help in early detection of attacks.

1.1 Problem Variants

Both applications outlined above require algorithms for identifying recently frequent items in the union of many dis-
tributed streams, and estimating the corresponding occurrence frequencies. In general, we can classify applications of
frequent item identification into four categories, in terms of whether they require (a) time-sensitivity and (b) distributed
monitoring capability, as shown in Table 1. We briefly describe each problem variant:

(1) Finding frequent items in a single stream:A single node sees an ordered stream of possibly repeating items.
The goal is to maintain frequency counts of items whose frequency currently exceeds a user-supplied fraction of the
size of the overall stream seen so far.

(2) Finding recently frequent items in a single stream:In this variant recent occurrences of items in the stream are
considered more important than older occurrences of items. At any given time, a numeric weight is associated with
each item occurrence in the stream that is a function of the amount of time that has elapsed since the appearance of
the item in the stream. A commonly-used weighting scheme isexponential decay[7], in which weights are assigned
according to a negative-exponential function of elapsed time. The goal is to identify items whose cumulative weighted
frequency currently exceeds a user-supplied fraction of the total across all items, and provide an estimate of the
cumulative weighted frequencies of any such items.

(3) Finding frequent items in the union of distributed streams: In this variant there arem ordered streams
S1, S2, . . . , Sm, each produced at a different node in a distributed environment and consisting of a sequence of item
occurrences. The goal is the same as in Variant (1), except that item frequencies are computed over the union of
streamsS1, S2, . . . , Sm, instead of over a single stream.
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Table 1: Problem variants.
Single Stream Distributed Streams

Time-insensitive (1) (3)

Time-sensitive (2) (4)

(4) Finding recently frequent items in the union of distributed streams:This variant represents the natural combi-
nation of Variants (2) and (3).

Of these four variants, only Variant (1) has been studied in prior work. (Some work conducted concurrently with
our own [4,17] also addresses problems quite similar to Variants (2) and (3), but there are significant differences with
our work; see Section 5 for further discussion.) Algorithms for time-insensitive frequent item identification over a
single stream include those presented in [9, 21, 24]. While it is straightforward to extend these algorithms to handle
Variant (2), the effect on the space bounds and error guarantees of the resulting algorithms in some cases is nonobvious.
In this paper we provide rigorous analysis of these aspects.

Variants (3) and (4) present a larger challenge. As we will show, simple adaptations of existing frequent item
identification algorithms to work in a distributed setting incur excessive communication. In this paper we present
a new framework for distributed frequent item identification that minimizes communication requirements. Before
outlining our approach we first provide a formal problem statement that unifies the four variants listed above.

1.2 Unified Problem Statement

Our problem statement extends that of [24]. There arem ≥ 1 ordered data streamsS1, S2, . . . , Sm. Each stream
Si consists of a sequence of item occurrences with time-stamps:〈oi1, ti1〉, 〈oi2, ti2〉, etc. Each item occurrenceoij

is drawn from a fixed universeU of items, i.e.,∀i, j, oij ∈ U . Arbitrary repetition of item occurrences in streams
is allowed. Each streamSi is monitored by a correspondingmonitor nodeMi, of which there arem. Monitored
frequency counts for high frequency items are to be supplied to a centralroot nodeR, which may or may not be the
same as one of the monitor nodes.

LetS be the sequence-preserving union of streamsS1, S2, . . . , Sm. Further, letc(u) be the frequency of occurrence
of item u in S up to the current time, weighted by recency of occurrence in an exponentially decaying fashion.
Mathematically,

c(u) =
∑

〈oi,ti〉∈S,oi=u

αb tnow−ti
T c

wheretnow denotes the current time, andα andT are user-supplied parameters. The parameterα ∈ (0, 1] controls the
aggressiveness of exponential weighting. As a special case, settingα = 1 causes all item occurrences to be weighted
equally, regardless of age (as in Variants (1) and (3) of Section 1.1). The parameterT > 0 controls the frequency with
which answers are reported, and also the granularity of time-sensitivity. A time period ofT time units is referred to as
anepoch.

The objective is to supply, at the end of every epoch (i.e., everyT time units), an estimatêc(u) of c(u) for items
occurring inS whose true time-weighted frequencyc(u) exceeds asupport thresholdT . T is defined as the product
of a user-suppliedsupport parameters ∈ [0, 1], and the sum of the weighted item occurrences seen so far on all input
streams,N = Σu∈Uc(u), i.e., T = s ·N . The amount of allowable inaccuracy in the frequency estimatesĉ(u) is
governed by a user-supplied parameterε. It is required that0 ≤ ε ≤ s (usually,ε � s). Each time an answer is
produced, it must adhere to the following guarantees:

1. All items whose true time-weighted frequency exceedss·N are output.

2. No item whose true time-weighted frequency is less than(s− ε)·N is output.

3. Each estimatêc(u) supplied in the answer satisfies:max {0, c(u)− ε·N} ≤ ĉ(u) ≤ c(u).
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Figure 1: Hierarchical communication structure.

A useful data structure for storing intermediate answers is an(ε, α)-synopsisof item frequencies over a stream
or union of several streams. An(ε, α)-synopsisS consists of a (possibly empty) set of time-weighted frequency
estimates each denotedS : ĉ(u), where eachS : ĉ(u) estimate satisfiesmax {0, c(u)− ε·S :n} ≤ S : ĉ(u) ≤ c(u). S:n
denotes the total time-weighted frequency of all items in the synopsis (S :n =

∑
u∈U c(u)). The salient property of

an(ε, α)-synopsis is that items with weighted frequency belowε ·S :n need not be stored, resulting in a reduced-size
representation.

1.3 Overview of this Paper

Finding recently frequent items (Section 2): To begin, we show how to extend two recent frequency counting
algorithms that produce(ε, 1)-synopses to produce(ε, α)-synopses, for anyα ∈ (0, 1], to achieve Variant 2 of Sec-
tion 1.1. We analyze the correctness and space requirements of the resulting algorithms. In particular, we show that
the worst-case size of time-sensitive synopses is bounded by a time-independent constant.

Finding (recently) frequent items in distributed streams (Section 3):There are two obvious, simple strategies for
adapting single-stream frequency counting algorithms to a distributed setting to achieve Variants 3 and 4 of Section 1.1,
and both have serious drawbacks:

SS1 (Simple Strategy 1):Periodically, at the end of every epoch, each monitor nodeMi sends to the root nodeR
the exact frequency counts of all items occurring inSi over the lastT time units. NodeR then combines the counts
received from the monitor nodes with (possibly time-decayed) counts maintained over prior epochs, and outputs items
whose overall weighted counts exceed the support thresholdT .

SS2: Each monitor nodeMi maintains an(ε, 1)-synopsisSi over the recent portion of its local streamSi. Intu-
itively, the (ε, 1)-synopsis is a reduced summary of item frequencies that does not include items whose frequency in
Si is small. Periodically, at the end of every epoch, eachMi sends its local synopsisSi to nodeR. Upon receiving
all local synopses, nodeR combines them into a single unified(ε, 1)-synopsis containing estimated item frequencies
for the union of the contents of all input streams in the most recent epoch. This synopsis is then combined additively
with an(ε, α)-synopsis containing estimated weighted counts from previous epochs, after multiplying those synopsis
counts byα, to generate a new(ε, α)-synopsis valid for the current epoch. Lastly, items whose estimated time-decayed
counts exceed the support thresholdT (after taking into account the error tolerance) in this synopsis are output.1

Clearly, strategy SS1 is likely to incur excessive communication because frequency counts for all items, including
rare ones, must be transmitted over the network. Furthermore, the root nodeR must process a large number of

1Note that in both strategies time-sensitivity is only introduced at nodeR. It is not possible to introduce time-sensitivity in data before it is sent
to R, since all item frequencies in the most recent epoch have weight 1 in our formulation.
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incoming counts. While strategy SS2 alleviates load on the root node to some extent, in the presence of a large number
of monitor nodes and rapid incoming streams, the root node may still represent a significant bottleneck. To further
reduce the load on the root node, nodes can be arranged in a hierarchical communication structure (see Figure 1),
in which synopses are combined additively at intermediate nodes as they make their way to the root. In this setting
SS2 compresses data (by dropping small counts) as much as possible at each leaf node without violating theε error
bound. Consequently no further compression can be performed as synopses are combined on their way to the root or
at the root node itself, making it impossible to eliminate counts for items whose frequency exceedsε fraction of one
or more individual streams but does not exceedε fraction in the union of the streams whose synopses are combined
at a non-leaf node. Hence, if input streams have different distributions of item occurrences, counts for items of small
frequency may reach the root node unnecessarily under strategy SS2. There are thus two main disadvantages of using
SS2:

1. High communication load on root nodeR.

2. High space requirement onR.

Suppose that, instead of applying maximal synopsis compression at the leaf nodes, some compression capability is
reserved until synopses of multiple incoming streams are combined at non-leaf nodes. If that is done, more aggressive
compression can be performed by non-leaf nodes by taking into account the distributions of item frequencies over a
larger set of input streams. As a result, the synopses reaching the root (and the synopsis maintained over previous
epochs at the root) will likely be significantly smaller than in SS2. On the other hand, the synopses passed from the
leaf nodes to their parents may be larger than in SS2, which is an undesirable side-effect.

