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S
peech is one of the most private forms of communica-
tion. People do not like to be eavesdropped on. They 
will frequently even object to being recorded; in fact, 
in many places it is illegal to record people speaking in 
public, even when it is acceptable to capture their 

images on video [1]. Yet, when a person uses a speech-based ser-
vice such as a voice authentication system or a speech recogni-
tion service, they must grant the service complete access to their 
voice recordings. This exposes the user to abuse, with security, 
privacy and economic implications. For instance, the service 
could extract information such as gender, ethnicity, and even the 
emotional state of the user from the recording—factors not 
intended to be exposed by the user—and use them for undesired 
purposes. The recordings may be edited to create fake recordings 
that the user never spoke, or to impersonate them for other ser-
vices. Even derivatives from the voice are risky to expose. For 
example, a voice-authentication service could make unauthor-
ized use of the models or voice prints it has for users to try to 
identify their presence in other media such as YouTube.

Privacy concerns also arise in other situations. or instance, a 
doctor cannot just transmit a dictated medical record to a 

generic voice-recognition service for fear of violating the 
requirements of the Health Insurance Portability and  Account-
ability Act of 1996; the service provider requires various clear-
ances first. Surveillance agencies must have access to all 
recordings by all callers on a telephone line, just to determine if 
a specific person of interest has spoken over that line. Thus, in 
searching for “Jack Terrorist,” they also end up being able to lis-
ten to and thereby violating the privacy of “John and Jane Doe.”

The need to protect the privacy of users and their data is 
well recognized in other domains [2]. Any private information 
that can be gleaned by inspecting a user’s interaction with a 
system must be protected from prying eyes. To this end, 
techniques have been proposed in the literature for protecting 
user privacy in a variety of applications including e-voting, 
information retrieval, and biometrics. Yet, the privacy of 
voice has not been addressed until recently, and the issue of 
privacy of speech has been dealt with primarily as a policy 
problem [3], [4], and not as a technology challenge. In this 
article, we describe recent developments in privacy-preserving 
frameworks for voice processing. Here, we refer chiefly to 
secure pattern-matching applications of speech such as 
speech biometrics and speech recognition, rather than secure 
speech communication techniques, which have already been 
studied [5].
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The goal of the described frameworks is to enable voice-pro-
cessing tasks in a manner that ensures that no party, including the 
user, system, or a snooper, can derive undesired or unintended 
information from the transaction. This would imply, for instance, 
that a user may enroll in a voice-authentication system without 
fear that an intruder or even the system itself could capture and 
abuse his voice or statistical models derived from it. A surveillance 
agency could now determine if a crime suspect is on a telephone 
line, but would learn nothing if the speaker is an innocent person. 
Private speech data may be mined by third parties without expos-
ing the recordings.

These frameworks follow two distinct paradigms. In the first 
paradigm [6]–[10], which we will refer to as the “cryptographic” 
paradigm, conventional voice-processing algorithms are rendered 
secure by computing them through secure operations. By recast-
ing the computations as a pipeline of “primitives,” each of which 
can be computed securely through a combination of homomor-
phic encryption [11]–[14], secure multiparty computation (SMC) 
[15], and oblivious transfer [16], [17], we ensure that no unde-
sired information is leaked by any party. In this paradigm, the 
accuracy of the basic voice-processing algorithm can remain 
essentially unchanged with respect to the original nonprivate ver-
sion. The privacy requirements, however, introduce a computa-
tional and communication overhead as the computation requires 
user participation.

The second paradigm modifies 
voice-pattern classification tasks 
into a string-comparison operation 
[18], [10]. Using a combination of 
appropriate data representation fol-
lowed by locality sensitive hashing 
(LSH) schemes both the data to be 
matched and the patterns they 
must match are converted to collections of bit strings, and pattern 
classification is performed by counting exact matches. The com-
putational overhead of this string-comparison framework is mini-
mal compared to the cryptographic framework. Moreover, the 
entire setup is noninteractive and secure, in the sense that no 
party learns anything undesired regardless of how they manipu-
late the data. This comes at the price of a slight loss of perfor-
mance, since the modified classification mechanism is not as 
effective as conventional classification schemes.

A Brief Primer on Speech Processing
The speech processing applications we consider all deal with mak-
ing inferences about the information in the recorded signal. Bio-
metric applications attempt to determine or confirm the identity 
of the speaker of a recording. Recognition applications attempt to 
infer what was spoken in the recording. We present below a very 
brief description of the salient aspects of these applications as they 
pertain to this article. The description is not intended to be 
exhaustive; for more detailed information we refer readers to the 
various books and papers on the topics, e.g., [19].

In all cases, the problem of inference is treated as one of 
statistical pattern classification. Classification is usually performed 

through a Bayes’ classifier. Let C be a set of candidate classes to 
which a recording X might belong. Let ( | )XP C  be the probability 
distribution of speech recordings X from class .C  ( | )XP C  is usually 
represented through a parametric model, i.e., ( | ) ( ; )X XP C P C. m  
where Cm  are the parameters of the class C and are learned from 
data. Classification is performed as

	 ( ; ) ( )Xarg max log logC P P C
C

C
C

m= +
!

t ,	 (1)

where ( )P C  represents the a priori bias for class .C  Stated thus, 
the primary difference among the applications considered lies in 
the definition of the candidate classes in C and the nature of the 
model ( ; ).XP Cm

Before proceeding, we note that the classifiers do not work 
directly from the speech signal. Instead, the signal is converted to 
a sequence of feature vectors, typically Mel-frequency cepstral 
coefficients (MFCC) [20]. To generate these, the signal is seg-
mented into overlapping “frames,” each typically 25 ms wide, with 
an overlap of 15 ms between adjacent frames. From each frame, a 
vector of MFCC (or similar) features is derived, which may be fur-
ther augmented with their temporal differences and double-
differences. For our purposes, it suffices to know that when we 
refer to a speech recording, we actually refer to the sequence of 
feature vectors [ , , , ].X x x x T1 2 f=  For the privacy-preserving 

frameworks described later, we will 
assume that the user’s (client) 
device can compute these features. 
The conversion of signals to fea-
tures by itself provides no privacy, 
since they can be used for pattern 
classification, and can even be 
inverted to generate intelligible 
speech signals [21].

