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Abstract—As increasing amounts of sensitive personal information is aggregated into data repositories, it has become important to

develop mechanisms for processing the data without revealing information about individual data instances. The differential privacy

model provides a framework for the development and theoretical analysis of such mechanisms. In this paper, we propose an algorithm

for learning a discriminatively trained multiclass Gaussian mixture model-based classifier that preserves differential privacy using a

large margin loss function with a perturbed regularization term. We present a theoretical upper bound on the excess risk of the

classifier introduced by the perturbation.

Index Terms—Differential privacy, machine learning.
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1 INTRODUCTION

IN recent years, vast amounts of personal data is being
aggregated in the form of medical, financial records, social

networks, and government census data. As these often
contain sensitive information, a database curator interested
in releasing a function such as a statistic evaluated over the
data is faced with the prospect that it may lead to a breach of
privacy of the individuals who contributed to the database.
It is therefore important to develop techniques for retrieving
desired information from a data set without revealing any
information about individual data instances. Differential
privacy [2] is a theoretical model proposed to address this
issue. A query mechanism evaluated over a data set is said
to satisfy differential privacy if it is likely to produce the
same output on a data set differing by at most one element.
This implies that an adversary having complete knowledge
of all data instances but one along with a priori information
about the remaining instance, is not likely to be able to infer
any more information about the remaining instance by
observing the output of the mechanism.

One of the most common applications for such large

data sets such as the ones mentioned above is for training

classifiers that can be used to categorize new data. If the

training data contains private data instances, an adversary

should not be able to learn anything about the individual

training data set instances by analyzing the output of the

classifier. Recently, mechanisms for learning differentially

private classifiers have been proposed for logistic regres-

sion [3]. In this method, the objective function which is

minimized by the classification algorithm is modified by

adding a linear perturbation term. Compared to the original

classifier, there is an additional error introduced by the

perturbation term in the differentially private classifier. It is

important to have an upper bound on this error as a cost of

preserving privacy.
The work mentioned above is largely restricted to binary

classification, while multiclass classifiers are more useful

in many practical situations. In this paper, we propose an

algorithm for learning multiclass Gaussian mixture model

classifiers which satisfies differential privacy. Gaussian

classifiers that model the distributions of individual classes

as being generated from Gaussian distribution or a mixture of

Gaussian distributions [4] are commonly used as multiclass

classifiers. We use a large margin discriminative algorithm

for training the classifier introduced by Sha and Saul [5]. To

ensure that the learned multiclass classifier preserves

differential privacy, we modify the objective function by

introducing a perturbed regularization term.

2 DIFFERENTIAL PRIVACY

In recent years, the differential privacy model proposed by

Dwork [2] has emerged as a robust standard for data

privacy. It originated from the statistical database model,

where the data set D is a collection of elements and a

randomized query mechanism M produces a response when

performed on a given data set. Two data sets D and D0

differing by at most one element are said to be adjacent.

There are two proposed definitions for adjacent data sets

the stronger one based on deletion: D0 containing of one

entry less than D, and the weaker one based on substitution:

one entry of D0 differs in value from D. We use the deletion

based definition of adjacency previously where a single

entry of the data set D ¼ fx1; . . . ; xn�1; xng is deleted to

obtain an adjacent data set D0 ¼ fx1; . . . ; xn�1g.
The query mechanism M is said to satisfy differential

privacy if the probability of M resulting in a solution S

when performed on a data set D is very close to the

probability of M resulting in the same solution S when

executed on an adjacent data set D0. Assuming the query

mechanism to be a function M : D 7! rangeðMÞ with a
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probability density P defined over the space of M,
differential privacy is formally defined as follows:

Definition. A randomized function M satisfies �-differential
privacy if for all adjacent data sets D and D0 and for any
S 2 rangeðMÞ

log
P MðDÞ ¼ Sð Þ
P MðD0Þ ¼ Sð Þ

����
���� � �:

The value of the � parameter, which is referred to as
leakage, determines the degree of privacy. As there is always
a tradeoff between privacy and utility, the choice of � is
motivated by the requirements of the application.

