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Abstract. In this paper, we present a protocol for computing the prin-
cipal eigenvector of a collection of data matrices belonging to multiple
semi-honest parties with privacy constraints. Our proposed protocol is
based on secure multi-party computation with a semi-honest arbitrator
who deals with data encrypted by the other parties using an additive ho-
momorphic cryptosystem. We augment the protocol with randomization
and obfuscation to make it difficult for any party to estimate properties
of the data belonging to other parties from the intermediate steps. The
previous approaches towards this problem were based on expensive QR
decomposition of correlation matrices, we present an efficient algorithm
using the power iteration method. We analyze the protocol for correct-
ness, security, and efficiency.

1 Introduction

Eigenvector computation is one of the most basic tools of data analysis. In any
multivariate dataset, the eigenvectors provide information about key trends in
the data, as well as the relative importance of the different variables. These find
use in a diverse set of applications, including principal component analysis [7],
collaborative filtering [4] and PageRank [8]. Not all eigenvectors of the data are
equally important; only those corresponding to the highest eigenvalues are used
as representations of trends in the data. The most important eigenvector is the
principal eigenvector corresponding to the maximum eigenvalue.

In many scenarios, the entity that actually computes the eigenvectors is dif-
ferent from the entities that possess the data. For instance, a data mining agency
may desire to compute the eigenvectors of a distributed set of records, or an en-
terprise providing recommendations may want to compute eigenvectors from the
personal ratings of subscribers to facilitate making recommendations to new cus-
tomers. We will refer to such entities as arbitrators. Computation of eigenvectors
requires the knowledge of either the data from the individual parties or the cor-
relation matrix derived from it. The parties that hold the data may however
consider them private and be unwilling to expose any aspect of their individual
data to either the arbitrator or to other parties, while being agreeable, in princi-
ple, to contribute to the computation of a global trend. As a result, we require a
privacy preserving algorithm that can compute the eigenvectors of the aggregate
data while maintaining the necessary privacy of the individual data providers.
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The common approach to this type of problem is to obfuscate individual data
through controlled randomization [3]. However, since we desire our estimates to
be exact, simple randomization methods that merely ensure accuracy in the
mean cannot be employed. Han, et al. [6] address the problem by computing
the complete QR decomposition [5] of privately shared data using cryptographic
primitives. This enables all parties to collaboratively compute the complete set
of global eigenvectors but does not truly hide the data from individual sources.
Given the complete set of eigenvectors and eigenvalues provided by the QR
decomposition, any party can reverse engineer the correlation matrix for the
data from the remaining parties and compute trends among them. Canny [2]
present a different distributed approach that does employ an arbitrator, in their
case a blackboard, however although individual data instances are hidden, both
the arbitrator and individual parties have access to all aggregated individual
stages of the computation and the final result is public, which is much less
stringent than our privacy constraints.

In this paper, we propose a new privacy-preserving protocol for shared com-
putation of the principal eigenvector of a distributed collection of privately held
data. The algorithm is designed such that the individual parties, whom we will
refer to as “Alice” and “Bob” learn nothing about each others’ data, and only
learn the degree to which their own data follow the global trend indicated by
the principal eigenvector. The arbitrator, who we call “Trent”, coordinates the
computation but learns nothing about the data of the individual parties besides
the principal eigenvector which he receives at the end of the computation. In
our presentation, for simplicity, we initially consider two parties each having an
individual data matrix. Later we show that the protocol can be naturally gen-
eralized to N parties. As the N parties communicate only with Trent in a star
network topology with O(N) data transmissions, this is much more efficient than
the O(N2) data transmission cost if all parties communicated with each other
in a fully connected network. The data may be split in two possible ways: along
data instances or features. In this work, we principally consider the data-split
case. However, our algorithm is easily applied to feature split data as well.