Biometric Applications: 
Identification and Authentication
Biometric applications deal with determining the identity of the 
speaker. Here, the set C in (1) is the set of candidate speakers who 
may have spoken in a recording. In addition, a “universal” speaker 

,U  representing the aggregate of all speakers not otherwise in C, is 
included in the set. U  may be viewed as the “none-of the above” 
option—classifying a recording as U  is equivalent to stating that 
the speaker is unknown. In speaker identification systems, C com-
prises a collection of speakers S (possibly including U) for whom 
models Sm  are available. In speaker authentication, C comprises 
only the speaker who has claimed to have spoken in the recording 
and the universal speaker .U  ( )P C  in (1) now becomes a tuning 
parameter to bias the classification towards specific speakers or .U

Typically, the individual feature vectors in any recording X are 
assumed to be independent and identically distributed (i.i.d.)   
according to a Gaussian mixture model (GMM) [22]. Thus, for any 
speaker S in ,C  ( ; )XP Sm  is assumed to have the form 

( ; ) ( ; ),X xP PS t St
m m=%  where

	 ( ; ) ; , .x xP wt S k
S

t k
S

k
S

k

K

1
m n R=

=

^ h/ 	 (2)
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Here K is the total number of Gaussians in ( ; ),xP t Sm  ()N  repre-
sents a Gaussian density, and ,wk

S  k
Sn , and k

SR  are the mixture 
weight, mean vector, and covariance matrix of the kth Gaussian in 
the mixture. The parameters of the GMM are expressed as 

{ ,  ,    , , }.w k K1S k
S

k
S

k
S 6 fm n R= =

,Um  the parameters of the GMM for “universal speaker” U  are 
learned from a large collection of speech recordings from many 
speakers. Um  is often called a universal background model 
(UBM). The GMM parameters Sm  for any speaker S are learned 
from a collection of recordings for the speaker, using the 
expectation-maximization algorithm. When the amount of train-
ing data for the speaker are limited, e.g., from enrollment 
recordings in an authentication system, and insufficient to learn 
GMM parameters robustly, they are learned by adapting the 
parameters of the UBM to the data from the speaker using an 
MAP estimation algorithm [23], [24]. Classification of speakers 
with the GMMs now proceeds as

	 ( ; ) ,xarg max logS P t
CS

S S
t

T

1
m i= +

!
=

t / 	 (3)

where Si  encodes our prior biases as mentioned earlier.

Recognition Applications
In speech recognition systems, C in (1) represents the collection 
of all possible word sequences that a person may say in the 
recording. Phrase spotting systems only include the specific 
phrases of interest, along with a background model, usually 
called a “garbage model” in this context, which represents the 
“none of the above” option. Isolated word recognition systems 
assume that only a single word was spoken in the recorded seg-
ment being analyzed; C here comprises the vocabulary of words 
to recognize. In continuous speech recognition (CSR) systems, 
C represents the set of all possible sentences a person may speak. 
This set can be very large, and even infinite in size. To make clas-
sification manageable, the set of all possible sentences is repre-
sented as a compact, loopy word graph, which conforms to a 
grammar or n-gram language model that embodies the a priori 
probabilities ( )P C  [19].

The probability distribution ( ; )XP Cm  for each class C is usu-
ally modeled by a hidden Markov model (HMM). The theory of 
HMMs is well known; we only reiterate the salient aspects of it 
here [25], [19]. An HMM is a model for time-varying processes 
and is characterized by a set of states [ , , ]s sM1 f  and an associated 
set of probability distributions. According to the model, the pro-
cess transitions through the states according to a Markov chain. 
After each transition, it draws an observation vector from a proba-
bility distribution associated with its current state. The parame-
ters characterizing the HMM for any class C are 1) the initial state 
probabilities { , , , },i M1C

i
C frP = =  where i

Cr  represent the 
probability that at the first instant the process will be in state si; 
2) transition probabilities {  , , , , , }A a i M j M1 1,

C
i j
C f f= = = , 

which represent the probability that, given the process is in state 
si at any time, it will jump to s j at the next transition, and 3) the 
set of state output probability distributions { ( ; )}xP t

C
i
CK  associ-

ated with each state. In speech recognition systems the 

( ; )xP t
C

i
CK  are generally modeled as Gaussian mixture densities: 

( ; ) ( ; , ).x xP w N, , ,t
C

i
C

i k
C

t i k
C

i k
C

k
nK R=/  Thus, the parameters for 

class C are { , , },AC
c C Cm P K=  where {  , , }i M1C

i
C 6 fKK = =  

and { ,  ,    }.w k, , ,i
C

i k
C

i k
C

i k
C 6nK R=

To compute ( ; )XP Cm  for any class ,C  we must employ the 
following recursion, commonly known as the forward 
recursion. Here, the term ( , )t iCa  represents the total probabil-
ity that the process arrives at state i after t transitions and 
generates the partial sequence , ,  ,x xt1 f  i.e., ( , ) ( , ,xt i PC

1 fa =  
, ( ) ; ).x state t it Cm=

	 ( , ) ( | )xi P i1C
i
C C

1a r=

	 ( , ) ( | , ) ( , )    xt i P i C t j a t1 1,
C

t
C

j i
C

j
6 2a a= -/

	 ( ; ) ( , ),XP T iC
C

i
m a=/ 		  (4)

where T is the total number of feature vectors in .X
( ; )XP Cm  computed in the above manner considers all possible 

state sequences that the process may have followed to generate X. 
It can be used in (1) for phrase spotting and isolated-word recog-
nizers. In CSR, however, the classes are word sequences, which are 
collapsed into a compact word graph [26], and computing ( | )XP C  
through (4) is not feasible for individual word sequences. Here, 

( ; )XP Cm  is replaced by the probability of the most likely state 
sequence though the HMM for ,C  and the classification is per-
formed as

	  ( )  ( , ; )X sargmax log max logC P C P
sC

Cm= +t ,	 (5)

where s is the state sequence followed by the process. Unlike clas-
sification based on forward probabilities, this estimation can be 
performed over the set of word sequences represented by a word 
graph: the word graph is composed into a large HMM by replacing 
each edge in the graph by the HMM for the word it represents 
[26]. The word sequence corresponding to the most probable state 
sequence through the resulting HMM is guaranteed to be identical 
to the one obtained by (5). Even in contexts outside CSR, (5) is 
frequently used as a generic substitute for (1), since it is more 
efficient to compute.

The term ( , | )X smax log P Cs  in turn can be computed very 
efficiently using a dynamic programming algorithm known 
as the Viterbi algorithm, which implements the following recur-
sion. Here ( , )t iCC  represents the log of the joint probability of 

 x xt1g  and the most probable state sequence that arrives at 
state si at time t

	 ( , ) ( ; )xlog logi P1C
i
C

i
C

1rC K= +

	 ( , ) ( , )   logargt i t j a t1 1,
C

j

C
j i
Cmax 6 2d C= - +

	 ( , ) ( ; ) ( , ( , ))xlog logt i P t t i a1 ( , ),
C

t i
C C C

t i i
C

CdC K C= + - + d

	 ( , | ) ( , )X smaxlog maxP C T i
s i

CC= .	 (6)

( , )t iCd  is a table of “backpointers” from which the most likely 
state sequence ( , ; )X slogargmax Ps Cm  can be determined 
by tracing backwards recursively as ( , ),argmaxs T iT i

CC=  
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st = ( , ),t s1C
t 1d + +  where st is the tth state in optimal state 

sequence. In CSR systems, in particular, the backtraced optimal 
state sequence traces a path through the word graph and is used 
to determine the spoken word sequence.

Privacy Issues in Speech Processing
From the discussion of the previous section, the key compo-
nent of all the above applications is the computation of the 
class score ( ; ).Xlog P Cm  In conventional (nonprivate) imple-
mentations of these applications, the system providing the 
application has access to data ,X  which represents the user’s 
voice. This enables it to manipulate or misuse the data, rais-
ing privacy concerns. The alternative, i.e., permitting the 
user to access the models ,Cm  is equally unacceptable. In 
many situations, the models are 
the system’s intellectual prop-
erty. Furthermore, in voice-data 
mining situations, the system’s 
models also represent the pat-
terns it is searching for; reveal-
ing these to external parties may 
not be acceptable. A voice-based 
authentication system where the 
user himself has access to the 
models cannot be considered an 
effective authenticator.