In a machine learning setting, the query mechanism can
be thought of as an algorithm learning the classification,
regression or density estimation rule which is evaluated over
the training data set. The output of an algorithm satisfying
differential privacy is likely to be same when the value of any
single data set instance is modified, and therefore, no
additional information can be obtained about any individual
training data instances with certainty by observing the output
of the learning algorithm, beyond what is already known to
an adversary. Differential privacy is a strong definition of
privacy—it provides an ad omnia guarantee as opposed to
most other models that provide ad hoc guarantees against
specific set of attacks and adversarial behaviors.

2.1 Related Work

The earlier work on differential privacy was related to simple
data mining tasks and data release mechanisms [6], [7], [8],
[9]. Although many of these works have connection to
machine learning problems, more recently the design and
analysis of machine learning algorithms satisfying differ-
ential privacy has been actively studied. Kasiviswanathan
et al. [10] present a framework for converting a general
agnostic PAC learning algorithm to an algorithm that
satisfies privacy constraints. Chaudhuri and Monteleoni [3]
propose the sensitivity method to create a differentially
private logistic regression classifier by adding Laplace noise
to the estimated parameters. They propose another differ-
entially private formulation which involves modifying the
objective function of the logistic regression classifier by
adding a linear term scaled by Laplace noise. The second
formulation is advantageous because it is independent of the
classifier sensitivity which difficult to compute in general
and it can be shown that using a perturbed objective function
introduces a lower error as compared to the exponential
mechanism.

However, the above-mentioned differentially private
classification algorithms only address the problem of binary
classification. Although it is possible to extend binary
classification algorithms to multiclass using techniques like
one-versus-all, it is much more expensive to do so as
compared to a naturally multiclass classification algorithm.
Jagannathan et al. [11] present a differentially private
random decision tree learning algorithm which can be
applied to multiclass classification. Their approach involves
perturbing leaf nodes using the sensitivity method, and
they do not provide theoretical analysis of excess risk of the
perturbed classifier.

In this paper, we extend the objective perturbation
framework proposed by Chaudhuri and Monteleoni [3] to
create differentially private classifiers based on large
margin Gaussian mixture models [5], [12]. We show that
the bound on the excess risk of the differentially private
classifier is linear in the number of classes and inversely
proportional to the square of the privacy parameter �.

3 LARGE MARGIN GAUSSIAN CLASSIFIERS

We investigate the large margin multiclass classification
algorithm introduced by Sha and Saul [5]. The training data
set ð~x;~yÞ contains n d-dimensional iid training data in-
stances ~xi 2 IRd each with labels yi 2 f1; . . . ; Cg.

3.1 Modeling Single Gaussian per Class

We first consider the setting where each class is modeled as
a single Gaussian ellipsoid. Each class ellipsoid is para-
meterized by the centroid ~�c 2 IRd, the inverse covariance
matrix �c 2 IRd�d, and a scalar offset �c � 0. The decision
rule is to assign an instance ~xi to the class having smallest
Mahalanobis distance [13] with the scalar offset from ~xi to
the centroid of that class

yi ¼ arg min
c

ð~xi � ~�cÞT�cð~xi � ~�cÞ þ �c: ð1Þ

To simplify the notation, we expand ð~xi � ~�cÞT�cð~xi � ~�cÞ
and collect the parameters for each class as the following
ðdþ 1Þ � ðdþ 1Þ positive semidefinite matrix:

