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Abstract—Speech being a unique characteristic of an individual
is widely used in speaker verification and speaker identification
tasks in applications such as authentication and surveillance
respectively. In this article, we present frameworks for pri-
vacy-preserving speaker verification and speaker identification
systems, where the system is able to perform the necessary oper-
ations without being able to observe the speech input provided
by the user. In a speech-based authentication setting, this privacy
constraint protect against an adversary who can break into the
system and use the speech models to impersonate legitimate users.
In surveillance applications, we require the system to first identify
if the speech recording belongs to a suspect while preserving the
privacy constraints. This prevents the system from listening in on
conversations of innocent individuals. In this paper we formalize
the privacy criteria for the speaker verification and speaker iden-
tification problems and construct Gaussian mixture model-based
protocols. We also report experiments with a prototype imple-
mentation of the protocols on a standardized dataset for execution
time and accuracy.

Index Terms—Secure multiparty computation, speaker identifi-
cation, speaker verification.

I. INTRODUCTION

A S speech is a unique characteristic of an individual, a
person’s voice and manner of speaking are his/her bio-

metric signatures. This property allow us to classify speech sam-
ples by their speakers using probabilistic representation such
as Gaussian mixture models (GMMs), and forms the under-
lying principle of speaker verification and speaker identification
tasks. In speaker verification, we authenticate a person based on
speech input. In speaker identification the objective is to iden-
tify which, if any, of a given set of speakers produced a given
speech sample.
In order to perform authentication, a speaker verification

system needs to store speech patterns of all enrolled users. This
leads to the system being vulnerable to attacks that other types
of authentication systems, such as password-based systems, are
subjected to. For instance, the verification system may itself be
compromised for phishing, i.e., made to act as a front to capture
users’ speech patterns when they enroll with the system. These
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voice patterns could then be used to impersonate users in other
voice authentication services. Alternatively, a malicious agent
may break into a system and gain access to stored voice patterns
and later apply them to generate fake voice data to impersonate
enrolled users. Each of these attacks lead to the disclosure of
the speech data provided by the users and therefore form a
breach of privacy.
However, no form of speech-based authentication is perfectly

secure. An obvious way of circumventing the authentication
process is by imitation. Imposters may attempt to imitate a sub-
ject’s voice, or produce speech similar to the user’s voice using
methods such as playing out recordings of the user’s voice, or
morphing their own voice into the user’s voice [2], [3]. Imita-
tion of a person’s speech, however, does not lead to the imposter
or the system gaining any additional information and therefore
does not result in a loss of privacy. We consider these form of
attacks as only security threats and not privacy issues.
Speaker identification, on the other hand, finds application in

audio surveillance applications. The audio-based surveillance
can be in the form of wiretapping, where the a security agency,
e.g., police, listens in on telephone conversations or the audio
captured by hidden microphones in public areas. A basic char-
acteristic of surveillance is that the agency needs to perform
it obliviously, i.e., the subjects under surveillance should not
know about it. Although listening in on personal conversations
either over the telephone or from physical sources is an effective
surveillance method to identify credible security threats, this di-
rectly infringes on the privacy of innocent individuals who may
not be intended targets of the surveillance. To prevent this, the
agency would first need to perform speaker identification to de-
termine if the speech input belongs to a speaker who is supposed
to be under surveillance. In order to perform speaker identifica-
tion using a conventional setup, the agency would need com-
plete access to the speech input, which itself would be a privacy
violation, resulting in a circular problem.
In this article we develop frameworks for privacy preserving

speaker verification and speaker identification tasks, where the
system performs verification or identification without being able
to observe the speech input. Our solution is based on securemul-
tiparty computation (SMC) protocols [4] that enables the system
to perform computation only on encrypted speech data without
requiring to observe in plaintext. We envision a client-server
model, where a user executes a client program on a network
computation device, such as a computer or smartphone, coupled
with a public key cryptosystem. The user retains its private key,
while the public key is shared with the system. We, therefore,
eliminate the possibility that the system could phish for a user’s
voice in speaker verification or listen in to the speech input in
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speaker identification. Secondly, in speaker verification, we re-
quire the system to store only encrypted speech patterns pro-
vided by enrolling users, thereby protecting against an adversary
who breaks into the system.We later present mechanisms where
system is able to perform verification over encrypted speech
input provided by the user against these encrypted speech pat-
terns.We assume that one adversary does not gain access to both
the user’s client device and the system at the same time. We dis-
cuss the detailed privacy criteria in the later sections.
We should note that we do not aim to design superior speaker

verification and speaker identification algorithms for achieving
higher accuracy. We instead aim to create a mechanism to en-
sure the privacy of user’s speech data and the models learned by
the system while implementing existing verification and identi-
fication algorithms. Also, there is always a computational over-
head in the privacy-preserving mechanisms due to the time re-
quired to perform the encryption and decryption operations. We
also present experiments on a prototype implementation of the
protocols to analyze the execution time.
Although there has been substantial work on general tech-