Thus, for maximally protecting the user and the system from 
one another, the system must not learn the user’s data X, while 
the user must not be able to infer the system’s models .Cm  For 
the speech processing applications discussed above, this means 
that log probability terms computed from GMMs, forward 
probabilities, and best-state-sequence probabilities (also 
called Viterbi scores) must all be computed without revealing X 
to the system or Cm  to the user. An additional twist arises in the 
case of authentication systems, where the system must be 
prevented from making unauthorized use of the models it has 
for the user. In this case, the model Sm  must itself be in a form 
that can only useful when the system engages with the appro-
priate user.

The above deals with the computation of scores for any 
class. But what about the final outcome of the classification? 
This, too, has an intended recipient. For instance, in most bio-
metric applications it is the system that must receive the out-
come of the classification; however, for recognition systems 
the user obtains the result. Thus, we also stipulate that the 
outcome is only revealed to the intended recipient. We refer to 
any computational mechanisms that enable the above require-
ments as private computation, as opposed to conventional 
nonprivate methods that make no guarantees to privacy. The 
next two sections describe two frameworks that enable such 
private processing.

The Cryptographic Approach
The cryptographic approach treats private speech processing as 
an instance of secure two-party computation [15]. Consider the 

case where two parties, Alice and Bob, have private data a and b, 
respectively, and they want to compute the result of a function 
( , ).f a b  Any computational protocol to calculate ( , )f a b  is said to 

be secure only if it leaks no more information about a and b 
than what either party can gain from learning the result .c  We 
assume a semihonest model for the parties where each party 
follows the protocol but could save messages and intermediate 
results to learn more about other’s private data. In other words, 
the parties are honest but curious and will follow the agreed-
upon protocol but will try to learn as much as possible from the 
data flow between the parties. We return to the issue of honesty 
later in this section.

We recast the conventional speech processing algorithms 
described in the section “A Brief Primer on Speech Processing”  

as a pipeline of primitive compu-
tations, and show how to execute 
each primitive in a computation-
ally secure manner, i.e., a compu-
tationally bounded participant 
should not be able to derive pri-
vate information possessed by the 
other participant from the compu-
tation. The output of each stage of 
the pipeline is either distributed 
across both participants in the 

form of random additive shares, or arrives at one of the partici-
pants in a locked form, where the other participant holds the 
key. Thus, both participants must interact to perform the com-
putations until the final outcome of the overall computation 
arrives at the correct participant.

Secure Primitives for Speech Processing
To keep the discussion simple, we will consider that there are 
only two parties, Alice and Bob, engaged in the computation. 
The reader may consider Alice as the client or end user who 
possesses a speech signal to be analyzed while keeping it private 
from Bob, the remote system that has the model parameters, 
some or all of which must be kept private from Alice.

To enable private computation, we will utilize public-key 
homomorphic encryption schemes, which enable operations to be 
performed on encrypted data [11]. We keep the development sim-
ple by considering an additively homomorphic cryptosystem [12]–
[14] with encryption function [ ].E $  Such a cryptosystem satisfies 

[ ] [ ] [ ]  and ( [ ]) [ ]E x E y E x y E x E xyy$ = + =  for integer mes-
sages , .x y  For a discussion of other flavors of homomorphic cryp-
tosystems, specifically multiplicatively homomorphic, 
two-disjunctive normal form (DNF) homomorphic and fully 
homomorphic cryptosystems, the reader is referred to a compan-
ion article in this issue [27].

We assume that the cryptosystem is semantically secure 
[28], i.e., by using fresh random parameters during encryption 
but not during decryption, a given plain text may be mapped 
to different ciphertexts every time encryption is performed. 
This makes the cryptosystem, and hence the protocols 
discussed, resilient to a chosen plain text attack (CPA). We 
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further assume that while Alice and Bob share a public 
encryption key, Alice is the only person with a decryption 
key that reverses [ ].E $  This means that the system may 
encrypt data if needed, but only the end user may decrypt it. 
However, if required the situation can be reversed by mirroring 
the protocols, with relatively minor additional changes. Assume 
that Alice and Bob own n-length integer vectors x and y,  
respectively. In what follows, [ ]xE  denotes a vector 
containing encryptions of the individual elements of ,x  i.e., 
( [ ], [ ], , [ ]).E x E x E xn1 2 f

Additive Secret Sharing
Bob has an encrypted value [ ].E x  He wishes to share it as ran-
dom additive clear-text shares with Alice. He chooses an integer 
b at random, and sends [ ] [ ] [ ]E x E b E x b$ - = -  to Alice. Bob 
retains b as his additive share. Alice decrypts x b a- = , which is 
her additive share. We will represent this operation in short-
hand by saying Alice and Bob receive a and b such that 

SHARE( ).a b x+ =

Secure Inner Product (SIP)
Alice and Bob want to compute uninformative additive shares 

,a b, respectively, of the inner product .x y<  There are several 
ways to achieve this [29]–[31], but for expository purposes, we 
focus on a simple approach using additively homomorphic 
functions [32]. Alice sends elementwise encryptions [ ]E xi  to 
Bob. Bob computes [ ] [ ].x yE x E x y Ei

y
i ii

n

i
n

11
i = = <

==
8 B% /  

Alice and Bob can then receive additive shares a and b of [ ]x yE T  
as SHARE( ).x ya b+ = <  Observe 
that Bob operates in the encrypted 
domain and cannot discover .x  
Similarly, Alice does not know ,b  
and hence cannot discover .y

When Bob possesses only [ ]yE  
rather than y as assumed above, it is still possible—using a trick 
involving additive secret sharing—for Alice and Bob to obtain 
additive shares of .x y<  As a notational shorthand, when we 
invoke any variant of this protocol, we will just state that Alice 
and Bob obtain additive shares , ,a b  such that SIP( , ).x ya b+ =

Secure Logsum (SLOG)
Suppose that ( , , ..., ).x y ln ln lnz z zn1 2+ =  By a slight abuse of 
notation, denote the vector of the elementwise logarithms and 
elementwise exponents of the elements of x as xln  and ex, 
respectively. Alice and Bob wish to obtain uninformative addi-
tive shares, a and b such that ,lna b zii

n

1
+ =

=
` j/  which is the 

“logsum” operation that gives the protocol its name. We note 
that z ei

x y
i
n

i
n

11
i i= +

==
//  and achieve the desired secret shar-

ing using the following protocol [7]:
1)	Alice chooses a at random. Then Alice and Bob compute 
additive shares ,q s such that SIP( , )q s e ex ya+ = -  using the 
SIP protocol above. Bob combines these shares to obtain the 
inner product .z
2)	Bob computes ln lnb a e ax y

i
n

1
i i{= =- + =- ++

=
` j/

,ln zii

n

1=` j/  which gives the desired result.