Indeed, to avoid excessive communication load on any particular node or link, the amount of compression per-
formed by each node while creating or combining synopses must be managed carefully. In hierarchically-structured
monitoring environments we can configure the amount of compression performed, and consequently, the amount of
error introduced at each level so that synopses follow aprecision gradientas they flow from leaves to the root. It turns
out that worst-case communication load on any link is minimized by using a gradual precision gradient, rather than
either deferring the introduction of error entirely until data reaches the root (as in SS1), or introducing the maximum
allowable error at the leaf nodes (as in SS2). Still, the best gradual precision gradient to use is not obvious.

In Section 3 of this paper we study the problem of how best to set the precision gradient formally. We first show how
use of a gradual precision gradient alleviates storage requirements at the root nodeR. Then, we derive optimal settings
of the precision gradient under two objectives: (a) minimize load on the root nodeR, and (b) minimize maximum load
on any single communication link under worst-case input behavior. We then introduce a variant that aims to achieve
low load on all links in practice, when input data may not exhibit worst-case characteristics, by exploiting a small
sample of the expected input data obtained in advance.

Remainder of paper: In Section 4 we confirm our analytical findings of Sections 2 and 3 through extensive experi-
mental evaluation on three real-world data sets. Our experiments demonstrate that naı̈ve methods of finding frequent
items in distributed streams (SS1 and SS2) can incur high communication and storage costs compared with our meth-
ods. Related work is discussed in Section 5, and we summarize the paper in Section 6.

2 Finding Recently Frequent Items

Given a simple frequency counting algorithm that maintains a(0, 1)-synopsis, i.e., one with exact, time-insensitive
frequency counts for all items, it is straightforward to add time-sensitivity in the form of exponential weighting by
some desiredα ∈ (0, 1]. By multiplying each count in the synopsis byα once everyT time units, we achieve a
(0, α)-synopsis. It is tempting to apply the same method to extend approximate frequency counting algorithms such
as [9, 21, 24] that maintain(ε, 1)-synopses to instead maintain(ε, α)-synopses. However, in each instance care must
be taken to ensure that the error guarantees specified in Section 1.2 hold for the modified algorithms.

We study the effect of adding time-sensitivity to two recent approximate frequency counting algorithms:lossy
counting[24] and the essentially identical algorithms of [9] and [21], which we refer to asmajority+ counting. The
two algorithms (lossy counting and majority+ counting) use slightly different, although not unrelated, techniques to
compute an(ε, 1)-synopsis over a single stream. In lossy counting, all frequency counts in the synopsis are periodically
decremented by1. The period of time between decrement operations is carefully chosen so that the resulting synopsis
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is guaranteed to be an(ε, 1)-synopsis. In contrast, in majority+ counting all frequency counts in the synopsis are
decremented by1 whenever the synopsis size (measured in terms of the number of frequency counts) exceeds a
predetermined threshold that depends onε. It has been shown analytically that majority+ counting produces a(ε, 1)-
synopsis [9, 21]. In Appendix A.1 we prove that by adding exponentially decaying weighting to majority+ counting
we arrive at an algorithm that maintains an(ε, α)-synopsis conforming to the error guarantees specified in Section 1.2.

Turning to lossy counting, it is relatively easy to show that by adding exponential weighting to lossy counting (and
taking care to “catch up” by decrementing frequency estimates at epoch boundaries) we achieve a correct algorithm
for maintaining an(ε, α)-synopsis; we omit the simple proof. The modified algorithm is provided in Appendix A.2.
However, analysis of the space bound of the resulting synopsis is nontrivial. In Appendix A.2 we show that a time-
independent space bound proportional to the logarithm of the maximum stream rate holds. Hence, the maximum size
of an exponentially decayed lossy counting synopsis does not increase over time as long as the stream rate remains
steady. In contrast, in the original lossy counting approach (i.e., usingα = 1), the synopsis can grow logarithmically
with time.

3 Finding Frequent Items in Distributed Streams

In this section we show how to maintain approximate time-sensitive frequency counts for frequent items in a distributed
setting, and study how to set the precision gradient so as to minimize communication. Recall that in our scenario,m
monitor nodesM1,M2, . . . ,Mm relay data periodically, once everyT time units, to a central root nodeR. Data may
be relayed through a hierarchy of nodes interposed between the monitor nodes and the central root node, as illustrated
in Figure 1. Letl ≥ 2 denote the number of levels in the hierarchy. We number the levels from root to leaf, with
the root nodeR of the communication hierarchy representing level0, its children representing level1, etc., and the
monitor nodesM1, . . . ,Mm representing level(l − 1). Let d ≥ 2 denote the fanout of all non-leaf nodes in the
hierarchy, i.e., the number of child nodes relaying data to each internal node.2

In this hierarchical communication structure, we associate with each non-root level1 ≤ i ≤ (l − 1) of the
communication hierarchy an error toleranceεi. For correctness it must be ensured thatε ≥ ε1 ≥ . . . ≥ εl−1 ≥ 0,
which gives rise to aprecision gradientalong the communication hierarchy. (For now we assume that all nodes
at the same level in the hierarchy use the same error tolerance.) Any values ofε1, . . . , εl−1 satisfying the above
constraints can be used, and the guarantees of Section 1.2 will hold. The manner in which the precision gradient
(i.e., ε1, . . . , εl−1 values) is set determines the size of the synopsis that must be stored persistently atR, as well as
the amount of communication that must be performed during frequency counting. For now, let us assume that some
precision gradient has been decided upon. We return to the issue of how best to set the precision gradient in Section 3.1.

Given a precision gradient, our procedure for computing time-sensitive frequency counts for items occurring fre-
quently inS = S1∪S2∪ . . .∪Sm is as follows. Recall that time is divided into equal epochs of lengthT . During each
epoch, each monitor nodeMi invokes a single-stream approximate frequency counting algorithm, e.g., [9,21,24], using
error parameterεl−1 to generate an(εl−1, 1)-synopsis for the portion of streamSi seen so far during the current epoch.
Each monitor node then sends its(εl−1, 1)-synopsis to its parent in the communication hierarchy, which combines the
d (εl−1, 1)-synopses it receives from itsd children into a single(εl−2, 1)-synopsis using either Algorithm 1a (shown
below; based on lossy counting [24]) or Algorithm 1b (shown below; based on majority+ counting [9,21]). The same
process is repeated until each ofR’s children combines thed (ε2, 1)-synopses they receive into an(ε1, 1)-synopsis
which is then sent toR.

The root nodeR maintains at all times a single(ε, α)-synopsisSA, from which the answer is derived. When, at
the end of each epoch,R receivesd (ε1, 1)-synopses from its children,R updatesSA using either Algorithm 2a (based
on lossy counting) or Algorithm 2b (based on majority+ counting). Then,R generates the new answer to be output
for the current epoch by finding items inSA whose approximate count inSA exceeds(s− ε)·SA :n.

2For simplicity we assume all internal nodes of the communication hierarchy have the same fanout.
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Algorithm 1: Combine synopses from children (executed by nodes other than leaves and root)

Inputs: d(εi+1, 1)-synopsesS1, S2, · · · , Sd

Output: single(εi, 1)-synopsisS

Algorithm 1a:

1. SetS :n :=
d∑

j=1
Sj :n

2. For eachu ∈
d
∪

j=1
Sj , setS :ĉ(u) :=

d∑
j=1

Sj :ĉ(u)

3. For eachu ∈ S, setS :ĉ(u) := S :ĉ(u)− (εi − εi+1)·S :n

Algorithm 1b:
1. For eachSj ∈ {S1,S2, . . . ,Sd} and for eachu ∈ Sj :

(a) If S :ĉ(u) exists, setS :ĉ(u) := S :ĉ(u) + Sj :ĉ(u). Else, createS :ĉ(u); setS :ĉ(u) := Sj :ĉ(u)

(b) If |S| ≥ 1
εi−εi+1

: let u′ := argmin
u∈S

{S :ĉ(u)}. For eachu ∈ S, setS :ĉ(u) := S :ĉ(u)− S :ĉ(u′); if S :ĉ(u) ≤ 0, eliminate countS :ĉ(u)

2. SetS :n :=
d∑

j=1
Sj :n

3.1 Setting the Precision Gradient

Our approach is first to setε1 based on space considerations at nodeR (using worst-case analysis), and then set the
remaining error tolerance valuesε2, . . . , εl−1 so as to minimize communication.