niques for data processing with privacy constraints [5], [6],
including protocols for privacy-preserving biometric authen-
tication tasks such as face recognition [7] and fingerprint
recognition [8], privacy-preserving speech processing is a
nascent area of research. Smaragdis and Shashanka [9] propose
protocols for training and evaluating Gaussian mixtures and
hidden Markov models on speech data, under privacy con-
straints. Pathak, et al. [10] develop and implement an efficient
protocol for privacy-preserving HMM inference applied to
isolated word recognition. In this article, we extend some of
these techniques to develop protocols for speaker verification
and speaker identification.

II. PRELIMINARIES

A. Speaker Verification Using GMMs

We briefly overview the technique for text-independent
speaker verification. We outline the basic algorithm here; for a
detailed tutorial, please refer to [11].
In a speaker verification task, we attempt to authenticate an

individual based on the characteristics of his/her speech. We
parameterize the speech samples by the sequences of Mel-fre-
quency cepstral coefficients augmented by differences and
double differences, i.e., a recording consists of a sequence of
feature vectors. In the enrollment phase, we require each user
to submit a set of speech samples . We represent a
person’s speech characteristics by a Gaussian mixture model
(GMM) . The GMM has the following form:

where is the multivariate Gaussian distribu-
tion with mean and covariance . We learn these parame-
ters from the enrollment data using the expectation-minimiza-
tion (EM) algorithm.

Although we can potentially learn the speaker model from the
enrollment samples for the speaker, learning the GMM for the
imposter class is less obvious as an imposter could potentially
be from a very large set of speakers. We represent the generic
speaker by a universal background model (UBM) that is
trained on a large and diverse set of speakers.
In the verification phase, given a test speech sample , we

aim to check if it is likely to be uttered by the enrolled speaker
or by an imposter. Then we compute the probabilities of using
the speaker model and the (UBM) . We perform the veri-
fication using the following likelihood ratio test with respect to
a pre-calibrated threshold .

accept speaker,
reject speaker.

(1)

Model Adaptation: We mentioned above that we train the
speaker model , directly from the training data, but in prac-
tice the speaker models obtained from maximum a posteriori
(MAP) adaptation with the UBM empirically outperform the
models trained directly on the enrollment data [11], [12].
The MAP adaptation procedure comprises estimation of a

sample estimate of the speaker’s parameters, followed by inter-
polation with the UBM. Given set of enrollment speech samples

, we first compute the a posteriori probabilities of the
individual Gaussians in the UBM . For the mixture com-
ponent of the UBM,

(2)

Similar to the M-step of EM, we use the a posteriori prob-
abilities to compute new weights, mean, and second moment
parameters.

(3)

Finally, we obtain the parameters of the adapted model
from the convex combination of the above param-

eters and the UBM parameters as follows.

(4)

The adaptation coefficients control the amount of contribu-
tion of the enrollment data relative to the UBM.

B. Speaker Identification Using GMMs

Speaker identification can be considered to be the gener-
alization of speaker verification task to the case of multiple
speakers. We consider the setting where we already have a set
of speakers , and given a test speech sample,
we are interested in assigning it to one of the speakers. In
open-set speaker identification, we consider a default or none of
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the above case in which the speech sample does not correspond
to any of the speakers.
Similar to speaker verification, we represent the speakers by

GMMs , and the default case by the UBM .We
obtain the speaker models either by learning a GMM directly
from the speech data for that speaker or by adapting the UBM
to the training data for individual speakers.
In the identification step, we individually compute the prob-

abilities of all the speaker models with respect to the given test
speech sample . We choose the speaker corresponding to the
model having the highest probability.

C. Homomorphic Encryption

Homomorphic encryption schemes allow for operations to be
performed directly on encrypted data (ciphertext) without re-
quiring knowledge of their unencrypted data (plaintext). If the
homomorphic encryption scheme is asymmetric, i.e., provides
public and private keys, the party with private key “Alice” can
encrypt its input and transfer it to the party with the public key
“Bob,” who can perform the necessary operations on the en-
crypted data alone. The operations on encrypted data protect pri-
vacy as Bob cannot decrypt and observe the input provided by
Alice. This property is the foundation of our privacy preserving
mechanisms.
A cryptosystem in which we can perform any operations on

the plaintext by performing operations on corresponding cipher-
text is called a fully homomorphic cryptosystem (FHE). The
first such cryptosystemwas proposed in a breakthrough work by
Gentry [13], [14]. Although the construction satisfies the neces-
sary properties for FHE, it is found to be computationally inef-
ficient to be used in practice [15], and developing computation-
ally practical FHE schemes is an active area of research [16].
There are well-established efficient partially homomorphic

encryption schemes that allow a few operations to be per-
formed on plaintext by performing operations on ciphertext,
e.g., unpadded RSA is multiplicatively homomorphic, El
Gamal [17] and Paillier [18] are additively homomorphic.
The Paillier cryptosystem allows us to compute inner prod-
ucts of an encrypted vector with a plaintext vector. Given a
ciphertext vector and a plaintext
vector , we can homomorphically compute

to obtain .
We can then homomorphically add these elements to obtain

which is the encrypted inner product
.