In the first step above, Alice and Bob employ additive secret 
sharing in the exponent, which is equivalent to multiplicative 
secret sharing. The parameter a should be chosen large 
enough because multiplicative secret sharing is not as secure as 
standard additive secret sharing. We present this protocol to 
illuminate the fact that homomorphic functions can be 
manipulated to compute useful, nonobvious functions. The 
same functionality can be obtained in a secure manner 
using other cryptographic primitives, e.g., garbled circuits. 
To refer to this protocol henceforth, we will state that 
Alice and Bob obtain additive shares , ,a b  such that 

SLOG( ).zlna b+ =

In an alternate scenario, Bob possesses [ ], [ ],ln lnE z E z1 2  
.f  He wishes to obtain .logE zii8 B/  He uses the SHARE proto-

col to share [ ]  lnE z ii 6  with Alice and proceeds as earlier. 
Final ly,  Al ice  sends [ ]E a  to  Bob who computes 

[ ] [ ].logE z E a E bii
=8 B/  Note that in the process Alice and Bob 

also obtain additive shares of the outcome. We will denote this 
operation by stating that Bob receives c such that 

SLOG( ).zlnc =

Secure Maximum Index (SMI)
Alice and Bob wish to compute additive shares, such that 

argmaxa b x yi i i+ = +  without revealing their data to each 
other. This is achieved by exploiting homomorphic encryption 
to perform blind-and-permute operations [33]. Let .z x y= +  
Then, the goal is to privately compute additive shares of the 
index of the largest element of .z  To accomplish this, Alice 

chooses a secret permutation Ar  
on the index set { , , , }.n1 2 f  Simi-
larly Bob chooses a secret permu-
tation Br  on the same set. The 
outcome of the blind-and permute 
protocol is that Alice and Bob 

each obtain additive shares of .zA Br r  Neither can reverse the 
other person’s permutations. However, given the permuted 
shares, Alice and Bob can use repeated instantiations of the mil-
lionaire protocol [17], obtain the index of the maximum ele-
ment in the permutation of ,z  from which, using their 
respective permutations, they can obtain shares of the index of 
the maximum element in .z  To see the steps involved in mini-
mum finding based on homomorphic encryption, refer to a 
companion article in this special issue [34]. Alternatively, the 
entire minimum finding protocol may be executed using gar-
bled circuits [35]. As a shorthand notation, we say that Alice and 
Bob obtain additive shares , ,a b  such that ( , )x ya b SMI+ = .

In an alternate scenario, Bob has two encrypted numbers 
[ ]E x  and [ ]E y  and desires to find which of the two is larger, he 

can engage in protocols such as those described in [38], which 
employ threshold encryption or secret sharing schemes in 
which both parties must cooperate to perform decryption such 
that one of them can obtain the answer without exposing x or y 
to either. We denote this also as ( , ) ( , );max x y SMI x y=  this 
should not result in confusion since the actual operation used 
will be clear from the context.

HOMOMORPHIC FUNCTIONS CAN BE 
MANIPULATED TO COMPUTE USEFUL 

NONOBVIOUS FUNCTIONS.
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Secure Maximum Value (SMV)
Alice and Bob wish to compute uninformative additive shares 

,a b such that .maxa b x yi i i+ = +  This is achievable using a 
protocol similar to the one described above, with the only differ-
ence being in the last step, which—instead of revealing the 
index of the maximum—reveals additive shares of the maxi-
mum value. To invoke this protocol, we will state that Alice and 
Bob obtain additive shares , ,a b  such that SMV( , )x ya b+ =  [7].

Other similar protocols may be defined. In particular, it is 
often essential to compute distance measures, such as the Ham-
ming or Euclidean or absolute distance between vectors x and y 
held privately by Alice and Bob, respectively. Protocols for these 
computations can be efficiently designed using homomorphic 
functions and are an integral part of privacy-preserving nearest 
neighbor methods, which are covered in a separate article in 
this issue [34].

Practical Considerations
An important practical consideration is that we cannot always 
assume that x and y are integer vectors. Indeed, speech pro-
cessing routinely uses probabilistic models, such as GMMs 
and HMMs in which the model parameters are floating-point 
values between zero and one. A particular problem that is 
nearly ubiquitous in the iterative algorithms used to perform 
modern speech processing is that multiplication of probability 
values result in extremely small numbers. One way to miti-
gate this issue of floating-point precision is to take the loga-
rithm of the probability values and operate exclusively in the 
logarithmic domain. In fact, the need to perform operations 
on the logarithms of the probability values is what makes the 
SLOG protocol so useful. A second way to mitigate the issue of 
extremely small probability values is to appropriately scale the 
probability values by a large constant, e.g., 106 prior to all 
encryptions and compensate for the scaling after decryption.

Computing Scores 
Privately for speech processing 
The computations involved in speech processing tasks can now 
be cast in terms of the above primitives. We first consider how 
the various required scores can be computed privately.

The Gaussian as a Dot Product
The fundamental component of speech processing models is the 
Gaussian, since observation distributions are generally modeled 
as Gaussian mixtures. The form of the log of a multivariate 
Gaussian is well known

	 ( ) . ( ) ( ) . ( ) | |x x xlog logP 0 5 0 5 2 D1n n rR R=- - - -< - ,

where D is the dimensionality of the data, and n and R are the 
mean vector and covariance matrix of the Gaussian. It is fairly 
simple to show that this can be manipulated into the form 
x W xTu u u  [7] where xu is obtained by extending x as [ ] ,x x 1= < <u  and

	
.

W
0 5

0

1 1nR R
=
- - -

*w
u ; E,	 (7)

where . . ( ) | | prior,log logw 0 5 0 5 2* D1n n rR R=- - +< -  and 
prior captures an a priori probability associated with the Gauss-
ian. In the case of a solitary Gaussian, prior ;1=  however, if the 
Gaussian is one from a mixture, prior represents the mixture 
weight for the Gaussian. We can reduce the above computation 
further to a single inner product ,x W<r  where xr is a quadrati-
cally extended feature vector derived from xu, which consists of 
all pairwise product terms x xi ju u  of all components , ,xx xi j !u u  
and W  is obtained by unrolling Wu  into a vector. In this repre-
sentation ( ; , ) .xlog x WN n R = <r

Private computation of Log Gaussian
Input: Alice possesses a vector .x  Bob possesses a Gaussian 
parameterized by { , }.m n R=

Output: Alice and Bob obtain random additive shares a and b 
such that ( ; ).xloga b P m+ =

1)	Alice computes the extended vector xr from .x  Bob arranges 
his model into a vector W  as explained above.
2)	Alice and Bob engage in the SIP protocol to obtain additive 
shares a and :b  SIP( , ) .xa b W+ = r

Note that this is possible even if Bob only possesses an 
encrypted version of .W  Note also that given only [ ], [ ]E En R  
and [prior]E  Bob can obtain [ ]E W  using the protocol given in 
[9]. In either case, Alice and Bob obtain no information about 
each other’s data.

private computation of 
logarithm of gaussian mixture
Input: Alice possesses .x  Bob possesses { , , , },K1 2 fm m mK =  the 
parameters of a Gaussian mixture with K Gaussians, each with 
parameter .im

Output:  Alice and Bob receive a and b such that 
( ; ).xa b P K+ =

1)	Bob arranges the parameters im  of each Gaussian into a 
vector , , , .W i K1i f=

2)	For each , , ,i K1 f=  Alice and Bob engage in the SIP pro-
tocol to obtain additive shares ci and di such that 

SIP( , ).xc d Wi i i+ = r  Note that if Wi is available in unen-
crypted form, Alice only needs to transmit [ ]xE r  once for the 
entire Gaussian mixture.
3)	Alice and Bob apply the SLOG protocol to obtain 

SLOG( ),glna b+ =  where [ , , ],g c d c dK K1 1 f= + +  where 
c di i+  is the log of the ith Gaussian.
As before, Alice and Bob do not learn about each other’s data. 