We use the power iteration method [5] to compute the principal eigenvector.
The arbitrator Trent introduces a combination of homomorphic encryption [9],
randomization, and obfuscation to ensure that the computation preserves pri-
vacy. The algorithm assumes the parties to be semi-honest. While they are as-
sumed to follow the protocol correctly and refrain from using falsified data as
input, they may record and analyze the intermediate results obtained while fol-
lowing the protocol in order to to gain as much information as possible. It is
required that no party colludes with Trent as this will compromise the privacy
of the protocol.

The computational requirements of the algorithm are the same as that of
the power iteration method. In addition, each iteration requires the encryption
and decryption of two k dimensional vectors, where k is the dimensionality of
the data, as well as transmission of the encrypted vectors to and from Trent.
Nevertheless, the encryption and transmission overhead, which is linear in k, may
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be expected to be significantly lower than the calculating the QR decomposition
or similar methods which require repeated transmission of entire matrices. In
general, the computational cost of the protocol is dependent on the degree of
security we desire as required by the application.

2 Preliminaries

2.1 Power Iteration Method

The power iteration method [5] is an algorithm to find the principal eigenvector
and its associated eigenvalue for square matrices. To simplify explanation, we
assume that the matrix is diagonalizable with real eigenvalues, although the
algorithm is applicable to general square matrices as well [11]. Let A be a size
N ×N matrix whose eigenvalues are λ1, . . . , λN .

The power iteration method computes the principal eigenvector of A through
the iteration

xn+1 ←
Axn
‖Axn‖

,

where xn is a N dimensional vector. If the principal eigenvalue is unique, the
series ωn = Anx0 is guaranteed to converge to a scaling of the principal eigenvec-
tor. In the standard algorithm, `2 normalization is used to prevent the magnitude
of the vector from overflow and underflow. Other normalization factors can also
be used if they do not change the limit of the series.

We assume wlog that |λ1| ≥ · · · ≥ |λN | ≥ 0. Let vi be the normalized
eigenvector corresponding to λi. Since A is assumed to be diagonalizable, the
eigenvectors {v1, . . . , vN} create a basis for RN . For unique values of ci ∈ RN ,

any vector x0 ∈ RN can be written as x0 =
∑N
i=1 civi. It can be shown that

1
|λ1|nA

nx0 is asymptotically equal to c1v1 which forms the basis of the power

iteration method and the convergence rate of the algorithm is
∣∣∣λ2

λ1

∣∣∣. The algorithm

converges quickly when there is no eigenvalue close in magnitude to the principal
eigenvalue.

2.2 Homomorphic Encryption

A homomorphic encryption algorithm allows for operations to be perform on
the encrypted data without requiring to know the unencrypted values. If · and
+ are two operators and x and y are two plaintext elements, a homomorphic
encryption function E satisfies

E[x] · E[y] = E[x+ y].

In this work, we use the additive homomorphic Paillier asymmetric key cryp-
tosystem [9].
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3 Privacy Preserving Protocol

3.1 Data Setup and Privacy Requirements

We formally define the problem, in which multiple parties, try to compute the
principal eigenvector over their collectively held datasets without disclosing any
information to each other. For simplicity, we describe the problem with two
parties, Alice and Bob; and later show that the algorithm is easily extended to
multiple parties.

The parties Alice and Bob are assumed to be semi-honest which means that
the parties will follow the steps of the protocol correctly and will not try to cheat
by passing falsified data aimed at extracting information about other parties. The
parties are assumed to be curious in the sense that they may record the outcomes
of all intermediate steps of the protocol to extract any possible information.
The protocol is coordinated by the semi-honest arbitrator Trent. Alice and Bob
communicate directly with Trent rather than each other. Trent performs all
the intermediate computations and transfers the results to each party. Although
Trent is trusted not to collude with other parties, it is important to note that the
parties do not trust Trent with their data and intend to prevent him from being
able to see it. Alice and Bob hide information by using a shared key cryptosystem
to send only encrypted data to Trent.