�c ¼
�c ��c~�c
�~�Tc �c ~�Tc �c~�c þ �c

� �
; ð2Þ

and also append a unit element to each d-dimensional
vector~xi. The decision rule for a data instance~xi simplifies to

yi ¼ argmin
c

~xTi �c~xi: ð3Þ

The discriminative training procedure involves estimating
a set of positive semidefinite matrices f�1; . . . ;�Cg from
the training data fð~x1; y1Þ; . . . ; ð~xn; ynÞg which optimize the
performance on the decision rule mentioned above. We
apply the large margin intuition about the classifier
maximizing the distance of training data instances from
the decision boundaries having a lower error. This leads
to the classification algorithm being robust to outliers with
provably strong generalization guarantees. Formally, we
require that for each training data instance ~xi with
label yi, the distance from ~xi to the centroid of class yi
is at least less than its distance from centroids of all other
classes by one

8c 6¼ yi : ~xTi �c~xi � 1þ~xTi �yi~xi: ð4Þ

Analogous to support vector machines, the training algo-
rithm is an optimization problem minimizing the hinge loss
denoted by ½f�þ ¼ maxð0; fÞ, with a linear penalty for
incorrect classification. We use the sum of traces of inverse
covariance matrices for each classes as a regularization term.
The regularization requires that if we can learn a classifier
which labels every training data instance correctly, we
choose the one with the lowest inverse covariance or
highest covariance for each class ellipsoid as this prevents
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the classifier from overfitting. The parameter � controls the
tradeoff between the loss function and the regularization

Jð�;~x;~yÞ ¼ 1

n

Xn
i¼1

X
c 6¼yi

�
1þ~xTi ð�yi ��cÞ~xi

�
þ

þ �
X
c

traceð�cÞ:
ð5Þ

The inverse covariance matrix �c is contained in the upper
left size d� d block of the matrix �c. We replace it with
I��cI�, where I� is the truncated size ðdþ 1Þ � ðdþ 1Þ
identity matrix with the last diagonal element I�dþ1;dþ1

set to
zero. The optimization problem becomes

Jð�;~x;~yÞ ¼ 1

n

Xn
i¼1

X
c 6¼yi

�
1þ~xTi ð�yi ��cÞ~xi

�
þ

þ �
X
c

traceðI��cI�Þ:
ð6Þ

The objective function is convex function of positive
semidefinite matrices �c. The optimization can be formu-
lated as a semidefinite programming problem [14] and be
solved efficiently using interior point methods.

3.2 Generalizing to Mixtures of Gaussians

We extend the above classification framework to modeling
each class as a mixture of K Gaussians ellipsoids. A simple
extension is to consider each data instance ~xi as having a
mixture component mi along with the label yi. The mixture
labels are not available a priori, these can be generated by
training a generative GMM using the data instances in each
class and selecting the mixture component with the highest
posterior probability. Similar to the criterion in (4), we
require that for each training data instance ~xi with label yi
and mixture component mi, the distance from ~xi to the
centroid of the Gaussian ellipsoid for the mixture compo-
nent mi of label yi is at least one greater than the minimum
distance from ~xi to the centroid of any mixture component
of any other class. If �yi;mi

corresponds to the parameter
matrix of the mixture component mi of the class yi, and �cm

corresponds to the parameter matrix of the mixture
component m of the class c

8c 6¼ yi : min
m
~xTi �cm~xi � 1þ~xTi �yi;mi

~xi:

In order to maintain the convexity of the objective function,
we use the property minmam � � log

P
m e
�am to rewrite the

above constraint as

8c 6¼ yi : �log
X
m

e�~x
T
i �cm~xi � 1þ~xTi �yi;mi

~xi: ð7Þ

As before, we minimize the hinge loss of misclassification
along with the regularization term. The objective function
becomes

Jð�; ~x;~yÞ ¼ 1

n

Xn
i¼1

X
c 6¼yi

1þ~xTi �yi;mi
~xi þ log

X
m

e�~x
T
i �cm~xi

" #
þ

þ �
X
cm

traceðI��cmI�Þ:

ð8Þ

After this modification, the underlying optimization pro-

blem remains a convex semidefinite program and is tractable

to solve. As compared to the single Gaussian case, however,

the space of the problem increases linearly as the product of

the number of classes and mixture components CK.