We will refer to this operation as SMOG( , ).xa b K+ =

computing the logarithm of an  
hmm forward score
Input: Alice possesses [ ,  , , ].X x x xT1 2 f=  Bob possesses an 
M-state HMM { , , },AC P K=  with initial state probabilities 

[ , , ],M1 fr rP =  a transition matrix A comprising vectors 
[ , , ]a a a, ,i Mi i1 f=  and a set of state output Gaussian mixture 

densities { , , , } .M1 2 fK K KK =
Output:  Alice and Bob obtain a and b such that 

( ; ) .Xloga b P C+ =
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Step 1) State Output Density Computation
1)	For all ,  t T i M1 1g g= =

	� a)  Alice and Bob engage in the SMOG protocol to obtain 
additive shares SMOG( , ).g h x, ,t i t i t iK+ =  Alice sends 

[ ]E g ,t i  to Bob.
	� b)  Bob computes [ ] [ ] [ ]q E g E h E g h, , , , ,t i t i t i t i t i= = + = 

[ ( ; )]xlogE P t iK  to obtain the encrypted value of the loga-
rithm of the state output distribution for state i on .xt

In the protocol below we use the notation ( , ) ( , )logt i t ila a=  
and ( ) [ ( , ), , ( , )].log logt t t M1l fa a a=  We represent {  }q i,t i 6  
obtained by Bob in the above com-
putation as .qt  Now Bob precom-
putes [ ]  .log aE ii 6  The recursions 
of the forward probability compu-
tation in HMMs given by (4) can 
now be computed in the log 
domain securely as follows.

Step 2) Forward Algorithm
1)	Bob computes [ ( )] [ ].logqE E1l t $a r=

2)	For ,t T2g=   i M1g=

	� a)  Bob engages with Alice in the SLOG protocol to obtain 
SLOG( ( )).alogc t 1i la= + -  Note that logc E jaR= 6

( , ) .t j a1 ,j i- @
	 b)  Bob computes [ ( , )] .E t i c q ,l t ia = .

3)	Alice and Bob engage in the SLOG protocol to obtain addi-
tive shares SLOG( ( )).a b Tla+ =  Note that a and b are addi-
tive shares of ( , , , ; ).x x xlog P T1 2 f C

We will refer to this protocol of computing shares of the HMM 
forward scores as SFWD( , ).Xa b C+ =  

Secure Viterbi Algorithm
The Viterbi algorithm is very similar to the forward algorithm, 
except for two key differences. First, instead of adding all 
incoming probabilities into any state in (4), we choose the maxi-
mum in (6). Additionally, Alice must also receive the optimal 
state sequence. Ideally, state indices would be permuted in the 
received sequence; however, for simplicity, we omit the addi-
tional complexity involved with permuting the indices. Using 
the notation of (6): ( , )t id  refers to the “best” predecessor for 
state si at time .t  ( , )t iC  is the joint log likelihood of the most 
probable state sequence arriving at state si at time t and the 
observation sequence , , .x xt1 f  We will use the notation that a 
bold character represents a vector that aggregates the scalar val-
ues represented by the corresponding unbolded symbol for all 
states. For instance ( ) [ ( , ), ( , ), , ( , )].t t t t M1 2 fC C CC =

Input: Alice possesses [ ,  , , ].X x x xT1 2 f=  Bob possesses an 
M-state HMM { , , }.AC P K=

Output: Alice and Bob obtain additive shares a and b such that 
( , ; ).X slog maxa b Ps C+ =  Alice receives the optimal state 

sequence , , .s s sT1 f=r

The protocol uses operations similar to the ones described in 
the previous section and in the secure forward algorithm 
described above. For the detailed steps of the protocol, the 
reader is referred to [7].

Implementing Secure Speech Techniques
Having set up the operations as described above, we now con-
sider how they may be applied to our speech problems. We will 
generally assume that all models have already been learned by 
the system, and, where required (e.g., speaker authentication), 
the models are encrypted. To avoid making the development 
unnecessarily complex, we do not describe how to privately 
learn GMM/HMM parameters [7], or how to privately adapt an 
existing background GMM or UBM to a user’s enrollment 
data [9].

Speaker authentication
Input: The system possesses 
encrypted models SK  for the 
speaker and clear-text models UK  
as the UBM. The user possesses 
vectors , , , .x x xT1 2 f

Output: The system authenticates the user.
1)	For each t T1g=

	� a)  The user and the system engage in the SMOG operation 
with xt and SK  to obtain additive shares at

S and .bt
S

	� b)  The user and the system engage in the SMOG opera-
tion with xt and UK  to obtain additive shares at

U and bt
U.

2)	The user computes A aS
t
S

t
=/  and .A aU

t
U

t
=/  The sys-

tem computes B bS
t
S

t
=/  and B bU

t
U

t
=/ .

3)	The user and system engage in an SMI protocol to deter-
mine ( , ).max A B A BS S U U+ +  The system gets the result.

Speaker identification
Input: The system possesses a set of models , , , N1 2 fK K K  cor-
responding to speakers N1g  (we consider the “background” 
model to be one of the speakers). The user has [ , , ].X x xT1 f=

Output: The system learns ( ; )Xarg max Pi iK .
1)	For each speaker s N1g=

	� a)  For each time ,t T1g=  the user and the system 
engage in the SMOG operation with xt and sK  to obtain 
additive shares at

s and .bt
s

	� b)  The user computes .A as
t
s

t
=/  The system computes 

.B bs
t
s

t
=/

2)	The user and system engage in an SMI protocol to deter-
mine .arg max A Bs

s s+  The system gets the result.

Speech Recognition
Input: The system possesses a set of models , , , N1 2 fC C C  corre-
sponding to words or word sequences N1g  (we consider the 
“background” model to be one of the phrases). The user has 

[ , , ].X x x T1 f=

Output: The system learns ( ; ).Xarg max Pi iC  For isolated word 
recognition or phrase spotting, the speech recognition processes 
can generally be summarized into the following procedure:

1)	For each word sequence ,s N1g=  the user and the sys-
tem engage in the SFWD operation with X and sC  to obtain 
additive shares As and .Bs

2)	The user and system engage in an SMV protocol to deter-
mine .arg max A Bs

s s+  The system gets the result.