We assume that both the datasets can be represented as matrices in which
columns and rows correspond to the data samples and the features, respectively.
For instance, the individual email collections of Alice and Bob are represented as
matrices A and B respectively, in which the columns correspond to the emails,
and the rows correspond to the words. The entries of these matrices represent the
frequency of occurrence of a given word in a given email. The combined dataset
may be split between Alice and Bob in two possible ways. In a data split, both
Alice and Bob have a disjoint set of data samples with the same features. The
aggregate dataset is obtained by concatenating columns given by the data matrix
M =

[
A B

]
and correlation matrix MTM . In a feature split, Alice and Bob have

different features of the same data. The aggregate data matrix M is obtained by

concatenating rows given by the data matrix M =

[
A
B

]
and correlation matrix

MMT . If v is an eigenvector of MTM with a non-zero eigenvalue λ, we have

MTMv = λv ⇒ MMTMv = λMv.

Therefore, Mv 6= 0 is the eigenvector of MMT with eigenvalue λ. Similarly, any
eigenvector of horizontally split data MMT associated with a non-zero eigen-
value is an eigenvector of vertically split data MTM corresponding to the same
eigenvalue. Hence, we mainly deal with calculating the principal eigenvector of
the vertically split data. In practice the correlation matrix that has the smaller
size should be used to reduce the computational cost of eigen-decomposition
algorithms.

For vertical data split, if Alice’s data A is of size k ×m and Bob’s data B
is of size k × n, the combined data matrix will be Mk×(m+n). The correlation
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matrix of size (m+ n)× (m+ n) is given by

MTM =

[
ATA ATB
BTA BTB

]
.

3.2 The Basic Protocol

The power iteration algorithm computes the principal eigenvector of MTM by
updating and normalizing the vector xt until convergence. Starting with a ran-
dom vector x0, we calculate

xi+1 =
MTM xi
‖MTM xi‖

.

For privacy, we split the vector xi into two parts, αi and βi. αi corresponds to
the first m components of xi and βi corresponds to the remaining n components.
In each iteration, we need to securely compute

MTMxi =

[
ATA ATB
BTA BTB

] [
αi
βi

]
=

[
AT (Aαi +Bβi)
BT (Aαi +Bβi)

]
=

[
ATui
BTui

]
(1)

where ui = Aαi + Bβi. After convergence, αi and βi will represent shares held
by Alice and Bob of the principal eigenvector of MTM .

Alice

Trent

Bob

i

i

E [ Ai ]

E [ AiBi ]=E [u i ]

∥AT u i∥
2

 

E [∥AT u i∥
2
∥BT u i∥

2
]

i1=
AT u i

∥AT ui∥2∥BT u i∥2

E [B i]

E [ ui ]

BT u i ∥BT ui∥
2

E [∥BT u i∥
2
]

E [∥AT u i∥
2
]

i1=
BT ui

∥AT ui∥2∥BT u i∥2

AT u i

E [ ui ]

Fig. 1. Visual description of the protocol.

This now lays the groundwork for us to define a distributed protocol in which
Alice and Bob work only on their portions of the data, while computing the prin-
cipal eigenvector of the combined data in collaboration with a third party Trent.
An iteration of the algorithm proceeds as illustrated in Fig. 1. At the outset Alice



6

and Bob randomly generate component vectors α0 and β0 respectively. At the
beginning of the ith iteration, Alice and Bob possess component vectors αi and
βi respectively. They compute the product of their data and their corresponding
component vectors as Aαi and Bβi. To compute ui, Alice and Bob individually
transfer these products to Trent. Trent adds the contributions from Alice and
Bob by computing

ui = Aαi +Bβi.