3.3 Making the Objective Function Differentiable
and Strongly Convex

The hinge loss being nondifferentiable is not convenient for

our analysis; we replace it with a surrogate loss function

called Huber loss lh. For small values of the parameter h,

Huber loss has similar characteristics as hinge loss and

provides the same accuracy [15]. Let us denote ~xTi �yi~xi þ
log
P

m e
�~xTi �c~xi by Mðxi;�cÞ for conciseness. The Huber loss

‘h computed over data instances ð~xi; yiÞ becomes

‘hð�c; ~xi; yiÞ

¼

0

if Mðxi;�cÞ > h;

1

4h
h�~xTi �yi~xi � log

X
m

e�~x
T
i �c~xi

" #2

if jMðxi;�cÞj � h
�~xTi �yi~xi � log

X
m

e�~x
T
i �c~xi

if Mðxi;�cÞ < �h:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð9Þ

Finally, the regularized Huber loss computed over the

training data set ðx;~yÞ is given by

Jð�; ~x;~yÞ ¼ 1

n

Xn
i¼1

X
c 6¼yi

‘h 1þ~xTi �yi~xi þ log
X
m

e�~x
T
i �c~xi

" #

þ �
X
cm

traceðI��cmI�Þ

¼ 1

n

Xn
i¼1

Lð�; ~xi; yiÞ þNð�Þ

¼ Lð�; ~x;~yÞ þNð�Þ;
ð10Þ

where Lð�; ~xi; yiÞ is the contribution of a single data

instance to the loss, Lð�; ~x;~yÞ is the overall loss function,

and Nð�Þ is the regularization term.
Our theoretical analysis requires that the regularized loss

function minimized by the classifier is �-strongly convex.

The regularized loss function Jð�;~x;~yÞ is convex as it is the

sum of convex loss function Lð�;~x;~yÞ and regularization

term Nð�Þ, but it does not satisfy strong convexity. Toward

this, we augment it with an additional ‘2 regularization

term to get

Jð�; ~x;~yÞ ¼ 1

n

Xn
i¼1

Lð�; ~xi; yiÞ

þ �
X
cm

traceðI��cmI�Þ þ �
X
cm

k�cmk2

¼ Lð�; ~x;~yÞ þNð�Þ;

ð11Þ
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where Nð�Þ now includes the extended regularization
term. As the ‘2 regularization term satisfies 1-strong
convexity, it can be easily shown that Jð�; ~x;~yÞ satisfies
�-strong convexity, i.e.,

J
�1 þ�2

2
; ~x;~y

� �
¼ Jð�1;~x;~yÞ þ Jð�2; ~x;~yÞ

2

� �
4

X
cm

k�1;cm ��2;cmk2:

ð12Þ

4 DIFFERENTIALLY PRIVATE LARGE MARGIN

GAUSSIAN MIXTURE MODELS

We modify the large margin Gaussian mixture model
formulation to satisfy differential privacy by introducing a
perturbation term in the objective function. As this classifi-
cation method ultimately consists of minimizing a convex
loss function, the large margin characteristics of the classifier
by itself do not interfere with differential privacy.

We generate the size ðdþ 1Þ � ðdþ 1Þ perturbation
matrix b with density

P ðbÞ / exp ��kbkð Þ; ð13Þ

where k � k is the Frobenius norm (element-wise ‘2 norm)
and � is the privacy parameter. One method of generating
such a b matrix is to sample kbk from �ððdþ 1Þ2; 1

�Þ and the
direction of b from the uniform distribution.

Our proposed learning algorithm minimizes the follow-
ing objective function Jpð�; ~x;~yÞ, where the subscript p
denotes privacy

Jpð�;~x;~yÞ ¼ Jð�; ~x;~yÞ þ
X
c

X
ij

bij�cij: ð14Þ

As the dimensionality of the perturbation matrix b is
same as that of the classifier parameters �c, the parameter
space of � does not change after perturbation. In other
words, given two data sets ð~x;~yÞ and ð~x0;~y0Þ, if �p

minimizes Jpð�; ~x;~yÞ, it is always possible to have �p

minimize Jpð�; ~x0;~y0Þ. This is a necessary condition for the
classifier �p satisfying differential privacy.