The Viterbi algorithm is 
very similar to the forward 
algorithm, except for two 

key differences.
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The above operation is entirely performed in the log domain— 
all probabilities are log probabilities—and is hence robust to 
underflow. In practice, the secure Viterbi algorithm is a better 
choice than the forward algorithm to compute class scores, 
since its secure implementation has fewer expensive SMOG 
operations, which are replaced by SMV operations. Thus, 

( ; )XP sC  can be computed using the secure Viterbi algorithm 
instead of SFWD as described earlier. For CSR, the optimal state 
sequence (and word sequence corresponding to it) can both be 
obtained using the secure Viterbi algorithm. 

Analyzing the protocols

Correctness 
All of the presented protocols, including the primitives, the 
score computation and the actual classification procedures 
above are easily shown to be correct—the final result obtained 
with the private protocols is exactly what would have been 
obtained had the operations been performed in a nonprivate 
manner. It can also be ascertained that in practical implementa-
tions the insecure and secure versions of the computations are 
virtually indistinguishable, thus the accuracy tradeoff owing to 
encryption is negligible [7], [8].

Security 
Each of the operations above is 
also computationally secure 
against honest but curious partici-
pants. The individual primitives in 
the section “Secure Primitives for 
Speech Processing” are easily 
shown to be secure (e.g., [37])—
Alice and Bob do not learn about 
each others’ data at all, since they only see ciphertexts, or data 
masked by additive noise [38]. Consequently, the secure Gauss-
ian operation, the SMOG operation, the SFWD, and the secure 
Viterbi protocol are all guaranteed not to reveal the user and 
system’s data to one another if the protocols are correctly fol-
lowed. In general, none of the protocols reveal more than what 
the outcome of the computation itself reveals.

One might also consider a malicious model, where one or 
more parties may manipulate the data or send bogus data in an 
attempt to disrupt the protocol or learn about the other party’s 
data. If both parties are malicious, security can be enforced by 
accompanying the protocols with zero-knowledge proofs [39]. If 
only one of the parties is malicious, the other party can use con-
ditional disclosure of secrets [40] to make sure he/she receives 
valid inputs from the malicious party. Both these methods, 
however, greatly increase the computation and communication 
overhead of the protocols.

Finally we note that although, technically, the proposed pro-
tocols also permit fully CSR, they assume that the entire HMM 
representing the complete word graph to be searched is evalu-
ated for each analysis frame. In practice, CSR is never per-
formed in this manner, even in conventional nonprivate 

implementations. CSR has a high memory footprint and high 
computational complexity, and the word graphs must be pruned 
heavily based on partial scores, to restrict the computation. The 
act of pruning restricts the hypothesis set considered and 
reveals information about the recognition output. Techniques 
to hide this information are not within the scope of this article, 
although they are topics of active research.

Performance 
The private computation techniques must in principle result in 
identical classification outcomes to their conventional 
nonprivate counterparts. Although there is a minor loss of res-
olution resulting from the fact that all computation must now 
be performed with fixed-point arithmetic to accommodate 
encryption over integer fields, this has little effect on accu-
racy—speech processing applications have historically achieved 
reasonable performance with fixed-point implementations with 
as little as 16 bits of resolution.

Perhaps the most important performance consideration is 
the additional computational complexity imposed by the privacy 
primitives. In particular, computing a single Gaussian securely 
takes a significant fraction of a second on a desktop computer 
[7]. Table 1 reports computation times for 1 s of audio [8] on an 
isolated word recognition experiment for a vocabulary of the ten 

digits zero to ten, each of which 
was modeled by a five-state HMM 
with a single Gaussian. Results 
were obtained on a 3.2 GHz Pen-
tium 4. The Paillier encryption 
scheme was used [12]. The differ-
ence between the forward scores 
computed using secure computa-
tion those computed in the con-

ventional manner was less than 0.52%, and the classification 
accuracy for the secure and conventional versions was nearly 
the same, being 99%. Results with different key sizes are given 
primarily to show the trends in the computation time. It should 
be noted that Paillier encryption based on 256-bit and 512-bit 
keys is no longer considered sufficiently secure in the cryptog-
raphy community.

Table 2 shows a similar computational expense table con-
taining the average time required to perform privacy-preserving 
speaker authentication on a Core 2 Duo 2 GHz Linux machine 
per second of input audio. In this case, Boneh-Goh-Nissim 

[TABLE 1] Ex ecution time for isolated word  
recognition protocol (Paillier Encryption).

 
Activity

256-bit 
keys

512-bit 
keys

1,024-bit 
keys

Alice encrypts input data
(only once)

205.23 s 1,944.27 s 1,1045 s

Bob computes ( ( ))xlogb j tp
(per HMM)

79.47 s 230.30 s 461 s

Both compute ( ( ))jTp a
(per HMM)

16.28 s 107.35 s 785 s

PERHAPS THE MOST IMPORTANT 
PERFORMANCE CONSIDERATION IS 
THE ADDITIONAL COMPUTATIONAL 

COMPLEXITY IMPOSED BY THE 
PRIVACY PRIMITIVES.
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encryption [41] is employed, rather than the significantly less 
expensive Paillier encryption. The data are from the YOHO data 
set [42]. Both the speaker and the subject were modeled by mix-
tures of 32 Gaussians, and the audio was represented by a 
sequence of 39-dimensional feature vectors computed at the 
rate of 100 times/s. By comparison, the “insecure” computation 
on the same experiment took only 3.2 s per second of audio. The 
scores computed by the secure computation were identical to 
within five decimal places to those obtained in the insecure con-
ventional classifier. Classification accuracies on this data set 
with this setup achieves an equal error rate (EER) of about 7%. 
Clearly then, computation is a 
serious bottleneck. Encryption 
and decryption take the most 
time. Additional operations take 
relatively small time in compari-
son to the overhead of ciphertext 
processing; nevertheless, even 
they are considerably more expen-
sive than insecure computation. 
The times shown do not include communication overhead; 
however, for these tasks the communication overhead is trivial 
compared to the computational expenses.

In the experiments presented above, the implementations 
were far from optimal. Moreover, the primitives described 
herein can themselves be optimized; it is not clear that the par-
ticular structure chosen to decompose the computations is opti-
mal from the perspective of computational complexity. 
Performing computations on parallel processors, more efficient 
implementations of encryption etc. all may improve the speeds 
by some orders of magnitude; regardless, the final outcome is 
currently far slower than the speed performance of insecure 
computations.

The methods described so far provide privacy to conven-
tional state-of-art mechanisms for performing pattern recogni-
tion applications on speech. An alternate mechanism may be to 
modify the matching algorithms themselves to make them 
more amenable to efficient secure implementations. In the next 
section, one such approach is described. These techniques are 
not as generic in their scope as SMC-based methods described 
above, since the right form of classifier must be found for the 
task. Specifically, the technique we describe now applies only to 
speaker authentication and congruent tasks.

Speech Processing as 
Privacy-Preserving String Matching
We now discuss an alternative framework for privacy-preserving 
speech processing based on private string comparison. The 
main idea is to convert a speech sample into a fingerprint, i.e., a 
fixed-length bit string. This representation allows us to compare 
two speech samples by checking if their respective fingerprints 
match exactly. Unlike the cryptographic framework described 
earlier, string comparison is noninteractive, and also much 
faster than encryption, which enables us to perform the privacy-
preserving processing very efficiently.