He then transfers ui back to Alice and Bob, who then individually compute ATui
and BTui, without requiring data from one other. For normalization, Alice and
Bob also need to securely compute the term

‖MTM xi‖ =
√
‖ATui‖2 + ‖BTui‖2. (2)

Again, Alice and Bob compute the individual terms ‖ATui‖2 and ‖BTui‖2 re-
spectively and transfer it to Trent. As earlier, Trent computes the sum

‖ATui‖2 + ‖BTui‖2

and transfers it back to Alice and Bob. Finally, Alice and Bob respectively update
α and β vectors as

ui = Aαi +Bβi,

αi+1 =
ATui√

‖ATui‖2 + ‖BTui‖2
,

βi+1 =
BTui√

‖ATui‖2 + ‖BTui‖2
. (3)

The algorithm terminates when the α and β vectors converge.

3.3 Making the Protocol More Secure

The basic protocol described above is provably correct. After convergence, Alice
and Bob end up with the principal eigenvector of the row space of the combined
data, as well as concatenative shares of the column space which Trent can gather
to compute the principal eigenvector. However the protocol is not secure; Alice
and Bob obtain sufficient information about properties of each others’ data ma-
trices, such as their column spaces, null spaces, and correlation matrices. We
present a series of modifications to the basic protocol so that such information
is not revealed.

Homomorphic Encryption: Securing the data from Trent. The central
objective of the protocol is to prevent Trent from learning anything about either
the individual data sets or the combined data other than the principal eigenvec-
tor of the combined data. Trent receives a series of partial results of the form
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AATu, BBTu and MMTu. By analyzing these results, he can potentially deter-
mine the entire column spaces of Alice and Bob as well as the combined data.
To prevent this, we employ an additive homomorphic cryptosystem introduced
in Section 2.2.

At the beginning of the protocol, Alice and Bob obtain a shared public
key/private key pair for an additive homomorphic cryptosystem from an authen-
ticating authority. The public key is also known to Trent who, however, does not
know the private key; While he can encrypt data, he cannot decrypt it. Alice
and Bob encrypt all transmissions to Trent, at the first transmission step of each
iteration Trent receives the encrypted inputs E[Aαi] and E[Bβi]. He multiplies
the two element by element to compute E[Aαi] ·E[Bβi] = E[Aαi+Bβi] = E[ui].
He returns E[ui] to both Alice and Bob who decrypt it with their private key to
obtain ui. In the second transmission step of each iteration, Alice and Bob send
E[‖ATui‖2] and E[‖BTui‖2] respectively to Trent, who computes the encrypted
sum

E
[
‖ATui‖2

]
· E
[
‖BTui‖2

]
= E

[
‖ATui‖2 + ‖BTui‖2

]
and transfers it back to Alice and Bob, who then decrypt it to obtain ‖ATui‖2 +
‖BTui‖2, which is required for normalization.

This modification does not change the actual computation of the power iter-
ations in any manner. Thus the procedure remains as correct as before, except
that Trent now no longer has any access to any of the intermediate computa-
tions. At the termination of the algorithm he can now receive the converged
values of α and β from Alice and Bob, who will send it in clear text.

Random Scaling: Securing the Column Spaces. After Alice and Bob re-
ceive ui = Aαi + Bβi from Trent, Alice can calculate ui − Aαi = Bβi and Bob
can calculate ui−Bβi = Aαi. After a sufficient number of iterations, particularly
in the early stages of the computation (when ui has not yet converged) Alice can
find the column space of B and Bob can find the column space of A. Similarly,
by subtracting their share from the normalization term returned by Trent, Alice
and Bob are able to find ‖BTui‖2 and ‖ATui‖2 respectively.