Furthermore, as the perturbation term is convex and
positive semidefinite, the perturbed objective function
Jpð�; ~x;~yÞ has the same properties as the unperturbed
objective function Jð�; ~x;~yÞ. Also, the perturbation does not
introduce any additional computational cost as compared to
the original algorithm.

5 THEORETICAL ANALYSIS

5.1 Proof of Differential Privacy

We prove that the classifier minimizing the perturbed
optimization function Jpð�;~x;~yÞ satisfies �-differential
privacy in the following theorem. Given a data set ð~x;~yÞ ¼
fð~x1; y1Þ; . . . ; ð~xn�1; yn�1Þ; ð~xn; ynÞg, the probability of learn-

ing the classifier �p is close to the probability of learning
the same classifier �p given an adjacent data set ð~x0;~y0Þ ¼
fð~x1; y1Þ; . . . ; ð~xn�1; yn�1Þg which wlog does not contain the
nth instance. As we mentioned in the previous section, it is
always possible to find such a classifier �p minimizing both
Jpð�;~x;~yÞ and Jpð�; ~x0;~y0Þ due to the perturbation matrix
being in the same space as the optimization parameters.

Our proof requires a strictly convex perturbed objective
function resulting in a unique solution �p minimizing it.
This in turn requires that the loss function Lð�;~x; yÞ is
strictly convex and differentiable, and the regularization
term Nð�Þ is convex. These seemingly strong constraints
are satisfied by many commonly used classification algo-
rithms such as logistic regression, support vector machines,
and our general perturbation technique can be extended to
those algorithms. In our proposed algorithm, the Huber loss
is by definition a differentiable function and the trace
regularization term is convex and differentiable. Addition-
ally, we require that the difference in the gradients of
Lð�; ~x; yÞ calculated over for two adjacent training data sets
is bounded. We prove this property in Lemma A.1 given in
the appendix.1

Theorem 5.1. For any two adjacent training data sets ð~x;~yÞ and

ð~x0;~y0Þ, the classifier �p minimizing the perturbed objective

function Jpð�; ~x;~yÞ satisfies differential privacy

log
P ð�pj~x;~yÞ
P ð�pj~x0;~y0Þ

����
���� � �0;

where �0 ¼ �þ k for a constant factor k.

Proof. As Jð�;~x;~yÞ is strongly convex and differentiable,
there is a unique solution �� that minimizes it. As the
perturbation term

P
c

P
ij bij�cij is also convex and

differentiable, the perturbed objective function
Jpð�; ~x;~yÞ also has a unique solution �p that minimizes
it. Differentiating Jpð�;~x;~yÞ w.r.t �cm, we have

@

@�cm
Jpð�; ~x;~yÞ ¼

@

@�cm
Lð�; ~x;~yÞ þ �I�

þ 2��cm þ b:

ð15Þ

Substituting the optimal �p
cm in the derivative gives us

�I� þ bþ 2��cm ¼ �
@

@�cm
Lð�p;~x;~yÞ: ð16Þ

This relation shows that two different values of b cannot
result in the same optimal �p. As the perturbed objective
function Jpð�;~x;~yÞ is also convex and differentiable,
there is a bijective map between the perturbation b and
the unique �p minimizing Jpð�; ~x;~yÞ.
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1. An appendix containing supplementary lemmas can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.org/
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Let b1 and b2 be the two perturbations applied when
training with the adjacent data sets ð~x;~yÞ and ð~x0;~y0Þ,
respectively. Assuming that we obtain the same optimal
solution �p while minimizing both Jpð�; ~x;~yÞ with
perturbation b1 and Jpð�; ~x;~yÞ with perturbation b2

�I� þ 2��cm þ b1 ¼ �
@

@�cm
Lð�p;~x;~yÞ;