Being able to perform homomorphic addition alone on the ci-
phertext has its limitations; given two encrypted vectors

and , we are
not able to directly compute the inner product . Boneh-
Goh-Nissim (BGN) [19] is a homomorphic cryptosystem pro-
vides arbitrary number of additions along with one multiplica-
tion on ciphertexts. We can use it to directly compute the en-
crypted inner product from two encrypted vectors. The
homomorphic operations provided by the BGN cryptosystem
are a superset of those provided by the Paillier cryptosystem.
There is, however, a significant difference in performance. We
prefer to use the Paillier cryptosystem in constructing interac-
tive protocols. When we require the homomorphic computation

of inner products from ciphertexts in our privacy preserving
mechanisms, we use the BGN cryptosystem.
Interactive and Non-Interactive Protocols: If we need to

perform operations on ciphertexts beyond those provided by
the partially homomorphic cryptosystem, we need to construct
interactive protocols, where both the parties Alice and Bob
perform part of the computation. In interactive protocols, Alice
encrypts the data using her public key and transfers it to Bob.
Using the operations provided by the homomorphic cryp-
tosystem, Bob obtains the necessary intermediate results, and
sends randomly perturbed ciphertexts back to Alice, typically
perturbed by additive or multiplicative blinding. Alice decrypts
the data using her private key, performs some intermediate
operations, encrypts the results and sends it back to Bob. In this
way, Alice and Bob each perform part of the computation till
they obtain the required output. On the other hand, in non-in-
teractive protocols, Bob requires no assistance from Alice
beyond receiving the input ciphertexts and directly obtains the
output by performing the necessary computation himself. As
we shall see in Section III-C, we use the Paillier cryptosystem
to constuct interactive protocols and the BGN cryptosystem to
construct non-interactive protocols.

III. PRIVACY-PRESERVING SPEAKER VERIFICATION

In this section, we develop our framework for privacy-pre-
serving speaker verification system. The system uses UBM and
adapted GMMs (Section II-A) to represent the speakers.We dis-
cuss the privacy issues of our framework by considering the
adversarial roles of the various parties. We then present the
system architecture along with the enrollment and verification
protocols.

A. Adversarial Model

We assume the user and the system to be independent par-
ties that have access to separate computing devices operating
in a client-server framework. We assume the parties to be com-
putationally bounded, i.e., we consider that the parties cannot
directly break the encryption to obtain plaintext from ciphertext
without the decryption key.
In SMC, we consider two types of adversarial behavior of

parties: semi-honest and malicious. We consider a semi-honest
party to follow the steps of the protocol correctly, but keep a
record of all intermediate results while trying to gain as much
information as possible about the input data belonging to other
parties. A malicious party, in addition to the semi-honest be-
havior, takes active steps in disrupting the protocol by using
fraudulent input data to gain information about the input data
belonging to other parties, and to obtain an unrealistic result.
Our main privacy constraint is that the system should not

be able to observe the speech samples belonging to the user
both during the enrollment and verification phases. In order to
achieve this, we require that users submit encrypted adapted
models in the enrollment phases and encrypted test speech data
in the verification phase, where the encryption is performed
with the private key belonging to the user. In the verification
phase, the system needs to perform all the necessary operations
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Fig. 1. Enrollment protocol: user has enrollment data and system has the
UBM . System obtains encrypted speaker model .

over this encrypted data using the homomorphic operations de-
scribed in Section II-C, which we refer to as the verification pro-
tocol. The only malicious behavior the system can exhibit in the
verification protocol is to modify the steps of the procedure to
obtain incorrect output. As the system never observes the speech
input in plaintext, this will not help it in anyway to obtain any
information about the input. On the other hand, a system giving
arbitrary accept/reject decisions will only antagonize the users
and accepting false users would lead to a security problem, but
not a loss in privacy. For the same reasons, we assume that the
system provides the user with the correct copy of the algorithm
which we assume to be public. We therefore assume that the
system to be semi-honest.
We also assume that the user is semi-honest during the enroll-

ment phase. By maliciously submitting false adapted models,
the user will only help in creating a weak authentication system,
and there is no incentive for the user to do so. In the verification
phase, however, the user could possibly be an imposter who is
an adversary using a compromised device belonging to the user.
We therefore assume that the user is malicious. In this model,
we cannot make assumptions about the correctness of the input
data provided by the user. In order to counter such an adversary,
we require that the system apply the same input data for both the
UBM and the adapted models.