In order to prevent this, Trent multiplies ui with a randomly generated scal-
ing term ri that he does not share with anyone. Trent computes

(E[Aαi] · E[Bβi])
ri = E[ri(Aαi +Bβi)] = E[riui]

by performing element-wise exponentiation of the encrypted vector by ri and
transfers riui to Alice and Bob. By using a different value of ri at each itera-
tion, Trent ensures that Alice and Bob are not able to calculate Bβi and Aαi
respectively. In the second step, Trent scales the normalization constant by r2i ,

(
E
[
‖ATui‖2

]
· E
[
‖BTui‖2

])r2i = E
[
r2i
(
‖ATi u‖2 + ‖BTi u‖2

)]
.
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Normalization causes the ri factor to cancel out and the update rules remain
unchanged.

ui = Aαi +Bβi,

αi+1 =
riA

Tui√
r2i (‖ATui‖2 + ‖BTui‖2)

=
ATui√

‖ATui‖2 + ‖BTui‖2
,

βi+1 =
riB

Tui√
r2i (‖ATui‖2 + ‖BTui‖2)

=
BTui√

‖ATui‖2 + ‖BTui‖2
. (4)

The random scaling does not affect the final outcome of the computation, and
the algorithm remains correct as before.

Data Padding: Securing null spaces. In each iteration, Alice observes one
vector riui = ri(Aαi + Bβi) in the column space of M = [A B]. Alice can
calculate the null space H(A) of A, given by

H(A) = {x ∈ Rm|Ax = 0}

and pre-multiply a non-zero vector x ∈ H(A) with riui to calculate

xriui = rix(Aαi +Bβi) = rixBβi.

This is a projection of Bβi, a vector in the column space of B into the null space
H(A). Similarly, Bob can find projections of Aαi in the null space H(B). While
considering the projected vectors separately will not give away much information,
after several iterations Alice will have a projection of the column space of B on
the null space of A, thereby learning about the component’s of Bob’s data that
lie in her null space. Bob can similarly learn about the component’s of Alice’s
data that lie in his null space.

In order to prevent this, Alice participates in the protocol with a padded
matrix

[
A Pa

]
as input created by concatenating her data matrix A with a

random matrix Pa = raIk×k, where ra is a positive scalar chosen by Alice.
Similarly, Bob uses a padded matrix

[
B Pb

]
created by concatenating his data

matrix B with Pb = rbIk×k, where rb is a different positive scalar chosen by Bob.
This has the effect of hiding the null spaces in both their data sets. The following
lemma shows that the eigenvectors of the combined data do not change when
using padded matrices. Please refer to appendix for the proof.

Lemma 1. Let M̄ =
[
M P

]
where M is a s × t matrix, and P is a s × s

orthogonal matrix. If v̄ =

[
vt×1
v′s×1

]
is an eigenvector of M̄T M̄ corresponding to

an eigenvalue λ, then v is an eigenvector of MTM .

While the random factors ra and rb prevent Alice and Bob from estimating the
eigenvalues of the data, the computation of principal eigenvector remains correct
as before.
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Obfuscation: Securing Krylov spaces. For a constant c, we can show that
the vector ui = Aαi + Bβi is equal to cMMTui−1. The sequence of vectors
U = {u1, u2, u3, . . .} form the Krylov subspace (MMT )nu1 of the matrix
MMT . Knowledge of this series of vectors can reveal all eigenvectors of MMT .
Consider u0 = c1v1 + c2v2 + · · · , where vi is the ith eigenvector. If λj is the
jth eigenvalue, we have ui = c1λ1v1 + c2λ2v2 + · · · . We assume wlog that the
eigenvalues λ are in a descending order, i.e., λj ≥ λk for j < k. Let uconv be
the normalized converged value of ui which is equal to the normalized principal
eigenvector v1.

Let wi = ui − (ui · uconv)ui which can be shown to be equal to c2λ2v2 +
c3λ3v3 + · · · , i.e., a vector with no component along v1. If we perform power
iterations with initial vector w1, the converged vector wconv will be equal to the
eigenvector corresponding to the second largest eigenvalue. Hence, once Alice
has the converged value, uconv, she can subtract it out of all the stored ui values
and determine the second principal eigenvector of MMT . She can repeat the
process iteratively to obtain all eigenvectors of MMT , although in practice the
estimates become noisy very quickly. As we will show in Section 4, the following
modification prevents Alice and Bob from identifying the Krylov space with any
certainty and they are thereby unable to compute the additional eigenvectors of
the combined data.