The value ofε1 determines the maximum size of the synopsisSA that must be stored by nodeR at all times. If
Algorithm 2b is used by the root node, the size ofSA is at most 1

ε−ε1
counts at all times. Otherwise, if Algorithm 2a is

used, analysis of the maximum size ofSA is similar to the analysis of [24] and our own analysis in Appendix A.2 of
time-sensitive lossy counting over a single-stream, yielding the following results. If no time-sensitivity is employed
(α = 1), the size ofSA is at most ln ((ε−ε1)·SA:n)

ε−ε1
counts (formula adapted from [24]); forα < 1, the size is at

most (1+ε−ε1)·(3+ln (2·k·β+k))
ε−ε1

counts, whereβ = dlog 1
α
(1 + 2

ε−ε1
)e + 1 andk denotes the maximum number of item

occurrences on any input stream during any single epoch. As long as stream rates remain steady, usingε1 < ε, the
synopsisSA does not grow with time after reaching a steady-state size. In contrast, whenε1 = ε (as in strategy SS2),
the space requirement increases with time as we demonstrate empirically in Section 4.3. Our approach is to setε1 such
that the worst-case size ofSA (under the maximum possible stream ratek) is below any space constraint atR.

Given a value forε1 (such thatε1 < ε), the remaining error tolerance valuesε2, . . . , εl−1 making up the precision
gradient determine the communication load incurred. We illustrate the effect of the precision gradient on communica-
tion using the following rather contrived but simple example that highlights the effect clearly; our experimental results
presented later in Section 4 are conducted over real-world data.

3.1.1 Motivating Example

Figure 2 shows the communication topology we use for our example. We assume Algorithm 1a is used at the inter-
mediate nodes. Suppose the overall user-specified error toleranceε = 0.05, and for simplicity assumeε1 ≈ ε = 0.05.
Suppose that during one epoch100 items occur on each ofS1, S2, S3 andS4, drawn from a universe of 27 distinct
items. For ease of comprehension, we partition the 27 distinct items into three categories: A, B, and C. Category A
contains one item and categories B and C each contain 13. The frequency of occurrence in each input stream of items
in each category is given in the shaded region of Table 3. The single item in category A occurs nine times in each of
S1, S2, S3 andS4. Each item in category B occurs six times each inS1 andS3 but only once each inS2 andS4. The
opposite is true for items in category C: each occurs once in each ofS1 andS3 but six times in each ofS2 andS4.

Table 2 summarizes the effects of varyingε2, which determines the amount of error introduced at level 2 (nodes
M1 - - M4), assuming lossy counting with per-epoch batch processing is used to produce the initial synopses at the leaf
nodes. Three measures of communication load are reported: (1) load on the root nodeR, (2) maximum load on any
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Algorithm 2: Update the answer synopsis (executed at the root nodeR)

Input: d (ε1, 1)-synopsesS1, . . . ,Sd, SA

Output: new answer(ε, α)-synopsisSA

Algorithm 2a:
1. SetSA:n := α·SA:n + Σd

j=1Sj :n

2. For eachu ∈ SA, setSA:ĉ(u) := α·SA:ĉ(u)

3. For eachu ∈
d
∪

j=1
Sj , setSA:ĉ(u) := SA:ĉ(u) + Σd

j=1Sj :ĉ(u)

4. For eachu ∈ SA, setSA:ĉ(u) := SA:ĉ(u)− (ε− ε1)·Σd
j=1Sj :n

Algorithm 2b:
1. SetSA:n := α·SA:n + Σd

j=1Sj :n

2. For eachu ∈ SA, setSA:ĉ(u) := α·SA:ĉ(u)

3. For eachSj ∈ {S1,S2, . . . ,Sd} and for eachu ∈ Sj :

(a) If SA:ĉ(u) exists, setSA:ĉ(u) := SA:ĉ(u) + Sj :ĉ(u). Else, createSA:ĉ(u); setSA:ĉ(u) := Sj :ĉ(u)

(b) If |SA| ≥ 1
ε−ε1

, let u′ := argmin
u∈SA

{SA :ĉ(u)}. For eachu ∈ SA, setSA :ĉ(u) := SA :ĉ(u) − SA :ĉ(u′); if SA :ĉ(u) ≤ 0, eliminate count

SA:ĉ(u)

link excluding links toR, and (3) maximum load on any link. In all cases, communication load is measured in terms
of the number of frequency counts transmitted during the epoch. Settingε2 = 0.05 corresponds to simple strategy SS2
outlined in Section 1.3. (We do not report measurements for SS1, in whichε1 = 0 andε2 = 0, since communication
load is higher than under any of our three example strategies under all three metrics.)

To understand how these numbers come about, consider Table 3, which shows, for each setting ofε2, the frequency
estimate for items of each category sent along each link. In the case in whichε2 = 0, the estimated counts sent from
leaf nodesM1 - - M4 to nodesI1 andI2 (shown with shaded background) are exact. All other values in Table 3 are
underestimates. We focus on the case in whichε2 = 0.03 to illustrate how these underestimates are computed. At
each leaf node, whenε2 = 0.03 application of the lossy counting algorithm leads to undercounting of each item’s
frequency byε2·100 = 0.03·100 = 3. Hence, estimated counts transmitted in synopses from the leaf nodesM1 - - M4

to nodesI1 andI2 are less than their actual counts by3; some counts fall below zero and are eliminated. Once these
synopses are received at nodesI1 andI2, Algorithm 1a is invoked, in which synopsis counts received from leaf nodes
are first combined additively, and then decremented by(ε1− ε2)·200 = 0.02·200 = 4. For the single item in Category
A, leaf nodesM1 andM2 each supply a count of6 to nodeI1, for a combined count of12, which is then decremented
by 4 for a final estimated count of8 to be sent to nodeR. Items in Categories B and C each have combined counts of
3 at I1, which fall below zero when decremented by4 and thus are not transmitted toR.

From Table 2 we observe a tradeoff between communication load on the root nodeR and load on links not
connected toR. Furthermore, in this particular case (although not always true in general), of our three example
strategies, the strategy of using a gradual precision gradient (ε2 = 0.03) is best with respect to all three metrics. To
see why, consider that if error tolerances are made large for levels of the communication hierarchy close to the leaves
(in the most extreme case, by settingεl−1 = ε, as in SS2), some locally-infrequent items are eliminated early, thereby
reducing communication near the leaves. However, an undesirable side-effect arises in the presence of items just
frequent enough at one or more leaf nodes to survive elimination locally, but not frequent enough overall to exceed
the error threshold (as with items in categories B and C in our example). Counts for such items may avoid being
eliminated until very late (or, worse, may never be eliminated), thus resulting in increased communication near the
root. Hence, there is a tradeoff between high communication among non-root nodes and heavy load on the root node
R.

The best way to set the precision gradient depends on the application scenario. For some applications the most
important criterion may be to minimize load on the root nodeR where the answers are generated, which may need
to devote the majority of its resources to other critical tasks for the application, even if that means increased load on
the nodes responsible for monitoring streams and merging synopses. For other applications, it is most important to
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(ε2, 1)-synopses

(ε1, 1)-synopses

Input streams:

Monitor nodes:

Root node:
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Figure 2: Example topology.

Table 2: Communication loads in example scenario.
Load on Maximum load on any Maximum

ε2 root nodeR link excluding load on
links to R any link

0 2 27 27
0.03 2 14 14
0.05 54 14 27

minimize the maximum load on any link to ensure that large volumes of input data can be handled without overloading
network resources.

Next, we study the optimization problem of how best to select the precision gradient and synopsis-merging algo-
rithm to use at each node, in order to achieve one of two objectives: (1) minimize communication load on the root node
R, or (2) minimize worst-case communication load on the most heavily-loaded link in the hierarchy. Communication
load is measured in terms of the number of frequency counts transmitted during one epoch. We study each optimiza-
tion objective in turn in Sections 3.1.2 and 3.1.3, and provide optimal algorithm choices and settings for the error
tolerancesε2, . . . , εl−1 making up the precision gradient. Then, since real-world data is unlikely to exhibit worst-case
behavior, in Section 3.1.4 we propose a variant that seeks to achieve low load on the most heavily-loaded link, under
non-worst-case inputs for which estimated data distributions are available.

Table 3: Link loads in example scenario.

M1 → I1 and M2 → I1 & I1 → R &
M3 → I2 M4 → I2 I2 → R

ε2 category frequency cat. freq. cat. freq.
estimate est. est.

0 A 9 A 9 A 8
B 6 B 1
C 1 C 6

0.03 A 6 A 6 A 8
B 3 C 3

0.05 A 4 A 4 A 8
B 1 C 1 B 1

C 1

8



3.1.2 Minimizing Total Load on the Root Node

Using Algorithm 1a at all applicable nodes and settingεi = 0 for all 2 ≤ i ≤ l − 1, whereby all decrementing and
elimination of synopsis counts is performed by children of root nodeR, minimizes communication load on the root
nodeR under any input streams. We term this strategy MinRootLoad.

Lemma 1 Given a value forε1, for any input streams no values ofε2, . . . , εl−1 satisfyingε1 ≥ ε2 ≥ . . . ≥ εl−1

and no choice of synopsis-merging algorithm results in lower total communication load on nodeR than the values
ε2 = ε3 = . . . = εl−1 = 0 and Algorithm 1a, assuming buffer space at each node is sufficient to store all inputs
arriving during one epoch.