B. System Architecture

As an initialization step, the user generates a public/private
key pair and sends the public key to the system. We assume
that the system trains a UBM on publicly available data
and stores it with itself as plaintext. In the enrollment protocol
(Fig. 1), the system sends the UBM to the user in plaintext and
the user performs the adaptation. The user then encrypts the
adapted model with its key and sends it to the system. After
executing the enrollment protocol with all users, the system has
encrypted models for all users along with the UBM. At the end
of the protocol, we require the user to delete the enrollment data
from its computation device in order to protect it from an ad-
versary who might gain unauthorized access to it. The user de-
vice stores the encryption and decryption keys. Similarly, as the
server stores only the encrypted speaker models, it is also pro-
tected against an adversary who might compromise the system
to gain the speaker models, in order to impersonate the user
later. If an adversary compromises the user device as well as
the system, we consider the system to be completely compro-
mised as the adversary can use the decryption key to obtain the
speaker model in plaintext.
In the verification protocol (Fig. 2), the user produces a test

speech sample and encrypts it using its key and sends it to
the system along with the claimed identity. The system evalu-
ates the encrypted test sample with the UBM and the encrypted
model for the claimed speaker it had obtained in the enrollment

Fig. 2. Verification protocol: user has test data and system has the UBM
and encrypted speaker model . The user submits encrypted data and the
system outputs an accept/reject decision.

protocol using the homomorphic operations and obtains two en-
crypted scores. The system makes its decision by comparing the
difference between the two encrypted scores with a threshold
using the compare protocol.

C. Speaker Verification Protocols

We now describe the enrollment and verification protocols in
detail. We use the following construction from [9]: the multi-
variate Gaussian computed on any -dimensional
vector can be represented in terms of of a
matrix .

(5)

This implies , where is an extended
vector obtained by concatenating 1 to . As suggested by [10],
we reduce this computation to a single inner product ,
where the extended feature vector consists of all pairwise
product terms and is obtained by unrolling
into a vector. In this representation, we have

(6)

We assume that the user computes MFCC features from the
speech samples. In the following discussion, we refer to the
MFCC features as the speech sample itself.
1) Private Enrollment Protocol: We assume that the system

already has access to the UBM, trained on a collection
of publicly available speech data. The speaker verification
algorithm requires a speaker model obtained from adapting
the UBM to the enrollment data provided by the speaker. We
require that the speaker model is kept with the system only
after it is encrypted by the user’s key using an additively ho-
momorphic encryption scheme like the Paillier cryptosystem.
We outline this enrollment protocol below.

Private Enrollment Protocol.

Inputs:
(a) User has the enrollment samples and both

encryption key and decryption key .
(b) System has the UBM for ,

mixing weight , and the encryption key .

Output: System has the encrypted user model ,
for .
(i) The system sends the UBM to the user.
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(ii) User performs the model adaptation of with the
enrollment samples (see Section II-A) to
obtain the adapted model .

(iii) The user represents the mixture components of the
adapted model using the matrix representation
described above.

(iv) The user encrypts using its encryption key and sends
it to the system.

Although this arrangement, where the user performs the adap-
tation, is adequate in most applications, we also construct a pro-
tocol for the system to perform the adaptation over encrypted
enrollment data to obtain the encrypted speaker models.
2) Private Verification Protocols: In the verification pro-

tocol, the system needs to evaluate the probabilistic score of the
given test sample using the UBM and the adapted model .
This score is evaluated for all frames of the test sample; for a test
sample and the model , this score is given
by

We compute this score in the log domain to prevent numerical
underflow,

(7)

using the matrix representation from (6).
In our privacy model, we assume that the user has the speech

sample and the system has the encrypted matrices . Private
verification protocol proceeds as follows: the user sends the en-
crypted frame vectors to the system and which is then
used to compute the inner products using the homo-
morphic properties of the Paillier cryptosystem. In order to use
the inner products to compute the log scores, we need to perform
an exponentiation operation on ciphertext. As our cryptosystem
only supports homomorphic additions and a single multiplica-
tion, it is not possible to do this directly, and we therefore use the
logsum protocol which requires user participation in the inter-
mediate steps. We outline this interactive verification protocol
below.

Interactive Private Verification Protocol.

Inputs:
(a) User has the test sample with frame vectors

and both encryption key and
decryption key .

(b) System has , for , and the
encryption key .

Output: System obtains the score .
(i) The user encrypts the frame vectors and sends it to
the system.