We introduce a form of obfuscation; we assume that Trent stores the en-
crypted results of intermediate steps at every iteration. After computing E[riui],
Trent either sends this quantity to Alice and Bob with a probability p or sends
a random vector E[u′i] of the same size (k × 1) with probability 1 − p. As the
encryption key of the cryptosystem is publicly known, Trent can encrypt the
vector u′i. Alice and Bob do not know whether they are receiving riui or u′i. If a
random vector is sent, Trent continues with the protocol, but ignores the terms
Alice and Bob return in the next iteration, E[Aαi+1] and E[Bβi+1]. Instead, he
sends the result of a the last non-random iteration j, E[rjuj ], thereby restarting
that iteration.

This sequence of data sent by Trent is an example of a Bernoulli Process [10].
An illustrative example of the protocol is shown in Fig. 2. In the first two iter-
ations, Trent sends valid vectors r1u1 and r2u2 back to Alice and Bob. In the
beginning of the third iteration, Trent receives and computes E[r3u3] but sends
a random vector u′3. He ignores what Alice and Bob send him in the fourth iter-
ation and sends back E[r3u3] instead. Trent then stores the vector E[r4u4] sent
by Alice and Bob in the fifth iteration and sends a random vector u′2. Similarly,
he ignores the computed vector of the sixth iteration and sends u′3. Finally, he
ignores the computed vector of the seventh iteration and sends E[r4u4].

This modification has two effects – firstly it prevents Alice and Bob from
identifying the Krylov space with certainty. As a result, they are now unable to
obtain additional eigenvectors from the data. Secondly, the protocol essentially
obfuscates the projection of the column space of B on to the null space of A for
Alice, and analogously for Bob by introducing random vectors. As Alice and Bob
do not know which vectors are random, they cannot completely calculate the true
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r1u1 r2u2 u′
1 r3u3 u′

2 u′
3 r4u4

Fig. 2. An example of the protocol execution with obfuscation.

projection of each others data on the null spaces. This is rendered less important
if Alice and Bob pad their data as suggested in the previous subsection.

Alice and Bob can store the vectors they receive from Trent in each itera-
tion. By analyzing the distribution of the normalized vectors, Alice and Bob can
identify the random vectors using a simple outlier detection technique. To pre-
vent this, one possible solution is for Trent to pick a previously computed value
of rjuj and add zero mean noise ei, for instance, sampled from the Gaussian
distribution.

u′i = rjuj + ei, ei ∼ N (0, σ2).

Instead of transmitting a perturbation of a previous vector, Trent can also use
perturbed mean of a few previous rjuj with noise. Doing this will create a
random vector with the same distributional properties as the real vectors. The
noise variance parameter σ controls the error in identifying the random vector
from the valid vectors and how much error do we want to introduce in the
projected column space.

obfuscation has the effect of increasing the total computation as every itera-
tion in which Trent sends a random vector is wasted. In any secure multi-party
computation, there is an inherent trade-off between computation time and the
degree of security. The parameter p which is the probability of Trent sending a
non-random vector allows us to control this at a fine level based on the appli-
cation requirements. As before, introducing obfuscation does not affect the cor-
rectness of the computation – it does not modify the values of the non-random
vectors ui.

3.4 Extension to Multiple Parties

As we mentioned before, the protocol can be naturally extended to multiple
parties. Let us consider the case of N parties: P1, . . . , PN each having data
A1, . . . , AN of sizes k × n1, . . . , k × nN respectively. The parties are interested
in computing the principal eigenvector of the combined data without disclosing
anything about their data. We make the same assumption about the parties
and the arbitrator Trent being semi-honest. All the parties except Trent share
the decryption key to the additive homomorphic encryption scheme and the
encryption key is public.
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In case of a data split, for the combined data matrix M =
[
A1 A2 · · · AN

]
,

the correlation matrix is

MTM =

A
T
1 A1 · · · AT1 AN
...