Proof: Consider nodeX, an arbitrary child of the root nodeR. Let SX denote the union of all streams arriving at the
monitor nodes belonging to the subtree rooted atX during one epoch. Since an(ε1, 1)-synopsis is sent fromX to R,
for any setting ofε2, . . . , εl−1, counts for all itemsv with frequencyc(v) ≥ ε1 · |SX | are sent over the link fromX to
R (here,|SX | denotes the number of item occurrences inSX ). Usingε2 = ε3 = . . . = εl−1 = 0 and Algorithm 1a
at X, it is easy to see that an itemu will be sent over the link fromX to R only if c(u) ≥ ε1 · |SX |. Therefore, this
setting ofε2, . . . , εl−1 along with the use of Algorithm 1a results in the smallest possible number of counts sent over
the link from X to R. Since this property holds for any childX of R, strategy MinRootLoad minimizes the total
communication load onR, for any input streams. �

3.1.3 Minimizing Worst-Case Maximum Load on Any Link

In this section we show how to setε2, . . . , εl−1 and how to select a synopsis-merging algorithm to use at each node
so as to minimize the maximum load on any communication link, in the worst case over all possible input streams.
We provide a two step solution. First, we show that for any precision gradientε2, . . . , εl−1, use of Algorithm 1a at
each node minimizes the load on every link, provided buffer space at each node is sufficient to store all inputs arriving
during one epoch. Then, we derive the optimal precision gradient when Algorithm 1a is used at each node.

We begin with the issue of selecting a synopsis-merging algorithm.

Observation 1 If, presented with identical inputs, Algorithm 1b produces outputS and Algorithm 1a produces output
S ′, thenS :n = S ′ :n and for all itemsu ∈ S, S :ĉ(u) ≥ S ′ :ĉ(u).

Observation 2 Consider two sets of inputs to one of Algorithm 1a or Algorithm 1b. Letinput1 = {S1,S2, . . . ,Sd},
andinput2 = {S ′1,S ′2, . . . ,S ′d} where for allj (1 ≤ j ≤ d), Sj :n = S ′j :n and for all itemsu ∈ S ′j , Sj : ĉ(u) ≥ S ′j :
ĉ(u). Let input1 lead to outputS, whereasinput2 lead to outputS ′. ThenS :n = S ′ :n and for all itemsu ∈ S,
S :ĉ(u) ≥ S ′ :ĉ(u).

Lemma 2 At any nodeX use of Algorithm 1a results in no higher communication on any link than use of Algorithm 1b.

Proof: Follows from Observation 1 and multiple invocations of Observation 2. �

Lemma 3 Given a choice between Algorithms 1a and 1b under any precision gradient, use of Algorithm 1a at each
node minimizes the maximum load on any link.

Proof: Follows from Lemma 2. �
It is trivial to extend this result to include leaf nodes, replacing Algorithm 1a with the original lossy counting algorithm.

Next, we show how to setε2, . . . , εl−1 assuming Algorithm 1a is used at each node, and the lossy counting al-
gorithm is used to generate the local synopsis at each monitor node. We also assume the buffer each monitor node
uses for lossy counting is large enough to store frequency counts of all items arriving on the input stream during any
one epoch. As we later confirm in Section 4, this assumption poses no problem in practice, particularly if the epoch
duration is small. For our worst-case analysis, we extend the set of possible inputs in two minor ways:

1. The occurrence frequency of an item arriving on an input stream can be a positive real number.
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2. Associated with each itemu is a weightwu ∈ [0, 1]. In an epoch, at most one item occurrence per input stream can
be an occurrence of an item of weight less than 1. The cost of transmitting the count of itemu with weightwu is wu.
In a synopsis,S :n =

∑
wu ·c(u).

As will become clear later, both of these enhancements allow load on a link to be expressed as a continuous function,
which in turn simplifies our worst-case analysis. Neither enhancement alters the worst-case input significantly. First,
during an epoch, at most one item occurrence per input stream can have non-integral weight. Second, any input with
real-valued item frequencies can be transformed into an input with nearly integral frequencies that yields identical
results by multiplying each frequency by a large number, and dividing all answers produced by the same number.

For notational ease, we transform the problem of settingε2, . . . , εl−1 to that of setting∆2, . . . ,∆l−1, where for
all 2 ≤ i ≤ l − 2,∆i = εi − εi+1 and∆l−1 = εl−1. It is required that∆i ≥ 0 for all 2 ≤ i ≤ l − 1, and that
Σl−1

i=2∆i ≤ ε1. ∆i denotes theprecision marginat leveli, i.e., the difference between the error tolerances at leveli and
level i + 1.

Let the vector∆ = (∆2,∆3, . . . ,∆l−1). Let I denote the contents of all input streamsS1, . . . , Sm during a single
epoch. LetI denote the set of all possible instances ofI.

Given an inputI, a communication hierarchyT (defined by degreed and number of levelsl), and a setting of the
precision gradient∆, let w represent the maximum load on any link in the communication hierarchy:

w(I, T ,∆) = max
k∈links(τ)

{load(k)}

Worst-case loadW is defined as:
W (T ,∆) = max

I∈I
{w(I, T ,∆)}

Given a communication hierarchyT , the objective is to set∆ such that the worst-case loadW (T ,∆) is minimized.
We first show that it is sufficient to consider a specific subset of all instances of the general problem for worst-case

analysis. Then we find precision gradient values∆ values that cause the worst-case load under any of these instances
to be minimal.

There exists a subsetIwc of the set of all input instancesI such that for all instancesI ∈ I − Iwc, there exists
an instanceI ′ ∈ Iwc such that for anyT , ∆, w(I ′, T ,∆) ≥ w(I, T ,∆). Hence,Iwc denotes the set ofworst-case
inputs. InstanceI is a member ofIwc if and only if it satisfies each of the following three properties:

P1:For any two input streamsSi andSj , there is no item occurrence common to bothSi andSj .

P2: For any input streamSi, all items occurring inSi occur with equal frequency.

P3: For any two input streamsSi andSj , both the number of item occurrences, and the number of distinct items, in
Si andSj are equal.

Lemma 4 For fixedT and∆, given any input instanceI, it is possible to find an input instanceI ′ ∈ Iwc such that
w(I ′, T ,∆) ≥ w(I, T ,∆).

Our proof of Lemma 4 is rather involved, and is provided in Appendix B.
From Lemma 4 we know it is sufficient to consider the setIwc for worst-case communication load. Hence, we can

rewrite our expression forW (T ,∆) as:

W (T ,∆) = max
I∈Iwc

{w(I, T ,∆)}

Property P3 ofIwc implies that the total number of item occurrences at any leaf node is the same. Letn denote this
number (|Si| = n for all 1 ≤ i ≤ m). Let tc(j) denote the total number of item occurrences arriving on streams
monitored by at the leaf nodes of a subtree rooted at a node at levelj. It is easy to see thattc(j) = d(l−1−j) ·n, where
l is the number of levels in the communication hierarchy andd is the fanout of all non-leaf nodes. The next lemma
shows that worst-case inputs induce a high degree of symmetry on the resulting synopses.

Lemma 5 For any input instanceI ∈ Iwc, the following two properties hold for thedj (εj , 1)-synopses relayed by
thedj level-j nodes to their parents:
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1. No item is present in more than one synopsis.

2. The estimated frequency counts corresponding to any two items, even if present in two different synopses, have the
same value.

Proof: We prove Lemma 5 by induction onj.
Base Case(j = l − 1): First, any input instance from the setIwc satisfies properties P1 and P3. Furthermore,

recall that we assume each leaf node buffers stream contents for an entire epoch before reducing counts using the lossy
counting algorithm. Hence, each leaf node reduces the frequency estimate corresponding to each item by the same
amount:tc(l − 1)·∆l−1. Thus, it is easy to see that Lemma 5 holds forj = (l − 1).

Induction Step: Assume the lemma holds for levelj. At level j − 1, the frequency estimate for each item is
reduced by the same amount,tc(j − 1) ·∆j−1, in Step (3) of Algorithm 1 (for convenience, we use∆1 to denote
ε1 −

∑l−1
i=2 ∆i). Therefore, Lemma 5 holds for levelj − 1. �

Due to the high degree of symmetry formalized in Lemma 5, the count for each item is eliminated (due to being
decremented and falling below zero) at the same level of the communication hierarchy. Let us call this levelx. If all
counts are dropped at the leaf level, thenx = l − 1. If all counts are retained through the entire process and are sent
to the root nodeR (level0), thenx = 0. Otherwise, all counts are dropped at some intermediate level1 ≤ x ≤ l − 2.

The most heavily loaded link(s) are the ones leading to levelx. To see why, consider that no data is transmitted on
subsequent links and previous links have lower load since data is spread more thinly (in any communication hierarchy
T , the number of links between levels decreases monotonically as data moves from leaves to the root).