(ii) For each mixture matrices and each frame vector
, the system computes the inner product .

(iii) The system and the user then participate in the logsum
protocol to obtain .

(iv) The system adds the logsums homomorphically to obtain
the .

As the system has access to the UBM in plaintext, the user
and the system can execute the private mixture of Gaussians
evaluation protocol (MOG) given by [9]. However, we observe
that the above protocol is substantially faster than MOG using
unencrypted models. This is because in the above protocol, the
user computes part of the inner products in plaintext. We
therefore repeat the above protocol with the encrypted UBM

to obtain the encrypted probability .
The system and the user can finally execute the millionaire pro-
tocol [4], to privately compute if
and the system uses this as the decision to authenticate the

user.
Throughout this protocol, the system never observes the

frame vectors in plaintext. The various supplementary
protocols require the system to send encrypted partial results to
the user. While doing so the system either adds or multiplies
the values it sends to the user by a random number. This also
prevents the user from learning anything about the partial
results obtained by the system. Even after satisfying these
privacy constraints, the system is able to make the decision on
authenticating the user.
A drawback of the above protocol is that it requires partici-

pation from the user in the intermediate steps. Apart from the
computational and data transfer overhead incurred, this also re-
sults in a privacy vulnerability. A malicious user can provide
fake inputs in the logsum step to disrupt the protocol and try to
authenticate itself without having a speech sample belonging to
a genuine user. To prevent this, we construct a non-interactive
protocol, where the user needs to submit the encrypted speech
sample and the system directly computes the probability scores.
As this is not possible due to the exponentiation involved in (7),
we modify the score function itself by alternating the log and
sum functions.

(8)

This has the advantage that using homomorphic multipli-
cation provided by the BGN cryptosystem, the system can
by itself compute the inner products for both the
speaker model and the UBM for the same encrypted input
provided by the user. Beyond that, the system only needs ho-
momorphic addition to compute the score without requiring any
user participation. We experimentally observe that the accuracy
of this score is close to that of the original probabilistic score.
We outline the non-interactive verification protocol below.

Non-Interactive Private Verification Protocol.

Inputs:
(a) User has the test sample with frame vectors

and both encryption key and
decryption key .

(b) System has , for , and the
encryption key .

Output: System obtains the score .
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(i) The user encrypts the frame vectors and sends it to
the system.

(ii) For each mixture matrices and each frame vector
, the system computes the inner product

homomorphically.
(iii) The system adds the inner products homomorphically to

obtain the .

The system executes the same protocol using the adapted
model and the UBM using the same inputs it receives from the
user in step (i). The system never observes the frame vectors in
plaintext in this protocol as well. As there is no user participa-
tion after the initial encrypted frame vectors are obtained, there
is no loss of privacy of the user data.

IV. PRIVACY-PRESERVING SPEAKER IDENTIFICATION

In this section, we develop our framework for privacy-pre-
serving speaker identification. Similar to the speaker verifica-
tion framework, we use the GMMs to represent the speakers
(Section II-B). We discuss the privacy issues of our framework
by considering the adversarial roles of the various parties. We
then present the system architecture along with the enrollment
and verification protocols.

A. Adversarial Model

We consider speaker identification with two parties: the client
who has access to the test speech sample and the server who has
access to the speaker models and is interested in identifying the
most likely speaker corresponding to the test sample. For con-
creteness, we consider the setting of a surveillance operation as
an application scenario for our framework. In case of surveil-
lance, the server would be the security agency, and the client
would be the telephone company that has access to the conver-
sations of all subscribers. It is important to note that we do not
consider the individual phone users as the client as these individ-
uals should be unaware about being subjected to surveillance, as
no user would willingly participate in such an activity.
The agency has access to the speaker models for the indi-

viduals it already has wiretapping warrants against. The agency
directly deals with the telephone company in order to identify
if any such individual is participating in a telephone conversa-
tion. If that is found to be the case, the agency would follow the
necessary legal procedure to obtain the phone recording. The
same analogy also holds for the case of physical surveillance;
e.g., a supermarket installs hidden security cameras with micro-
phones in their premises, and the police might want the audio
recordings to gain evidence about criminal activity. In this case
the supermarket would be the client and the police would be the
server.
Although we aim to construct mechanisms to protect the pri-

vacy of the client data, we assume that the client cooperates
with the server. In the speaker identification task, it is possible
that the client can refuse the server by simply not providing
the speech input or providing white noise or speech from some
other source as input. In this case, it will not be possible for
the server to perform surveillance. In order to prevent this, the
server can legally require the client to use only the correct data
as input. We also assume that the server already knows the

speakers it is looking to identify. The server uses the publicly
available data for the speakers to train the corresponding
speaker models without requiring the participation of the client.
The server trains a UBM as a speaker model corresponding to
above case, that is the input speech not matching any of the
speakers. In the process of performing speaker identification

with these models, our privacy criteria are:
1) The server should not observe the speech data belonging
to the client.