. . .
...

ATNA1 · · · ATNAN

 .
We split the eigenvector into N parts, α1, . . . , αN of size n1, . . . , nN respec-
tively, each corresponding to one party. For simplicity, we describe the basic
protocol with homomorphic encryption; randomization and obfuscation can be
easily added by making the same modifications as we saw in Sections 3.3. One
iteration of the protocol starts with the ith party computing Aiαi and transfer-
ring to Trent the encrypted vector E[Aiαi]. Trent receives this from each party
and computes ∏

i

E [Aiαi] = E

[∑
i

Aiαi

]
= E[u]

where u =
∑
iAiαi, and product is an element-wise operation. Trent sends

the encrypted vector E[u] back to P1, . . . , PN who decrypt it and individually
compute ATi u. The parties individually compute ‖ATi u‖2 and send its encrypted
value to Trent. Trent receives N encrypted scalars E

[
‖ATi u‖2

]
and calculates

the normalization term

∏
i

E
[
‖ATi u‖2

]
= E

[∑
i

‖ATi u‖2
]

and sends it back to the parties. At the end of the iteration, the party Pi updates
αi as

u =
∑
i

Aiα
(old)
i ,

α
(new)
i =

ATi u√∑
i ‖ATi u‖2

. (5)

The algorithm terminates when any one party Pi converges on αi.

4 Analysis

4.1 Correctness

The protocol outlined in Section 3.2 is provably correct. The steps introduced in
Section 3.3 do not modify the operation and hence the accuracy of the protocol
in any manner.
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4.2 Security

As a consequence of the procedures introduced in Section 3.3 the row spaces
and null spaces of the parties are hidden from each another. In the multiparty
scenario, the protocol is also robust to collusion between parties with data,
although not to collusion between Trent and any of the other parties. If two
parties out of N collude, they will find information about each other, but will
not learn anything about the data of the remaining N − 2 parties.

What remains is the information which can be obtained from the sequence
of ui vectors. Alice receives the following two sets of matrices:

U = {u1, u2, u3, . . .}, U ′ = {u′1, u′2, . . .}

representing the outcomes of valid iterations and the random vectors respectively.
In the absence of the random data U ′, Alice only receives U . As mentioned in
Section 3.3, ui = (MMT )iu0 which is a sequence of vectors from the Krylov
space of the matrix AAT +BBT sufficient to determine all eigenvectors of MMT .
For k-dimensional data, it is sufficient to have any sequence of k vectors in U
to determine MMT . Hence, if the vectors in U were not interspersed with the
vectors in U ′, the algorithm essentially reveals information about all eigenvectors
to all parties. Furthermore, given a sequence ui, ui+1, ui+2, . . . , ui+k−1 vectors
from U , Alice can verify that they are indeed from the Krylov space.1 Introducing
random scaling riui makes it harder still to verify Krylov space. While solving
for k vectors, Alice and Bob need to solve for another k parameters r1, . . . , rk.

Security is obtained from the following observation: although Alice can verify
that a given set of vectors forms a sequence in the Krylov space, she cannot select
them from a larger set without exhaustive evaluation of all k sets of vectors. If
the shortest sequence of k vectors from the Krylov space is embedded in a longer
sequence of N vectors, Alice needs

(
N
k

)
checks to find the Krylov space, which

is a combinatorial problem.