The fingerprint representation is similar to a text-password 
system. The privacy issues are also similar; the user requires the 
system to store and compare the passwords in an obfuscated 
form, so that an adversary cannot observe the original 
passwords. Furthermore, we require the system to be accurate; 
just as the password system is able to reject users entering 
incorrect passwords, the privacy-preserving speech processor 
should be able to classify speech samples accurately. 
Finally, the performance of this string comparison-based 
speech processing approach should be competitive with 
conventional speech processing methods. Initial software 
implementations reveal a tradeoff between a significant increase 

in speed and a small degradation 
in the accuracy with respect 
to classical methods based on, for 
example, HMMs.

The twin objectives of accu-
racy and privacy are achieved as 
follows: A data-length indepen-
dent feature vector (string) is 
derived from the speech signal 

such that string comparison implies a nearest-neighbor clas-
sification. Second, these vectors are converted into password-
like bit strings that are not invertible. We describe these 
briefly below.

Feature Representation: Supervectors
An obvious solution to create a fingerprint is to apply a crypto-
graphic hash function [ ],H $  e.g., SHA-256 [43], to the speech 
input itself. However, direct conversion of audio signals into 
fingerprint-like patterns is difficult, due the inherent variation 
in cadence and length of audio recordings. A more robust 
length- and cadence-invariant representation of the audio is 
first required.

Campbell et al. [44] extend the maximum a posteriori 
(MAP) adaptation procedures for GMMs mentioned in the sec-
tion “Biometric Applications: Identification and Authentica-
tion” to construct a supervector to represent each speech 
sample. A supervector is a characterization of an estimate of 
the distribution of feature vectors derived from the speech 
recording. It is obtained by performing MAP adaptation of the 
UBM over the recording and concatenating the parameters, 
typically just the means, or means and mixture weights of the 
adapted model. For instance, given the adapted model 

[TABLE 2] Ex ecution time for the verification 
protocol (Paillier Encryption).

Steps Time (256-bit) Time (1,024-bit)
Encrypting  x tt 6r 138 s 8,511 s
Evaluating Adapted 97 s 1,809 s
Evaluating UBM .same as Adapted . same as 

Adapted
Comparison 0.07 s 4.01 s

Total [ ]E xt= +r  adapted + 331 s 12,133 s
UBM+ compare ~5.47 min ~3 h, 32 min

STRING COMPARISON IS 
NONINTERACTIVE, AND ALSO MUCH 
FASTER THAN ENCRYPTION, WHICH 

ENABLES US TO PERFORM THE 
PRIVACY-PRESERVING PROCESSING 

VERY EFFICIENTLY.
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{ , , }ws i
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i
sn Rm = t t t  with M Gaussian components, the supervec-

tor sv is given by ( ).s s
M
s

1 2 gn n nt t t

The supervector is then used as a feature vector instead of 
the original feature vectors derived from the speech sample. In 
the speaker authentication task addressed by Campbell et al., 
authentication verification is per-
formed using a binary support 
vector machine (SVM) classifier 
for each user. The SVM is trained 
on supervectors obtained from 
enrollment utterances from the 
user, as instances of one class, and 
from a collection of impostor recordings, as instances of the 
opposite class. As the classes are usually not separable in the 
original space, [44] also use a kernel mapping that is shown to 
achieve higher accuracy.

A related approach is to use k-nearest neighbors trained 
on supervectors as our classification algorithm. The rationale 
for this approach is twofold: first, k-nearest neighbors allow 
classification with nonlinear decision boundaries with accu-
racy comparable to SVMs with kernels [45]. Second, using the 
LSH transformations discussed below, private k-nearest 
neighbors computation can be reduced to private string com-
parison, which can be easily accomplished without an interac-
tive protocol.

Locality Sensitive Hashing
LSH [46] is a widely used technique for performing efficient 
approximate nearest-neighbor search. An LSH function ( )L $  
proceeds by applying a random transformation to a data vector 
x and projecting it to a vector ( )xL  in a lower-dimensional 
space, which we refer to as the LSH key or bucket. A set of data 
points that map to the same key are considered as approximate 
nearest neighbors (Figure 1).

A single LSH function does not group the data points 
into fine-grained clusters; one must use a hash key obtained 
by concatenating the output of k LSH functions. This k-bit 
LSH function ( ) ( ) ( )x x xL L Lk1 g=  maps a d-dimensional 
vector into a k-bit string. Two data vectors may be deemed 
to be highly similar if the k-bit hashes derived from them 
are identical. Such fine selectivity may, however, have an 
adverse effect on the recall in identifying neighbors when 
the data from a class have significant inherent variations. To 
address this, m-different LSH keys are computed over the 
same input to achieve better recall. Two data vectors x and y 
are said to be neighbors if at least one of their keys, each of 
length ,k  matches exactly. LSH provides major efficiency 
advantages: By precomputing the keys, the approximate 
nearest neighbor search can be done in time sublinear in 
the size of the data set.

A family of LSH functions is defined for a particular dis-
tance metric. A hash function from this family has the property 
that data points that are close to each other as defined by the 
distance metric are mapped to the same key with high proba-
bility. There exist LSH constructions for a variety of distance 

metrics, including arbitrary kernels [47], but we mainly con-
sider LSH for Euclidean distance (E2LSH) [48] and cosine dis-
tance [49] as the LSH functions for these constructions are 
simply random vectors. As the LSH functions are data indepen-
dent, it may be possible to distribute them to multiple parties 

without privacy loss.
The LSH construction for 

Euclidean distance transforms a 
d-dimensional vector into a vector 
of k integers. The ith entry of the 
hash is as follows:

	 ( ) ,x xrL
w

b
i

i
T

=
+; E 	 (8)

where ri is a d-dimensional vector with each component 
drawn i.i.d. from ( , ),N 0 1  w is the width of the bin, (e.g., 
255), and [ , ].b w0!  Similarly, the construction of the ith bit 
of the LSH for cosine distance, using ri defined as above is 
given by

	 ( )
,
.

x
r x

L
1 0
0

if
otherwisei

i
T 2

= ' 	 (9)

LSH is inherently not privacy preserving due to its locality 
sensitive property. It is possible to reconstruct the input vec-
tor by observing a sufficient number of LSH keys obtained 
from the same vector. To satisfy the privacy constraint, a cryp-
tographic hash function [ ]H $  is applied to the LSH keys. Cryp-
tographic hash functions, such as SHA-256 and MD5 are 
orders of magnitude faster to compute compared to homo-
morphic encryption.

Privacy-Preserving Speech Processing 
through String Comparison
The private string comparison framework lends itself very well 
to biometric tasks where audio-length-invariant supervector 
representations of the audio may be derived. In applications 
such as speaker verification and speaker identification, the user 
can convert the test speech sample into supervectors, apply the 
LSH transformation, and finally apply a cryptographic hash 
function and submit the output to the system. The system can 
simply compare the hashes provided by the user to the hashes 
computed over the enrollment data and accept or reject the 
user by comparing the number of matches to a precalibrated 

[Fig1]  LSH.