2) The client should not observe the speaker models be-
longing to the server.

The first criterion follows directly from the discussion above,
the server being able to observe the speech data causes the viola-
tion of client privacy. The client, i.e. phone company, can also
include in its privacy policy that the user privacy will be pro-
tected because if an agency needs to perform surveillance, it will
do so using a privacy-preserving speaker identification system.
The second criterion is important because it is possible to iden-
tify the speaker by reverse-engineering the speaker models. The
client might do this to gain information about the blacklisted in-
dividuals the server is performing surveillance on. This would
cause problems in the investigation process as the client can
convey this information to those individuals.
We consider the adversarial behaviors of the client and the

server below. In the speaker identification task, the server tries
to gain as much information as possible from the input provided
by the client. The server cannot do much to disrupt the protocol,
the server can use incorrect speaker models, but that would only
result in incorrectly identified speaker. As that is not in the in-
terest of the server, we assume that the server is semi-honest.
Similarly, the client tries to gain information about the server
models from the intermediate steps of the protocol. As discussed
above, we assume that the client cooperates in the speaker iden-
tification task by submitting the correct input, and therefore we
also require the client to be semi-honest.

B. System Architecture

We assume that the server knows the set of speakers
that it is interested in identifying and has access

to data for each speaker. This data could be publicly available
or extracted by the server in its previous interactions with the
speakers. The server uses a GMM to represent each speaker
and also a UBM . We consider the UBM to represent
none of the above case, where the test speaker is outside the
set . The server obtains GMMs for individual
speakers by either training directly over the
data for that speaker or by performing MAP adaptation with
the UBM. The client has access to the speech sample, that it
represents using MFCC features. To perform identification, the
server needs to evaluate the GMMs
over the speech sample. The server assigns the speaker to the
GMM that has the highest probability score, .
Our design of the first variant of the speaker identification

framework is shown in Fig. 3 where the client sends speech
samples to the server. Initially, the client generates a public/pri-
vate key pair for the homomorphic cryptosystem
and sends the public key to the server. The client will then en-
crypt the speech sample and send it to the server. The server
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Fig. 3. GMM-based speaker identification: client sends encrypted speech
sample to the server.

Fig. 4. GMM-based speaker identification: server sends encrypted models to
the client.

uses the GMM evaluation protocol for each speaker model to
obtain the encrypted probability scores. The server and
client then engage in the private maximum computation pro-
tocol where only the server knows the model having the highest
score at the end.
In the second variant of the speaker identification framework

denoted in Fig. 4, the server sendsmodels to the client. To do this
privately, the server as opposed to the client creates a public/pri-
vate key pair for the homomorphic cryptosystem
and sends the public key to the client. The server encrypts all
GMMs using this key and sends it to the client. The client eval-
uates all the GMMs over the speech sample it has and obtains

encrypted scores. The client and the server then partici-
pate in the private maximum computation protocol where only
the server will know the model having maximum score at the
end.

C. Speaker Identification Protocols

We reuse the construction for representing a Gaussian as
given by (6):

We construct the following GMM evaluation protocols using
the additively homomorphic Paillier cryptosystem for the two
cases: evaluating over private speech data and evaluating over
private speaker models and later use the protocols in the speaker
identification protocols.
1) Case 1: Client Sends Encrypted Speech Sample to the

Server:

GMM Evaluation Protocol with Private Speech Sample.

Inputs:
(a) Client has the test sample with frame vectors

and both encryption key and
decryption key .

(b) Server has the GMM with mixture components
and the encryption key .

Output: Server obtains the encrypted score .

(i) The client encrypts the frame vectors and sends
it to the server.

(ii) For each Gaussian matrix and each frame vector
, the server computes the

inner product homomorphically as

(iii) The server and the client then participate in the logsum
protocol to obtain .

(iv) The server adds the logsums homomorphically to obtain
the .

By using this protocol, the server is able to privately eval-
uate a GMM it has in plaintext over speech data belonging
to the client. As the server does not have the private key,
it is not able to observe the encrypted speech sample pro-
vided by the client and the final encrypted probability score.
The server executes this protocol for all the GMMs

, including the UBM and obtains the encrypted
scores and the server
needs to find the GMM having the maximum probability score.
The server and the client participate in the private maximum

computation protocol for this purpose. Our construction is based
on the SMAX protocol of [9] and the blind and permute protocol
of [20].
2) Case 2: Server Sends Encrypted Speaker Models to the

Client:

GMM Evaluation Protocol with Private Speaker Model.