4.3 Efficiency

First we analyze the computational time complexity of the protocol. As the total

the number of iterations is data dependent and proportional to
∣∣∣λ1

λ2

∣∣∣, we analyze

the cost per iteration. The computation is performed by the individual parties
in parallel, though synchronized and the parties also spend time waiting for
intermediate results from other parties. Obfuscation introduces extra iterations
with random data, on average the number of iterations needed for convergence
increase by a factor of 1

p , where p is the probability of Trent sending a non-
random vector. As the same operations are performed in an iteration with a
random vector, its the time complexity would be the same as an iteration with
a non-random vector.

In the ith iteration, Alice and Bob individually need to perform two matrix
multiplications: Aαi and AT (Aαi +Bβi), Bβi and BT (Aαi +Bβi) respectively.

1 if the spectral radius of MMT is 1.
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The first part involves multiplication of a k × m matrix by a m dimensional
vector which is O(km) operations for Alice and O(kn) for Bob. The second part
involves multiplication of a m × k matrix by a k dimensional vector which is
O(km) operations for Alice and O(kn) for Bob. Calculating ‖AT (Aαi +Bβi)‖2
involves O(m) operations for Alice and analogously O(n) operations for Bob.
The final step involves only a normalization by a scalar and can be again done
in linear time, O(m) for Alice and O(n) for Bob. Therefore, total time complexity
of computations performed by Alice and Bob is O(km) + O(m) = O(km) and
O(kn) +O(n) = O(kn) operations respectively. Trent computes an element-wise
product of two k dimensional vectors Aαi and Bβi which is O(k) operations.
The multiplication of two encrypted scalar requires only one operation, making
Trent’s total time complexity O(k).

In each iteration, Alice and Bob encrypt and decrypt two vectors and two
scalar normalization terms which is equivalent to performing k + 1 encryptions
and k + 1 decryptions individually, which is O(k) encryptions and decryptions.

In the ith iteration, Alice and Bob each need to transmit k dimensional
vectors to Trent who computes E(Aαi+Bβi) and transmits it back: involving the
transfer of 4k elements. Similarly, Alice and Bob each transmit one scalar norm
value to Trent who sends back another scalar value involving in all the transfer
of 4 elements. In total, each iteration requires the transmission of 4k+ 4 = O(k)
data elements.

To summarize, the time complexity of the protocol per iteration is O(km)
or O(kn) operations whichever is larger, O(k) encryptions and decryptions, and
O(k) transmissions. In practice, each individual encryption/decryption and data
transmission take much longer than performing computation operation.

5 Conclusion

In this paper, we proposed a protocol for computing the principal eigenvector
of the combined data shared by multiple parties coordinated by a semi-honest
arbitrator Trent. The data matrices belonging to individual parties and corre-
lation matrix of the combined data is protected and cannot be reconstructed.
We used randomization, data padding, and obfuscation to hide the information
which the parties can learn from the intermediate results. The computational
cost for each party is O(km) where k is the number of features and m data
instances along with O(k) encryption and decryption operations and O(k) data
transfer operations.

Potential future work include extending the protocol to finding the com-
plete singular value decomposition, particularly with efficient algorithms like
thin SVD [1]. Some of the techniques such as data padding and obfuscation
can be applied to other problems as well. We are working towards a unified
theoretical model for applying and analyzing these techniques in general.
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6 Appendix

Proof (Lemma 1). We have,

M̄T M̄ =

[
MTM MTP
PTM I

]
.

Multiplying by the eigenvector v̄ =

[
vt×1
v′s×1

]
gives us

M̄T M̄

[
v
v′

]
=

[
MTMv +MTPv′

PTMv + v′

]
= λ

[
v
v′

]
.

Therefore,

MTMv +MTPv′ = λv, (6)

PTMv + v′ = λv′. (7)

Since λ 6= 1, Equation (7) implies v′ = 1
λ−1P

TMv. Substituting this into
Equation (6) and the orthogonality of P gives us

MTMv +
1

λ− 1
MTPPTMv =

λ

λ− 1
MTMv = λv.

Hence, MTMv = (λ− 1)v.
ut