When synopses are combined at nodes of leveli using Algorithm 1, the frequency count estimate of each item is
decremented by the quantitytc(i)·∆i (let ∆1 = ε1 −Σl−1

i=2∆i). Hence, the true frequency count of any item occurring
on some input stream must beC = Σl−1

j=x+1(tc(j)·∆j)+ δ, whereδ is a small quantity3. The number of items present
in each input stream is thusnC

4. Since synopses fordl−1−x input streams are transmitted through a node at levelx, the
load on the most heavily loaded link(s) isL(x) = dl−2−x · n

C . Clearly, the maximum value ofL(x) is achieved when
δ → 0. The expression forL(x) can be simplified to:

L(x) =
1

Σl−1
j=x+1(∆j ·dx−j+1)

Now, our expression for the worst-case load on any link can be reduced to:

W (T ,∆) = max
x=0,1,...,l−2

{L(x)}

We desire to minimizeW (T ,∆) subject to the constraints∆2, . . . ,∆l−1 ≥ 0 andΣl−1
j=2∆j ≤ ε1. It is easy to show

that this minimum is achieved whenL(0) = L(1) = · · · = L(l − 2).
Solving for ∆2, . . . ,∆l−1, we obtain: ∆i = ε1 · d−1

(l−2)·(d−1)+d , 2 ≤ i ≤ l − 2 and∆l−1 = ε1 · d
(l−2)·(d−1)+d .

Translating to error tolerances, we setεi = ε1 · (l−1−i)·(d−1)+d
(l−2)·(d−1)+d for all 2 ≤ i ≤ l − 1. This setting ofε2, . . . , εl−1 min-

imizes worst-case communication load on any link. We term this strategy MinMaxLoadWC. Under this strategy, the
maximum possible load on any link isLwc = (l−2)·(d−1)+d

d·ε1 counts per epoch. Lastly, we note that MinMaxLoadWC
remains the optimal precision gradient even if nodes of the same level can have differentε values. Informally, since
with worst-case inputs all incoming streams have identical characteristics, maximum link load cannot be improved by
using non-uniformε values for nodes at a given level; we omit a formal proof for brevity.

3.1.4 Good Precision Gradients for Non-Worst-Case Inputs

Real data is unlikely to exhibit worst-case characteristics. Consequently, strategies that are optimal in the worst case
may not always perform well in practice. In terms of minimizing the maximum communication load on any link, the

3Recall that we allow the frequency of an item to be a real number.
4More precisely, each stream containsb n

C
c items of weight1 each, and one item of weight= n

C
− b n

C
c. Note that each input stream contains

at most one item with weight less than 1, as stipulated earlier.
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worst-case inputs are ones in which the set of items occurring on each input stream are disjoint. When this situation
arises, a gradual precision gradient is best to use (as shown in Section 3.1.3). Using a gradual precision gradient, some
of the pruning of frequency counts is delayed until a better estimate of the overall distribution is available closer to
the root, thereby enabling more effective pruning. In the opposite extreme, when all input streams contain identical
distributions of item occurrences, there is no benefit to delaying pruning, and performing maximal pruning at the leaf
nodes (as in strategy SS2) is most effective at minimizing communication. In fact, it is easy to show that SS2 is the
optimal strategy for minimizing the maximum load on any link when all input streams are comprised of identical
distributions; we omit a formal proof. (Note, however, that SS2 still incurs a high space requirement on the root node
R since it setsε1 = ε.)

We posit that most real-world data falls somewhere between these two extremes. To determine where exactly a data
set lies with regard to the two extremes, we estimate the commonality between input streamsS1, . . . , Sm by inspecting
an epoch worth of data from each stream. We compute acommonality parameterγ ∈ [0, 1] asγ = 1

m·
∑m

i=1
Gi

Li
, where

Gi andLi are defined over streamSi as follows. The quantityGi is defined as the number of distinct items occurring
in Si that occur at leastε·|Si| times inSi and also at leastε·|S| times inS = S1 ∪ S2 ∪ · · · ∪ Sm, where|S| denotes
the number of item occurrences inS during the epoch of measurement. The quantityLi is defined as the number of
distinct items occurring inSi that occur at leastε · |Si| times inSi. Hence, commonality parameterγ measures the
fraction of items frequent enough in one input stream to be included in a leaf-level synopsis by strategySS2 that are
also at least as frequent globally (in the union of all input streams).

A natural hybrid strategy is to use a linear combination of MinMaxLoadWC and SS2, weighted byγ. The strategy

is as follows: setεi = (1−γ)·
(
ε1 · (l−1−i)·(d−1)+d

(l−2)·(d−1)+d

)
+γ·(ε) for 2 ≤ i ≤ (l−2), andεl−1 = (1−γ)·

(
ε1 · d

(l−2)·(d−1)+d

)
+

γ ·(ε). We term this hybrid strategy MinMaxLoadNWC (for non-worst-case). Commonality parameterγ = 1 implies
that locally frequent items are also globally frequent, and SS2 (modified to useε1 < ε) is a good choice. Conversely,
γ = 0 indicates that MinMaxLoadWC is a good choice. For0 < γ < 1, a weighted mixture of the two strategies is
best.

3.2 Summary

We now summarize the methods we introduced in Section 3.1 for setting the precision gradient, which consists of a
set of error tolerance valuesε ≥ ε1 ≥ . . . εl−1 ≥ 0 associated with each level in the communication hierarchy, and for
selecting synopsis-merging algorithms to use. First, in all casesε1 should be set according to any space limitations at
the root nodeR, which must persistently store a synopsis of recent item frequencies. The remaining error tolerances
ε2, . . . , εl−1 may then be set so as to minimize the overall load on the root node or, alternatively, to minimize load on
the most heavily-loaded communication link.

To minimize overall load on the root node, we introduced strategy MinRootLoad (Section 3.1.2), which delays
all decrementing and elimination of frequency counts until immediately before data reaches the root node, in order
to minimize the number of counts reaching the root. We showed that MinRootLoad in conjunction with the use of
Algorithm 1a at each child of the root node is the optimal solution for all inputs. We also proposed two strategies
aimed at minimizing communication load on the most heavily-loaded link: MinMaxLoadWC (Section 3.1.3) and
MinMaxLoad NWC (Section 3.1.4). The former is guaranteed to minimize worst-case communication load on any
link, whereas the latter aims to achieve low load in the presence of data that does not exhibit worst-case characteristics,
and is therefore parameterized by certain high-level characteristics of the expected input data. Our strategies for setting
the precision gradient are summarized in Table 4, and sample precision gradients are illustrated in Figure 3.

4 Experimental Evaluation

In this section we evaluate the performance of our newly-proposed strategies for setting the precision gradient, using
the two näıve strategies suggested in Section 1 as baselines. We begin in Section 4.1 by describing the real-world
data and simulated distributed monitoring environment we used. Then, in Section 4.2, we analyze the data using our
model of Section 3.1.4 to derive appropriate parameters for our MinMaxLoadNWC strategy that is geared toward
performing in the presence of non-worst-case data. We report our measurements of space utilization on nodeR in
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Table 4: Summary of precision gradient settings studied.
Strategy Description (Section Introduced)

Simple Strategy 1 (SS1) Transmits raw data to root nodeR (1.3)

Simple Strategy 2 (SS2) Reduces data maximally at leaves (1.3)

MinRootLoad Minimizes total load on root in all

cases (3.1.2)

MinMaxLoad WC Minimizes worst-case maximum load

on any link (3.1.3)

MinMaxLoad NWC Achieves low load on heaviest-loaded

link, under non-worst-case inputs (3.1.4)
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Figure 3: Precision gradients (ε = 0.001; we assumeγ = 0.5 for MinMaxLoad NWC).

Section 4.3, and provide measurements of communication load in Section 4.4.

4.1 Data Sets

As described in Section 1, our motivating applications include detecting DDoS attacks and monitoring “hot spots” in
large-scale distributed systems. For the first type of application, we used traffic logs from Internet2 [19], and sought to
identify hosts receiving large numbers of packets recently. For the second type, we sought to identify frequently-issued
SQL queries in two dynamic Web application benchmarks configured to execute in a distributed fashion.

The INTERNET2 [19] traffic traces were obtained by collecting anonymized netflow data from nine core routers of
the Abilene network. Data were collected for one full day of router operation and were broken into 288 five-minute
epochs. To simulate a larger number of nodes, we divided the data from each router in a random fashion. We simulated
an environment with 216 network nodes, which also serve as monitor nodes.

For the web applications, we used Java Servlet versions of two publicly available dynamic Web application bench-
marks: RUBiS [10] and RUBBoS [10]. RUBiS is modeled after eBay [11], an online auction site, and RUBBoS is
modeled after slashdot [25], an online bulletin-board, so we refer them asAUCTION andBBOARD, respectively. We
used the suggested configuration parameters for each application, (given in Table 5), and ran each benchmark for 40
hours on a single node.We then partitioned the database requests into 216 groups in a round-robin fashion, honoring
user session boundaries. We simulated a distributed execution of each benchmark with 216 nodes each executing one
group of database requests and also serving as a monitor node.