Inputs:
(a) Client has the test sample with frame vectors

and the encryption key .
(b) Server has the GMM with mixture components

and both encryption key and
decryption key .

Output: Client obtains the encrypted score .
(i) The server encrypts the Gaussian matrices

and sends it to the client.
(ii) For each frame vector and each encrypted Gaussian

matrix, the client computes the inner product
homomorphically as

(iii) The client and the server then participate in the logsum
protocol to obtain .

(iv) The client adds the logsums homomorphically to obtain
the .

The client uses the above protocol to evaluate GMMs
provided by the server in ciphertext on its speech data. The client
obtains probability scores encrypted by the server at the end of
the protocol. To perform speaker identification, only the server
needs to find the GMM having the maximum score. The client
cannot transfer the scores to the server, as that would lead to the
loss of privacy of the client speech data. We instead construct
the following protocol that uses another set of keys generated
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by the client and then reuse the private maximum computation
protocol we discussed above. We cannot directly use the pri-
vate maximum computation protocol with the parties reversed,
i.e., the client as the server and the server as the client. This is
because our privacy criteria require that only the server should
know about the identified speaker.
Comparison of the Two System Configurations: In the first

variant of the system architecture described in Case 1, the main
computation and communication overhead is due to the client
encrypting its speech sample. This overhead is directly propor-
tional to the length of the sample , with 100 frames per second.
In the remainder of the GMM evaluation and private maximum
computation protocols, the client and server exchange small
vectors that are independent of the sample length.
In the second variant described in Case 2, the main over-

head is due to the server encrypting its speaker models. As dis-
cussed above, we represent the speaker model using matrices

representing a single mixture component. Each
matrix is of size , where is the dimension-

ality of the frame vector. In our implementation, we use
with MFCC features with . This size is independent of
the sample length. The client evaluates these models on its own
unencrypted speech data. Similar to the first variant, the over-
head from the remainder of the private computation is relatively
small.
In this way, the cost of using the two configurations is de-

pendent on the length of the speech sample. If the length is
typically smaller than the matrix size , it is
advantageous to use the first variant, where the client encrypts
the speech sample. If is larger than the product, it is advan-
tageous to use the second variant. As compared to speaker ver-
ification, speaker identification is performed on relatively large
amount of speech input, often multiple minutes long in prac-
tical scenarios such as surveillance. In these situations, it is sig-
nificantly more efficient to use the second variant. On the other
hand the speech input can be only a few seconds long in prob-
lems where speaker identification is used as an initial step for
other speech processing tasks. In these situations, it is efficient
to use the first variant.

V. EXPERIMENTS

We present the results of experiments with the privacy pre-
serving speaker verification and speaker identification proto-
cols described above. We created prototype implementations of
the interactive and non-interactive verification protocols in C++
using the pairing-based cryptography (PBC) library [21] to im-
plement the BGN cryptosystem and OpenSSL library [22] to
implement the Paillier cryptosystem. We performed the experi-
ments on a 2 GHz Intel Core 2 Duo machine with 3 GB RAM
running 64-bit Ubuntu.

A. Speaker Verification Experiments

Both interactive and non-interactive protocols constructed
using homomorphic encryption achieved the same final prob-
ability scores as the non-private verification algorithm up to 5
digits of precision.
1) Accuracy: We used the YOHO dataset [23] to measure the

accuracy of the two speaker verification protocols. We trained a

TABLE I
EXECUTION TIME FOR THE INTERACTIVE PROTOCOL

WITH PAILLIER CRYPTOSYSTEM

UBMwith 32Gaussianmixture components on a random subset
of the enrollment data and performed MAP adaptation with the
enrollment data for individual speakers to obtain the speaker
models. We evaluate the UBM and the speaker models on the
verification data for the speaker as the true samples and the ver-
ification data for all other speakers as the imposter samples. We
use EER1 as the evaluationmetric.We observed an EER of 3.1%
for the interactive protocol and 3.8% for the non-interactive pro-
tocol. This implies that there is only a marginal reduction in per-
formance by modifying the scoring function.
Although the above EERs are acceptable to be used in most

verification applications, they should be considered to be pre-
liminary and indicative of the feasibility of the two protocols.
The interactive protocol essentially follows the UBM-GMMap-
proach [11], and by using 1024 mixture components and more
discriminative features, the EER can be reduced to less than 2%
[23], [24]. We hypothesize that the EER for the non-interactive
protocol can also be reduced similarly.
2) Execution Time: We measured the execution times for

the verification protocols using BGN encryption keys of sizes
256 and 512-bits.2 In practice, 512-bit keys are used for strong
security [25]. We use 256 and 1024 bit keys for Paillier cryp-
tosystem. We perform the verification of a 1 second speech
sample containing 100 frame vectors using the UBM and the
speaker models each containing 32 mixture components. The
non-private verification algorithm required 13.79 s on the same
input.
We use the Paillier cryptosystem for the interactive protocol