�I� þ 2��cm þ b2 ¼ �
@

@�cm
Lð�p;~x0;~y0Þ;

b1 � b2 ¼
@

@�cm
Lð�p;~x0;~y0Þ � @

@�cm
Lð�p;~x;~yÞ:

ð17Þ

We take the Frobenius norm of both sides and apply the
bound on the RHS as given by Lemma A.1. Assuming that
n > 1, in order to ensure that ð~x0;~y0Þ is not an empty set

kb1 � b2k ¼
@

@�cm
Lð�p;~x0;~y0Þ � @

@�cm
Lð�p;~x;~yÞ

				
				

¼ 1

n� 1

Xn�1

i¼1

@

@�cm
Lð�p;~xi; yiÞ

					
� 1

n

Xn�1

i¼1

@

@�cm
Lð�p;~xi; yiÞ �

1

n

@

@�cm
Lð�p;~xn; ynÞ

					
¼ 1

n

1

n� 1

Xn�1

i¼1

@

@�cm
Lð�p;~xi; yiÞ �

@

@�cm
Lð�p;~xn; ynÞ

					
					

� 2

n
� 1:

Using this property, we can calculate the ratio of
densities of drawing the perturbation matrices b1 and b2 as

P ðb ¼ b1Þ
P ðb ¼ b2Þ

¼
1

surfðkb1kÞ kb1kd exp ��kb1k½ �
1

surfðkb2kÞ kb2kd exp ��kb2k½ �
;

where surfðkbkÞ is the surface area of the ðdþ 1Þ-
dimensional hypersphere with radius kbk. As surfðkbkÞ ¼
surfð1Þkbkd, where surfð1Þ is the area of the unit ðdþ 1Þ-

dimensional hypersphere, the ratio of the densities
becomes

P ðb ¼ b1Þ
P ðb ¼ b2Þ

¼ exp �ðkb2k � kb1kÞ½ �

� exp �kb2 � b1k½ � � expð�Þ:
ð18Þ

The ratio of the densities of learning �p using the
adjacent data sets ð~x;~yÞ and ð~x0;~y0Þ is given by

P ð�pj~x;~yÞ
P ð�pj~x0;~y0Þ ¼

P ðb ¼ b1Þ
P ðb ¼ b2Þ

j detðJ ð�p ! b1j~x;~yÞÞj�1

j detðJ ð�p ! b2j~x0;~y0ÞÞj�1
; ð19Þ

where J ð�p ! b1j~x;~yÞ and J ð�p ! b2j~x0;~y0Þ are the
Jacobian matrices of the bijective mappings from �p to
b1 and b2, respectively. In Lemma A.3 available in the
online supplemental material, we show that the ratio of
the Jacobian determinants is upper bounded by expðkÞ ¼
1þ 1

n� , which is constant in terms of the classifier �p and
the data set ð~x;~yÞ. The proof of Lemma A.3 is similar to
[16, Theorem 9].

By substituting this result into (19), the ratio of the
densities of learning �p using the adjacent data sets
becomes

P ð�pj~x;~yÞ
P ð�pj~x0;~y0Þ � expð�þ kÞ ¼ expð�0Þ: ð20Þ

Similarly, we can show that the probability ratio is
lower bounded by expð��0Þ, which together with (20)
satisfies the definition of differential privacy. tu

5.2 Analysis of Excess Error

In this section, we bound the error on the differentially

private classifier as compared to the original nonprivate

classifier. We treat the case of a single Gaussian per class for

simplicity, however this analysis can be naturally extended

to the case of a mixture of Gaussians per class. In the

remainder of this section, we denote the terms Jð�;x;yÞ
and Lð�;x;yÞ by Jð�Þ and Lð�Þ, respectively, for concise-

ness. The objective function Jð�Þ contains the loss function

Lð�Þ computed over the training data ðx;yÞ and the

regularization term Nð�Þ—this is known as the regularized

empirical risk of the classifier �. In the following theorem,

we establish a bound on the regularized empirical excess

risk of the differentially private classifier minimizing the

perturbed objective function Jpð�Þ over the classifier

minimizing the unperturbed objective function Jð�Þ.
Theorem 5.2. With probability at least 1� �, the regularized

empirical excess risk of the classifier �p minimizing the

perturbed objective function Jpð�Þ over the classifier ��

minimizing the unperturbed objective function Jð�Þ is

bounded as

Jð�pÞ � Jð��Þ þ 8ðdþ 1Þ4C
�2�

log2 d

�

� �
:

Proof. We use the definition of

Jpð�Þ ¼ Jð�Þ þ
X
c

X
ij

bij�cij

and the optimality of �p, i.e., Jpð�pÞ � Jpð��Þ

Jð�pÞ þ
X
c

X
ij

bij�
p
cij � Jð��Þ þ

X
c

X
ij

bij�
�
cij;

Jð�pÞ � Jð��Þ þ
X
c

X
ij

bij


��cij � �p

cij

�
:

ð21Þ

Using the strong convexity of Jð�Þ and the optimality of

Jð��Þ, we have

Jð��Þ � J �p þ��

2

� �

� Jð�
pÞ þ Jð��Þ

2
� �

8

X
c

k��c ��p
ck

2;

Jð�pÞ � Jð��Þ � �
4

X
c

k��c ��p
ck

2:

ð22Þ

Similarly, using the strong convexity of Jpð�Þ and the

optimality of Jpð�pÞ
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Jpð�pÞ � Jp
�p þ��

2

� �

� Jpð�
pÞ þ Jpð��Þ

2
� �

8

X
c

		�p
c ���c

		2
;

Jpð��Þ � Jpð�pÞ � �
4

X
c

		�p
c ���c

		2
:

Substituting Jpð�Þ ¼ Jð�Þ þ
P

c

P
ij bij�cij

Jð��Þ þ
X
c

X
ij

bij�
�
cij � Jð�pÞ �

X
c

X
ij

bij�
p
cij

� �
4

X
c

		��c ��p
c

		2
;

X
c

X
ij

bijð��cij � �p
cijÞ � ðJð�pÞ � Jð��ÞÞ

� �
4

X
c

		��c ��p
c

		2
:

Substituting the lower bound on Jð�pÞ � Jð��Þ given

by (22)

X
c

X
ij

bij


��cij � �p

cij

�
� �

2

X
c

		��c ��p
c

		2
;

X
c

X
ij

bij


��cij � �p

cij

�" #2

� �
2

4

X
c

		��c ��p
c

		2

" #2

:

ð23Þ

Using the Cauchy-Schwarz inequality, we have

X
c

X
ij

bij


��cij � �p

cij

�" #2

� Ckbk2
X
c

		��c ��p
c

		2
: ð24Þ

Combining this with (23) gives us

Ckbk2
X
c

		��c ��p
c

		2 � �
2

4

X
c

		��c ��p
c

		2

" #2

;

X
c

		��c ��p
c

		2 � 4C

�2
kbk2:

ð25Þ

Combining this with (24) gives us

X
c

X
ij

bij


��cij � �p

cij

�
� 2C

�
kbk2:

We bound kbk2 with probability at least 1� � as given by

Lemma A.6 available in the online supplemental material.

X
c

X
ij

bij


��cij � �p

cij

�
� 8ðdþ 1Þ4C

�2�
log2 d

�

� �
: ð26Þ

Substituting this in (21) proves the theorem. tu
The upper bound on the regularized empirical risk is in

OðC�2Þ. The bound increases for smaller values of � which

implies tighter privacy and therefore suggests a tradeoff

between privacy and utility.
The regularized empirical risk of a classifier is calculated

over a given training data set. In practice, we are more

interested in how the classifier will perform on new test data

which are assumed to be generated from the same source as

the training data. The expected value of the loss function

computed over the data is called the true risk ~Jð�Þ ¼ IE½Jð�Þ�
of the classifier �. In the following theorem, we establish a
bound on the true excess risk of the differentially private
classifier minimizing the perturbed objective function and
the classifier minimizing the original objective function.