For all data sets, we simulated an environment with216 monitoring nodes (m = 216) and a communication
hierarchy of fanout six (d = 6). Consequently, our simulated communication hierarchy consisted of four levels
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Table 5: Configurations of web application benchmarks.
Benchmark DB size Details

AUCTION 489 MB 100,000 users
33,667 items

BBOARD 429 MB 500,000 users
213,292 comments

including the root node (l = 4). We sets = 0.01, ε = 0.1·s, andε1 = 0.9·ε. Our simulated monitor nodes used lossy
counting [24] in batch mode, whereby frequency estimates were reduced only at the end of each epoch (in all cases,
less than 64KB of buffer space was used), to create synopses over local streams. The epoch duration T was set to 5
minutes for the INTERNET2 data set and 15 minutes for the other two data sets.

4.2 Data Characteristics

Using samples of each of our three data sets, we estimated the commonality parameterγ for each data set. Recall
that we useγ to parameterize our strategy MinMaxLoadNWC presented in Section 3.1.4. We obtainedγ values of
0.675, 0.839 and 0.571 for the INTERNET2, AUCTION andBBOARD data sets respectively. Hence, theAUCTION data
set exhibited the most commonality among all three data sets. Results presented in Section 4.4 show thatAUCTION

indeed has the most commonality.

4.3 Space Requirement on Root Node

Figure 4 plots space utilization at the root nodeR as a function of time (in units of epochs), using Algorithm 2a to
generate the synopsis, for different values of the decay parameterα, using two different strategies for the precision
gradient. The plots shown are for the INTERNET2 data set. The y-axis of each graph plots the current number of
counts stored in the(ε, α)-synopsisSA maintained by the root nodeR. Figure 4a plots synopsis size under our Min-
MaxLoadWC strategy under three different values ofα: 0.6, 0.9 and 1. As predicted by our analysis in Appendix A.2,
whenα < 1 the size ofSA remains roughly constant after reaching steady-state, whereas whenα = 1 synopsis size
increases logarithmically with time (similar results were obtained for the non-distributed single-stream case). In con-
trast, when SS2 is used to set the precision gradient (Figure 4b), the space requirement is almost an order of magnitude
greater. This difference in synopsis size occurs because in SS2 frequency counts are only pruned from synopses at leaf
nodes, so counts for all items that are locally frequent in one or more local streams reach the root node. No pruning
power is reserved for the root node, and therefore no count inSA is ever discarded, irrespective of theα value. (The
same situation occurs if Algorithm 2b is used instead of Algorithm 2a.) This result underscores the importance of
settingε1 < ε in order to limit the size ofSA, as discussed in Section 3.1.

4.4 Communication Load

Figure 5 shows our communication measurements under each of our two metrics, for each of our three data sets, under
each of the five strategies for setting the precision gradient listed in Table 4. First of all, as expected, the overhead of
SS1 is excessive under both metrics. Second, by inspecting Figure 5a we see that strategy MinRootLoad does indeed
incur the least load on the root nodeR in all cases, as predicted by our analysis of Section 3.1.2. Under this metric,
MinRootLoad outperforms both simple strategies SS1 and SS2 by a factor of five or more in all cases measured.
However, MinRootLoad performs poorly in terms of maximum load on any link, as shown in Figure 5b because no
early elimination of counts for infrequent items is performed and, consequently, synopses sent from the grand-children
of the root node to the children of the root node tend to be quite large. As expected, MinMaxLoadNWC performs
best under that metric on all data sets. For theAUCTION data set, even though SS2 outperforms MinMaxLoadWC
(to be expected because of the highγ value), our hybrid strategy MinMaxLoadNWC is superior to SS2 by a factor of
over two. For the INTERNET2 andBBOARD data sets, the improvement over SS2 is more than a factor of three. On
the negative side, total communication (not shown in graphs) is somewhat higher under MinMaxLoadWC than under
SS2 (increase of between 7.5% and 49.5%, depending on the data set).
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Figure 5: Communication measurements (“k” denotes thousands).

5 Related Work

Most prior work on identifying frequent items in data streams [6, 9, 21, 24] only considers the single-stream case,
and does not incorporate time-sensitivity. Recently, Arasu and Manku [4] proposed a technique for finding frequent
items in a sliding window over a single stream, which is a method of achieving time-sensitivity. Others have studied
the related problem of finding frequent items incrementally when deletion is permitted [8, 20]. Other recent work
by Golab et al. [16] concentrates on specialized networking applications and proposes techniques for maintaining
exact frequency counts over sliding windows, again over a single stream. In this paper we explore an alternative for
achieving time-sensitivity, exponential weighting, and our primary focus is on distributed streams.

While we are not aware of any work on maintaining frequency counts for frequent items in a distributed stream
setting, work by Babcock and Olston [5] does address a related problem. In [5] the problem is to monitor continuously
changing numerical values, which could represent frequency counts, in a distributed setting. The objective is to
maintain a list of the topk aggregated values, where each aggregated value represents the sum of a set of individual
values, each of which is stored on a different node. The work of [5] assumes a single-level communication topology
and does not consider how to manage synopsis precision in hierarchical communication structures using in-network
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aggregation, which is the main focus of this paper.
The work most closely related to ours is the recent work of Greenwald and Khanna [17], which addresses the

problem of computing approximate quantiles in a general communication topology. Their technique can be used to
find frequencies of frequent items to within a configurable error tolerance. The work in [17] focuses on providing an
asymptotic bound on the maximum load on any link (our result adheres to the same asymptotic bound). It does not,
however, address how best to configure a precision gradient in order to minimize load, which is the particular focus of
our work.

6 Summary

In this paper we studied ways to extend algorithms for finding frequent items in a single data stream to incorporate
time-sensitivity and work in a distributed setting. We began by analyzing the effect of applying exponentially decaying
weighting to achieve time-sensitivity, and showed that the maximum space requirement becomes constant with respect
to time.

We then turned to the problem of finding frequent items in the union of multiple distributed streams. The central
issue is how best to manage the degree of approximation performed as partial synopses from multiple nodes are
combined. We characterized this process for hierarchical communication topologies in terms of a precision gradient
followed by synopses as they are passed from leaves to the root and combined incrementally. We studied the problem of
finding the optimal precision gradient under two alternative and incompatible optimization objectives: (1) minimizing
load on the central node to which answers are delivered, and (2) minimizing worst-case load on any communication
link. We then introduced a heuristic designed to perform well for the second objective in practice, when data does not
conform to worst-case input characteristics. Our experimental results on three real-world data sets showed that our
methods of setting the precision gradient are greatly superior to naı̈ve strategies under both metrics, on all data sets
studied.
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A Analysis of Time-Sensitive Extensions

A.1 Proof that Time-Sensitive Extension to Majority+ Counting Ensures Error Guarantees

Algorithm 3: Time-Sensitive Majority + Counting — maintaining (ε, α)-synopsisS

Initially, S :n = 0
On arrival of a new item u:

1. If S :ĉ(u) exists, setS :ĉ(u) := S :ĉ(u) + 1. Else, createS :ĉ(u); setS :ĉ(u) := 1

2. If |S| ≥ 1/ε, for eachu ∈ S, setS :ĉ(u) := S :ĉ(u)− 1; if S :ĉ(u) ≤ 0, eliminate countS :ĉ(u)

3. SetS :n := S :n + 1

On start of a new epoch:

1. For eachu ∈ S, setS :ĉ(u) := α·S :ĉ(u)

2. SetS :n := α·S :n
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To make majority+ counting [9, 21] time-sensitive, we extend it in a straight-forward fashion: each count in the
synopsis is multiplied byα whenever a new epoch begins. For completeness, we provide the extended algorithm as
Algorithm 3. We prove that this algorithm ensures the error guarantees specified in Section 1.2, i.e., for any itemu, if,
as before,c(u) denotes the weighted frequency of occurrence of itemu, andS : ĉ(u) denotes its estimate produced by
Algorithm 3, then(c(u)− ε·

∑
w∈U c(w)) ≤ S :ĉ(u). This inequality follows from the following lemma:

Lemma 6
∀u ∈ U, (c(u)− S :ĉ(u)) ≤ ε·

∑
w∈U

(c(w)− S :ĉ(w))

Proof: We prove this inequality by induction onj, the number of epochs completed (recall that an epoch consists of
T time units). For each item, letcj(u) andS : ĉj(u) denote the actual and estimated weighted frequencies at the end
of epochj.

Base case (j = 1): The left-hand side of the inequality represents the total number of times the count for item
u was decremented by 1 during the first epoch. Each time itemu was decremented (Step 3 of Algorithm 3), a
total of d 1

ε e counts (includingu’s count) were decremented by 1. Therefore, the total undercounting wheneveru is

decremented is at least(c1(u)−S:̂c1(u))
ε . This quantity cannot exceed the total number of undercounting across all items

(
∑

w∈U (c1(w)− S :ĉ1(w))). Hence, for epoch 1,(c1(u)− S :ĉ1(u)) ≤ ε·
∑

w∈U

(c1(w)− S : ĉ1(w)).