and the BGN cryptosystem for the non-interactive protocol, as
the private inner product is needed in the latter. We summarize
the results in Tables I and II for the interactive and non-interac-
tive protocols respectively. Also, the execution time varies lin-
early with the utterance length. We observe that the interactive
protocol is faster than the non-interactive protocol. This is due to
the execution of the private inner product for each frame vector
needed for the non-interactive protocol. The system requires to
perform multiplicative homomorphic operations to obtain the
inner product. These operations in turn require the computation
of a bilinear pairing which is much slower than homomorphi-
cally multiplying plaintexts with ciphertexts as we do in the in-
teractive protocol.
In both protocols, we observe that the UBM evaluation is sig-

nificantly faster than the speaker model evaluation: this is be-
cause the UBM is available in plaintext with the system and the
inner product requires only additive homomorphic operations.

1Equal error rate of implies that when the false accept rate is , the
false reject rate is also .
2For 512-bit keys, we choose the two prime numbers and each of 256-

bits, such that that their product is a 512-bit number.
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TABLE II
EXECUTION TIME FOR THE NON-INTERACTIVE PROTOCOL

WITH BGN CRYPTOSYSTEM

TABLE III
GMM-BASED SPEAKER IDENTIFICATION: EXECUTION TIME. CASE 1: CLIENT

SENDS ENCRYPTED SPEECH SAMPLE TO THE SERVER

TABLE IV
GMM-BASED SPEAKER IDENTIFICATION: EXECUTION TIME. CASE 2: SERVER

SENDS ENCRYPTED SPEAKER MODELS TO THE CLIENT

This is in contrast to evaluating the speaker model that is only
available in ciphertext.

B. Speaker Identification Experiments

The precision for the speaker identification protocols was the
same as the speaker verification protocols.
1) Accuracy: We also used the YOHO dataset [23] to mea-

sure the accuracy of the speaker identification task. We used the
experimental setup similar to [26]. We observed the same accu-
racy for the two variants of the speaker identification protocol as
they both resulted in the same speaker scores.We trained aUBM
on a random subset of the enrollment data and performed MAP
adaptation with the enrollment data for speakers to obtain the
speaker models. We evaluated the UBM and the speaker models
on the test data for the speakers, in addition to the speakers
outside the set representing the none of the above case. We used
identification accuracy, i.e., the fraction of the number of times
a test speaker was identified correctly. For a 10-speaker classi-
fication task, we observed 87.4% accuracy.
2) Execution Time: We measured the execution times for

the verification protocols using Paillier encryption keys of sizes
256 and 1024-bits. We identify a 1 second speech sample con-
taining 100 frame vectors using speaker models each
containing 32 mixture components using the two variants of the
speaker identification protocol.We report time for evaluating 10
speaker models. As the time required for evaluating each model
is approximately the same, these numbers can be appropriately
scaled to obtain estimated execution time for other number of
speakers. We summarize the results in Tables III and IV.

VI. CONCLUSION AND FUTURE WORK

In this article we developed the privacy-preserving pro-
tocol for GMM-based algorithm for speaker verification using
homomorphic cryptosystems such as BGN and Paillier en-
cryption. The system observes only encrypted speech data,
and hence, cannot obtain information about the user’s speech.
We constructed both interactive and non-interactive variants
of the protocol. The interactive variant is relevant in the case
of semi-honest adversary and the non-interactive variant is
necessary in the case of malicious adversary. During the
exchanges required by the protocols, the user only observes
additively or multiplicatively masked data, and does not gain
any information about the user’s speech from it. The proposed
protocols are also found to give results which are same up to
a high degree of precision compared to a non-private GMM
adaptation based scheme. The interactive protocol is more
efficient than the non-interactive protocol as the latter requires
homomorphic multiplication using BGN cryptosystem.
We also developed a framework for privacy-preserving

speaker identification using GMM and Paillier cryptosystem.
In this model, the server is able to identify which of the
speakers best correspond to the speech input provided by the
client without being able to observe the input. We present two
variants of the framework, where either the client submits
encrypted speech to the server or the server submits encrypted
speaker models to the client. The first variant of the protocol is
faster than the second variant, but the bandwidth requirement
of the latter is independent of the sample length.
In the timing experiments for both speaker verification and

speaker identification, we observe that the parties spend a large
amount of time performing encryption operations. This could
be substantially reduced by using a parallel computation frame-
work such as graphics processing units (GPUs). We can also
leverage the tools and techniques used in this paper to create
privacy-preserving protocols for other speaker recognition algo-
rithms, e.g., supervectors with NAP [27] and GMM-UBM with
JFA [28]. We leave these directions for future work.
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