Original Feature Space LSH Keys

LSH is a widely used 
technique for performing 

efficient approximate 
nearest-neighbor search.
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threshold. Due to the irreversibil-
ity of the hashes, the system is 
not able to recover the original 
speech sample, and we are able to 
maintain the privacy of the 
speech input. As an illustrative 
example, we present the string 
comparison technique applied to 
the privacy-preserving speaker 
verification problem below and refer the reader to [10] for 
other applications.

Privacy-Preserving Speaker Verification 
as String Comparison
As the possible values for LSH keys discussed above lie in a rel-
atively small set by cryptographic standards, 256k for k-bit 
Euclidean LSH and 2k for k-bit cosine LSH, it is possible for 
the server to obtain ( )sL  from [ ( )]sH L  by applying brute-force 
search. To make this attack infeasible, the domain of the hash 
function [ ]H $  is increased by concatenating the LSH key with a 
long random string qi (e.g., 80-bit in length) that is unique to 
the user ,i  which is called the salt, as summarized in Figure 2. 
Requiring the user to keep the salt private and unique to each 
system also gives the additional advantage of rendering crypto-
graphically hashed enrollment data useless to an adversary. 
With this modification, LSH-based privacy-preserving speaker 
verification is achieved using the enrollment and authentica-
tion protocols described below.

Enrollment Protocol
Each user has a set of enrollment utterances { , , } .x xn1 f  
The users also obtain the UBM and the l LSH functions 
{ ( ), , ( )},L Ll1 $ $f  each of length k-bit from the system. Each 
user i generates the random 80-bit salt string .qi

For each enrollment utterance ,x j  user :i
	� a)  performs adaptation of x j with the UBM to obtain super-

vector .s j

�b)  applies the l LSH functions to s j to obtain the keys 
{ ( ), , ( )} .s sL Lj l j1 f

�c)  applies the cryptographic 
hash function salted with qi to 
each of these keys to obtain 
{ [ ( ) ], , [ ( ) ]},s q s qH L H Lj i l j i1 f  
and sends them to the system.

Authentication  
Protocol
For a test utterance ,xl  user :i

�a)  performs adaptation of xl with the UBM to obtain super-
vector sl
�b)  applies the l LSH functions to sl to obtain the keys 
{ ( ), , ( )}L Ls sl1 fl l

�c)  applies the cryptographic hash function salted with qi to 
each of these keys to obtain { [ ( ) ], , [ ( ) ]}s q s qH L H Li l i1 fl l  
and sends it to the system
�d)  the system computes the number of matches between 
the hashed keys for the test utterance and the correspond-
ing hashes of enrollment utterances. If this number 
exceeds a threshold, it accepts the user.

	 match ( [ ( ) ] [ ( ) ]),s q s qI H L H Lj i i j i
j

l

i 1enrollment
= =
! =

l//

	 match threshold :if accept.2

The system never observes any LSH key before a salted 
cryptographic hash function is applied to it. Apart from the 
salt, the user does not need to store any speech data on its 
device. The enrollment and verification protocols, therefore, 
satisfy the privacy constraints discussed above.

Experiments
Experiments examining the accuracy and performance of 
LSH-based schemes have been reported using the YOHO data 
set [42] which comprises a collection of short utterances, 
each a sequence of three two-digit numbers, produced by 138 
speakers. There are 96 enrollment utterances and 40 test 
utterances from each speaker. MFCC features augmented by 
differences and double differences are chosen as feature vec-

tors in these experiments [10]. A UBM with 
64 Gaussian mixture components is 
trained on a random subset of the enroll-
ment data belonging to all users. Supervec-
tors are obtained by individually adapting 
all enrollment and verification utterances 
to the UBM.

Accuracy
The lowest EER was achieved by using 
l 200=  instances of LSH functions each of 
length k 20=  for both Euclidean and cosine 
distances. Table 3 indicates that LSH for 
Euclidean distance performs better than 
LSH for cosine distance, while combining 
the two classifiers gives the best accuracy. [Fig2]  Speaker verification as string comparison.

Speech + UBM
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Requiring the user to keep 
the salt private and unique 
to each system also gives 

the additional advantage of 
rendering cryptographically 

hashed enrollment data useless 
to an adversary.
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Furthermore, using imposter data achieves lower EER when 
using the combined scores for both the distances: one-sided 
classifiers are clearly not sufficiently accurate. While the actual 
error rates in this example may appear relatively high, 
it should be noted that an SVM-based classifier working from 
supervectors obtained a classification accuracy of 10.8% on 
the same setup. In other experiments not reported here, using 
supervectors derived from more detailed GMMs, EERs of 
approximately 5% have been obtained using the string match-
ing framework.

Execution Time
Compared to a nonprivate speaker recognition system based on 
supervectors, the only computational overhead for the privacy-
preserving version is in applying the LSH and salted crypto-
graphic hash function. For a ,64 39 2 496# = -dimensional 
supervector representing a single utterance, the computation 
for both Euclidean and cosine LSH involves a multiplication 
with a random matrix of size ,20 2 496# , which requires a frac-
tion of a millisecond. Performing this operation 200 times 
required 15.8 ms on average [10]. 
The reported times are for a laptop 
running 64-bit Ubuntu 11.04 with 
2 GHz Intel Core 2 Duo processor 
and 3-GB RAM.

The Euclidean and cosine LSH 
keys of length k 20=  require 

bit B and . Bs8 20 20 20 1 6# = =  
for storage, respectively. Using a 
C++ implementation of SHA-256 
cryptographic hashing algorithm based on the OpenSSL librar-
ies [50], hashing 200 instances of each of these keys in total 
required 28.34 ms on average. Beyond this, the verification pro-
tocol only consists of matching the 256-bit long cryptographi-
cally hashed keys derived from the test utterance to those 
obtained from the enrollment data.

Conclusions
The two frameworks presented in this article both show prom-
ise in enabling privacy-preserving speech processing. The cryp-
tographic framework, while more generic, carries the usual 
computational overhead of cryptography. However, it can be 
made arbitrarily secure and flexible. The string-matching 
framework, on the other hand, is much more efficient; however, 
it is restricted in its applicability and currently results in a deg-
radation of performance.

At this point, both of them can only be viewed as initial for-
ays into the implementation of truly secure speech-processing 
frameworks, and much work remains. Researchers continue to 
investigate more efficient protocols, possibly using simpler 
encryption techniques, which could be orders of magnitude 
faster than the methods described here. Within the string-
matching framework, recent work has shown that significantly 
greater accuracies can be obtained using nearest-neighbor 
methods such as those described in [34]. These also show great 

promise in affording greater generalizability than the string-
matching solutions described here.

A computationally efficient implementation of a fully homo-
morphic encryption (FHE) scheme [27] would significantly 
change the construction of privacy-preserving protocols. This 
would allow the creation of a noninteractive protocol where the 
user uploads the encrypted speech sample, and the server can per-
form all the necessary computations without requiring any fur-
ther involvement from the user. Such a scheme would not 

alleviate all the problems of privacy-
preserving computation; there 
would still be a need to deal with 
key distribution, malicious adver-
saries, communication overhead, 
and many other practical problems. 
Nevertheless, researchers and prac-
titioners of privacy-preserving 
speech processing are following 
developments in FHE with interest.
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