Inductive step: Assume that Lemma 6 holds for epochj, i.e.,(cj(u)− S : ĉj(u)) ≤ ε·Σw∈U (cj(w)− S : ĉj(w)).
By adapting the argument made in the base case (j = 1), we obtain:

1

ε
((cj+1(u)− α·cj(u))− (S :ĉj+1(u)− α·S :ĉj(u))) ≤

(
α·
∑
w∈U

S :ĉj(w) +
∑
w∈U

(cj+1(w)− α·cj(w))

)
−
∑
w∈U

S :ĉj+1(w) (1)

The term (cj+1(u)−α·cj(u)) on the left-hand side in the above inequality, is the number of times itemu occurred in
epoch(j + 1). Similarly, (S : ĉj+1(u) − α ·S : ĉj(u))) represents the increase in itemu’s count during epoch(j + 1).
Therefore, the difference of the two quantities,((cj+1(u) − α ·cj(u)) − (S : ĉj+1(u) − α ·S : ĉj(u))), represents the
number of times the count for itemu was decremented by 1 during epochj + 1. Each time itemu was decremented,
a total of d 1

ε e counts (includingu’s count) were decremented. The left-hand side of Inequality (1) represents the
minimum value of the total undercounting wheneveru was decremented during epoch(j + 1). This quantity cannot
exceed the total amount of undercounting across all items during epoch(j + 1), the right-hand side of Inequality (1).
The first term on the right-hand side is the initial sum of all counts at the end of epochj, multiplied byα, plus the
number of items that arrived during epoch(j+1). The second term is the sum of all counts at the end of epoch(j+1).

Combining Inequality (1) with the statement of the lemma for epochj, we obtain:

1

ε
(cj+1(u)− S :ĉj+1(u)) ≤

∑
w∈U

(cj+1(w)− S :ĉj+1(w))

�

A.2 Derivation of Space Bound for Time-Sensitive Extension to Lossy Counting

In the original lossy counting algorithm [24], there is a single type of decrement operation: each count is decremented
by 1 wheneverd1/εe items arrive. In the time sensitive extension to lossy counting that we propose (for completeness,
we provide the extended algorithm as Algorithm 45), frequency estimates are reduced in value when either (a) a new
epoch starts, or (b)d 1

ε e items have arrived since the last count reduction operation. We provide detailed analysis of
the worst-case space requirement for our time-sensitive extension to lossy counting. Before proceeding, we introduce
some notation.

Let τj = |{〈ui, ti〉 ∈ S | j ·T ≤ ti < (j + 1) ·T}| denote the number of items arriving on streamS in epochj.
Let β = dlog 1

α
(1 + 2

ε )e + 1 and lettnow denote the current time and letp = b tnow

T c denote the number of epochs
completed at timetnow. Let k = max

0≤j≤p
{τj} denote the maximum number of items arriving onS in any epoch. We

assumeα < 1 throughout this section.

5Algorithm 4 can be modified in a straightforward way to achieve constant worst-case processing time.
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Algorithm 4: Time-Sensitive Lossy Counting — maintaining(ε, α)-synopsisS

Initially, num = 0, andS :n = 0
On arrival of a new item u:

1. If S :ĉ(u) exists, setS :ĉ(u) := S :ĉ(u) + 1. Else, createS :ĉ(u); setS :ĉ(u) := 1

2. SetS :n := S :n + 1

3. Setnum := num + 1

4. If num = d 1
ε e:

(a) Setnum := 0

(b) For eachu ∈ S, setS :ĉ(u) := S :ĉ(u)− 1

(c) If S :ĉ(u) ≤ 0, eliminate countS :ĉ(u)

On start of a new epoch:

1. For eachu ∈ S:

(a) SetS :ĉ(u) := S :ĉ(u)− num
d 1

ε e

(b) If S :ĉ(u) ≤ 0, eliminate countS :ĉ(u)

(c) SetS :ĉ(u) := α·S :ĉ(u)

2. Setnum := 0

3. SetS :n := α·S :n

Lemma 7 With k defined as above, the maximum weighted frequency count of any item is bounded from above as
follows: max

u∈U
(c(u)) ≤ k

1−α .

Proof: Recall from Section 1.2 that by definition,c(u) =
∑

〈ui,ti〉∈S,ui=u αb tnow−ti
T c. Using the definition ofk,

c(u) ≤ k ·
p∑

j=0

αp−j ≤ k

1− α

�

As a result of the count reduction operations (mentioned at the start of this Section), any item occurrence within
the current epoch results in a1d 1

ε e
reduction in the frequency count of each item. Since1

d 1
ε e

≥ ε
1+ε , any occurrence of

an item within the current epoch results in the frequency count of each item being reduced by at leastε
1+ε . Using this

observation, we show in the next lemma that we can discount old occurrences of items from our calculations.

Lemma 8 Assume a count reduction operation has just been carried out. If itemu is not among thek ·β most recent
item occurrences inS, thenS :ĉ(u) = 0.

Proof: Let β1 epoch boundaries occur during the lastk ·β item occurrences. Since at mostk items can appear onS
in any epoch,β1 ≥ (β − 1).

Let S : ĉ′(u) denote the value of itemu’s count before thek ·β occurrences. There areβ1 epoch boundaries since
item u’s count wasS : ĉ′(u); and each epoch boundary scales down the count value byα. Moreover, arrival of any
item r epochs before, results in a scaled-down decrement byαr. Therefore, the minimum decrement due tok ·β item
occurrences is ε

1+ε ·
∑p−β1+β−1

j=p−β1
(k ·αp−j). Therefore,S :ĉ(u) can be bounded from above as:
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S :ĉ(u) ≤ αβ1 ·S :ĉ′(u)− ε

1 + ε
·
p−β1+β−1∑

j=p−β1

k ·αp−j

Using Lemma 7, the expression forS :ĉ(u) becomes:

S :ĉ(u) ≤ αβ1 · k

1− α
− k · ε

1 + ε
·αβ1−β+1 · 1− αβ

1− α

= (αβ1−β+1)· k

1− α
·(αβ−1 − ε

1 + ε
·(1− αβ))

≤ k

1− α
(αβ−1 · 2 + ε

1 + ε
− ε

1 + ε
) ( sinceαβ1−β+1 ≤ 1 andαβ ≤ αβ−1)

= 0 (substitutingαβ−1 =
ε

2 + ε
, follows from definition ofβ)

SinceS :ĉ(u) ≤ 0, S :ĉ(u) must have been dropped from the synopsis. �

To help us analyze the maximum number of counts required, we associate a position with each item occurrence.
We use this information to label the frequency counts present in the synopsis at timetnow. The label of a frequency
count isi if it was created just after theith most recent item occurrence arrived. Letdi denote the number of counts in
the synopsis with labeli. Lemma 9 and Lemma 10 bounddi, which is eventually used to bound the maximum number
of counts used by our time-sensitive extension to lossy counting.

Lemma 9 Immediately after a count reduction operation is carried out,

ε

1 + ε
·

j∑
i=1

(i·di) ≤ j ∀ j ∈ {1, 2, . . .}

Proof: At tnow, Step (5) and 1(a) of Algorithm 4 ensure that each count with labeli is decremented by at least
ε

1+ε ·i. Therefore, counts with labels up toj for anyj ∈ {1, 2, . . .} are decremented by at leastε1+ε ·Σ
j
i=1i ·di. If we

consider the lastj item occurrences, the maximum possible addition to all counts with labels at mostj is j. Hence,
ε

1+ε ·Σ
j
i=1(i·di) ≤ j ∀ j ∈ {1, 2, . . .}.

�

Lemma 10 Immediately after a count reduction operation is carried out,

ε

1 + ε
·

j∑
i=1

di ≤
j∑

i=1

1
i

∀ j ∈ {1, 2, . . .}

Proof: This proof is similar to the proof in [24] for bounding the maximum number of counts that time-insensitive
lossy counting maintains.

Base case (j = 1): Follows from Lemma 9.
Inductive step (j = r): Let Lemma 10 hold forj = 1, 2, . . . , r − 1. Adding Lemma 9 forj = r to (r − 1)

instances of Lemma 10 (one each forr varying from1 to r − 1) gives

ε

1 + ε
·Σr

i=1i·di +
ε

1 + ε
·
(
Σ1

i=1di + Σ2
i=1di + · · ·+ Σr−1

i=1 di

)
≤ r +

(
Σ1

i=1

1
i

+ Σ2
i=1

1
i

+ · · ·+ Σr−1
i=1

1
i

)
which evaluates tor · ε

1+ε ·Σ
r
i=1di ≤ r ·Σr

i=1
1
i . Thus, lemma 10 holds forj = r. �

Theorem 1 The(ε, α)-synopsis maintained by our time-sensitive extension to the lossy counting algorithm contains
at most(1+ε)·(3+ln (2·k·β+k))

ε non-zero entries.
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Proof: We first analyze the maximum number of counts maintained by our time-sensitive extension to lossy counting
at an instant just after a count reduction operation, as characterized at the beginning of this section.