Theorem 5.3. With probability at least 1� �, the true excess risk
of the classifier �p minimizing the perturbed objective

function Jpð�Þ over the classifier �� minimizing the
unperturbed objective function Jð�Þ is bounded as

~Jð�pÞ � ~Jð��Þ þ 8ðdþ 1Þ4C
�2�

log2 d

�

� �

þ 16

�n
32þ log

1

�

� �� �
:

Proof. Let �r be the classifier minimizing ~Jð�Þ, i.e.,
~Jð�rÞ � ~Jð��Þ

Rearranging the terms, we have

~Jð�pÞ ¼ ~Jð��Þ þ ½ ~Jð�pÞ � ~Jð�rÞ� þ ½ ~Jð�rÞ � ~Jð��Þ�
� ~Jð��Þ þ ½ ~Jð�pÞ � ~Jð�rÞ�:

ð27Þ

Sridharan et al. [17] present a bound on the true excess
risk of any classifier as an expression of the bound on the
regularized empirical excess risk for that classifier. With
probability at least 1� �

~Jð�pÞ � ~Jð�rÞ � 2½Jð�pÞ � Jð��Þ� þ 16

�n
32þ log

1

�

� �� �
:

Substituting the bound from Theorem 5.2

~Jð�pÞ � ~Jð�rÞ � 8ðdþ 1Þ4C
�2�

log2 d

�

� �
þ 16

�n
32þ log

1

�

� �� �
:

ð28Þ

Substituting this result into (27) proves the theorem. tu
Similar to the bound on the regularized empirical excess

risk, the bound on the true excess risk is also inversely
proportional to �2 reflecting the tradeoff between privacy
and utility. The bound is linear in the number of classes C,
which is a consequence of the multiclass classification. The
classifier learned using a higher value of the regularization
parameter � will have a higher covariance for each class
ellipsoid. This would also make the classifier less sensitive to
the perturbation. This intuition is confirmed by the fact that
the true excess risk bound is inversely proportional to �.

5.3 Experiments

We analyze the differentially private large margin Gaussian
mixture model classifier to empirically quantify the error
introduced by the perturbation. We implemented the
classifier using the CVX convex program solver [18]. We
report the results on the experiments with the UCI Breast
Cancer data set [19] consisting of binary labeled 683 data
instances with 10 features. We split the data randomly into
583 instances for the training data set and 100 instances for
the test data set.

We trained the classifier with the different random
samples of the perturbation term b, each sampled with the
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increasing values of �, and the regularization parameter
� ¼ 0:31 which is obtained via cross validation. The test
error results averaged over 10 runs are shown in Fig. 2.

The dashed line represents the test error of the non-
private classifier which remains constant with �. We observe
that for small value of � implying tighter privacy con-
straints, we observe a higher error. By increasing �, we see
that the error steadily decreases and converges to the test
error of the nonprivate classifier.

6 CONCLUSION

In this paper, we present a discriminatively trained Gaussian
mixture model-based classification algorithm that satisfies
differential privacy. Our proposed technique involves
adding a perturbation term to the objective function. We
prove that the proposed algorithm satisfies differential
privacy and establish a bound on the excess risk of the
classifier learned by the algorithm which is directly propor-
tional to the number of classes and inversely proportional to
the privacy parameter � reflecting a tradeoff between privacy
and utility.

In the future, we plan to extend this work along two
main directions: extending our perturbation technique for a
general class of learning algorithms and applying results
from theory of large margin classifiers to arrive at tighter
excess risk bounds for the differentially private large
margin classifiers. Our intuition is that compared to other
classification algorithms, a large margin classifier should be
much more robust to perturbation. This would also give us
insights into designing low error inducing mechanisms for
differentially private classifiers.
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Fig. 2. Test error versus � for the UCI breast cancer data set.