Let x denote the number of item occurrences onS in the current epoch. Consider2 ·k ·β + x most recent items.
As before, letdi denote the number of counts in the synopsis with labeli. Let D = Σ(j>2·k·β+x)dj .
Lemma 10 implies:

j∑
i=1

di ≤ 1 + ε

ε
·

j∑
i=1

1
i

for j = 1, 2, . . . , 2·k ·β + x− 1 (2)

Any count in the synopsis with label greater than2·k·β + x must occur more than(k·β + x)· ε
1+ε times in the last

2·k·β + x items (This is because even if the value of each of the counts had the maximum possible value immediately
after the(2·k·β +x)th most recent element arrived, it would have decayed to zero by the time(k·β +x)th most recent
element arrived (Lemma 8), and after that the count value is decremented by(k ·β + x) · ε

1+ε ). Therefore, reasoning
similar to Lemma 9, we get:

ε

1 + ε
·

(
2·k·β+x∑

i=1

i·di + (k ·β + x)·D

)
≤ 2·k ·β + x

By rearranging, we arrive at:

2·k·β+x−1∑
i=1

i·di + (d2·k·β+x +
D

2
)·(2·k ·β + x) ≤ 1 + ε

ε
·(2·k ·β + x) (3)

By induction step similar to that employed in proof of Lemma 10, we obtain:

2·k·β+x−1∑
i=1

di + (d2·k·β+x + D/2) ≤ 1 + ε

ε
·
2·k·β+x∑

i=1

1
i

(4)

Adding 1
2·k·β+x times Inequality (3) to Inequality (4), we obtain:

Number of counts in the synopsis=
2·k·β+x+1∑

i=1

di ≤
1 + ε

ε
·(1 +

2·k·β+x∑
i=1

1/i) ≤ 1 + ε

ε
·(2 + ln (2·k ·β + k)) (5)

The above proof holds for instants immediately after a count decrement operation is performed. However, between
any two consecutive count decrement operations, at mostd 1

ε e items can arrive. Therefore, at any time the number of

counts in the synopsis can be at most(1+ε)·(3+ln (2·k·β+k))
ε , whereβ = dlog 1

α
(1 + 2

ε )e+ 1. �

Note that this space bound is independent of time. Hence, whenα < 1 the worst-case space requirement does not
increase with time as long as stream rates remain steady.

B Proof of Lemma 4

We prove Lemma 4 in three steps. First, we show how to transform any input instanceI into an instanceI ′ that satisfies
Property P1 and hasw(I ′, T ,∆) ≥ w(I, T ,∆). Then, we show how to transform an input instanceI ′ satisfying
Property P1 into an instanceI ′′ so that it satisfies both Properties P1 and P2 and hasw(I ′′, T ,∆) ≥ w(I ′, T ,∆).
Lastly, we show how to transform an input instanceI ′′ satisfying Properties P1 and P2 into an instanceI ′′′ that
satisfies all three Properties P1, P2 and P3 (hence,I ′′′ ∈ IA) and hasw(I ′′′, T ,∆) ≥ w(I ′′, T ,∆).
Step 1: For any input instanceI, let the node that transmits on the most heavily loaded link be nodeZ, whose
level we denote byz. Let TZ be the subtree of which nodeZ is the root. Let us partition the input instanceI
into two parts: (a)IZ denoting the part ofI arriving at leaf nodes inTZ , and (b)I¬Z denoting the rest ofI after
excludingIZ (I = IZ ∪ I¬Z). SinceT is a hierarchical communication structure, the load thatZ sends on its
outgoing link (recall that load is measured in terms of the number of counts transmitted) depends only onIZ . This
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observation leads naturally to a two-part procedure for transforming any inputI into I ′ such that instanceI ′ satisfies
Property P1 and hasw(I ′, T ,∆) ≥ w(I, T ,∆) : (a) transformIZ into I ′Z so thatI ′Z satisfies Property P1 and has
w(I ′Z ∪ I¬Z , T ,∆) ≥ w(I, T ,∆), and (b) transformI¬Z into I ′¬Z so thatI ′Z ∪ I ′¬Z = I ′ satisfies Property P1 and
hasw(I ′, T ,∆) ≥ w(I, T ,∆).
Step 1(a):To ensure that no item occurs at more than one leaf node inTZ , for each itemu that occurs atj different
leaf nodesM1,M2, . . . ,Mj with frequency countsc1, c2, . . . , cj respectively, we createj new itemsu1, u2, . . . , uj .
Instead of itemu, itemuk is included in the input streamSk with weightck/

∑
i ci and frequency

∑
i ci.

While this operation might reduce the load on links insideTZ , it does not change the load on any link outside
TZ . Hence, the load on the link from nodeZ to its parent remains unchanged. Thus, the resulting input instanceI ′Z
satisfies Property P1 and hasw(I ′Z ∪ I¬Z , T ,∆) ≥ w(I, T ,∆).
Step 1(b): The only two reasons whyI ′Z ∪ I¬Z might not satisfy Property P1 are (a) an item that occurs inI ′Z also
occurs inI¬Z , or (b) an item occurs at more than one leaf inI¬Z . To remedy either of (a) or (b), any conflicting item
in I¬Z can be renamed to a new item. Thus, the resulting input instanceI ′ (= I ′Z ∪ I ′¬Z) satisfies Property P1.

As with Step 1, we proceed in two parts in Steps 2 and 3.
Step 2(a): I ′Z satisfies Property P1. Consider an itemu that arrives at a leaf nodeY of subtreeTZ . For any levelj,
nodeY has an unique level-j ancestor. For each such level-j ancestor nodeX, let tc(j) denote the total number of
item occurrences in the the leaf nodes of the subtree rooted at nodeX. Sinceu does not occur at any other leaf node
(Property P1), it is part of the synopsis nodeZ sends to its parent if and only if its occurrence frequency atY is greater
thany = Σz

j=l−1∆j · tc(j). Furthermore, the total number of item occurrences at nodeY is tc(l − 1). Therefore, no
more thantc(l − 1)/(y + δ) items that traverse the link from nodeZ to its parent could have arrived at nodeY , for
smallδ > 0. To transformI ′Z into I ′′Z , we replace all item occurrences at nodeY with tc(l − 1)/(y + δ) new items,
each of frequency(y + δ). We repeat this procedure for all other leaf nodes of the subtreeTZ . Input instanceI ′′Z thus
obtained satisfies Properties P1 and P2, andw(I ′′Z ∪ I ′¬Z , T ,∆) ≥ w(I ′, T ,∆).
Step 2(b): The inputI ′¬Z can easily be transformed so thatI ′′Z ∪ I ′′¬Z satisfies Properties P1 and P2 by replacing each
item that occurs at any leaf node inI ′¬Z with a new item with occurrence frequency equal toφ, for any constantφ.
The resulting input instanceI ′′ (= I ′′Z ∪ I ′′¬Z) satisfies Properties P1 and P2.

Step 3 (a): I ′′Z satisfies properties P1 and P2. We first prove the following hypothesis: If the inputI ′′Z satisfies
Properties P1 and P2, the load on the link from a nodeX, an ancestor ofZ, to its parent due toI ′′Z is maximal when
all leaf nodes inTZ have the same number of item occurrences and the same number of distinct items. We prove this
by induction on the height ofTZ .

Base Case (Z is a leaf node): Induction hypothesis is trivially true.
Induction Step: Let Y1, Y2, . . . , Yd denote thed children ofZ, and let eachYj contributeρj to the total count at

nodeX. Assume that the hypothesis holds for each ofY1, Y2, . . . , Yd. Let us term the subtrees of which someYi is
a rootchild-subtrees. Each child-subtree satisfies all three properties P1, P2 and P3. The load on the link from node
X to its parent due toI ′′Z is Σd

j=1
1

∆/wj+∆r
, where∆r = Σl−1

j=i+1d
(i+1)−j∆j and∆ depends on precision gradient of

nodes between nodeZ and nodeX. This expression,Σd
j=1

1
∆i/ρj+∆r

, subject toρ1 + ρ2 + . . . + ρd = 1 attains its
maximum (it can be seen for example, using the technique of Lagrange Multipliers [23]) when allρj are equal. Hence,
the induction hypothesis holds for nodeZ.

I ′′′Z can be obtained by multiplying the frequency counts of each item in the subtree rooted atYj by d/wj . The
resulting instanceI ′′′Z satisfies all three properties P1, P2 and P3 and hasw(I ′′′Z ∪ I ′′¬Z , T ,∆) ≥ w(I ′′, T ,∆).
Step 3(b): SinceI ′′′Z satisfies Properties P1, P2 and P3, lett items occur with frequencyc each, at any leaf node in
TZ . We transformI ′′¬Z into I ′′′¬Z as follows: at any leaf node not belonging toTZ , we createt distinct items each with
occurrence frequencyc. Thus, the resulting input instanceI ′′′ (= I ′′′Z ∪ I ′′′¬Z) satisfies Properties P1, P2 and P3.

Finally, we note that if two itemsu andv with weightswu andwv in some input stream have the same frequency,
we can replace them by a single itemy with weight wy = wu + wv and same frequency as that ofu andv. This
transformation does not change the behavior of our algorithm or the load on any link. By applying this procedure
repeatedly toI ′′′, we can ensure that there is at most one item with weight less than 1 on each input stream.�
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