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Abstract. A fundamental assumption for any machine learning task is to have
training and test data instances drawn from the same distribution while having
a sufficiently large number of training instances. In many practical settings, this
ideal assumption is invalidated as the labeled training instances are scarce and
there is a high cost associated with labeling them. On the other hand, we might
have access to plenty of labeled data from a different domain, which can pro-
vide useful information for the present domain. In this paper, we discuss adaptive
learning techniques to address this specific problem: learning with little training
data from the same distribution along with a large pool of data from a different
distribution. An underlying theme of our work is to identify situations when the
auxiliary data is likely to help in training with the primary data. We propose two
algorithms for the domain adaptation task: dataset reweighting and subset selec-
tion. We present theoretical analysis of behavior of the algorithms based on the
concept of domain similarity, which we use to formulate error bounds for our al-
gorithms. We also present an experimental evaluation of our techniques on data
from a real world question answering system.

1 Introduction

In machine learning tasks, it is assumed that the labeled primary training data is similar
to the test data in order to expect good accuracy on the test data. Further, it is important
to have training data of a sizable amount in order to build a reliable model for classifi-
cation. In practice, while it is usually time-consuming and expensive to acquire labeled
instances which are similar to the test data, we might often have plenty of labeled data
from an auxiliary source which is somewhat different from our test data. Despite this
overall difference between the datasets, there may be parts of the auxiliary data that
are similar and thus useful. More specifically, here we explore algorithms based on the
assumption that the auxiliary data distribution is a mixture between the primary data
distribution and a different distribution. In NLP tasks such as named-entity recognition,
parsing, text classification, etc. we usually have plenty of data from standard text cor-
pora (e.g. Penn Treebank [1]) but little data for specialized genres of text we might be
interested in processing. In user-centric tasks such as spam detection, handwriting/voice
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recognition, etc., there is usually little labeled data for each individual user who is using
the system while there is a large amount of labeled data for all users combined.

A domain adaptation learning setting involves a primary domain DP and an aux-
iliary domain DA. We mostly consider the problem of learning with two domains,
although it is possible to generalize to handle multiple domains [2]. We denote the
datasets sampled from primary and auxiliary domains as (xp1, y

p
1), ...(x

p
NP
, ypNP ) and

(xa1 , y
a
1 ), ...(x

a
NA
, yaNA), where NP and NA are the sample sizes of the primary and

auxiliary datasets respectively. A learning algorithm takes labeled training instances
sampled from the two domains and estimates a labeling function for the primary do-
main. The test dataset for evaluating the learning algorithm is sampled from the primary
domain. The central issue in such a learning setting is that we have few primary training
instances and relatively large number of auxiliary training instances. The labeled pri-
mary instances can be thought of having a high cost associated with them as opposed
to auxiliary instances, which have a lower cost. If we had large number of primary in-
stances to start with, we could perform learning well enough with standard supervised
learning approaches and would not need the auxiliary data. As it is difficult to learn a
good labeling function with a small primary training dataset, we aim to make use of
auxiliary data for learning. In fact, identifying situations when using auxiliary data with
primary data helps in training is a fundamental question we are trying to answer in this
paper.

2 Related Work

A major area of domain adaptation research is extending conventional supervised learn-
ing algorithms to handle data from multiple domains. Wu and Dietterich [3] proposed
an extension to support vector machines called C-SVM for training with inadequate pri-
mary data and low quality auxiliary data in an image classification task. This is done by
formulating the optimization problem with two separate loss functions and slack vari-
ables for each dataset. While they reported a noticeable improvement using auxiliary
data, they did not present a quantitative study over varying auxiliary data. Liao et al. [4]
improved on this work using a logistic regression based approach “M-Logit”, with ad-
ditional parameters for each auxiliary instance for controlling their contributions in the
training process. However, in both of these works, there was limited analysis about
identifying parameters which control the contribution of auxiliary data. There were
some heuristics presented in [4] based on the size of primary and auxiliary data, but we
found them to be unstable in practice. Also, there was no study of the underlying con-
ditions of primary and auxiliary data when the domain adaptation is likely to provide
an improvement. These two works were a major influence early on in our research. We
modeled our domain adaptation algorithms (see section 3) with ideas drawn from these
works. There have been several empirical studies of domain adaptation [5,6,7]. Jiang
and Zhai [7] suggest purely empirical algorithms which in part inspire our theoretical
analysis. We hope that our analysis can provide deeper understanding of the workings
of these algorithms.

While there have been a large number of investigations into domain adaptation from
an experimental perspective, theoretical studies have been limited in number. Only re-
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cently, Ben-David et al. [8], presented the analysis of structure learning for domain
adaptation in specific natural language problems. This was extended Blitzer et al. [9]
who theoretically formulated the problem in terms of a domain similarity metric [10]
and provided an elegant theory based on VC dimensions for a simple domain adapta-
tion classifier. The work by Blitzer et al. is a major inspiration for this work. Our goal
was to develop a similar theory for other domain adaptation algorithms to gain a better
understanding about their behavior.

Mansour et al. [11] presented a more general theoretical analysis of the domain
adaptation problem using Rademacher complexity [12] for a large class of regression
and classification problems. We hope to further explore this direction of research in the
future.

3 Domain Adaptation Algorithms

In this section, we propose various different learning algorithms for the domain adap-
tation task. Although the strategies are applicable generally, we present them in the
framework of a logistic regression classifier for concreteness and simplicity. We model
the class posterior probabilities with a sigmoid function σ(s) = 1

1+e−s . We assume the
training set instances xi with labels yi ∈ {−1, 1} to be i.i.d. The data log-likelihood
`(w) is equal to

`(w) =
∑
i

log σ(yiw
Txi). (1)

The classification algorithm involves maximizing the data log-likelihood with respect to
w and using the maximum likelihood value of ŵ to classify the test instances using the
sigmoid function σ(ŵTxi). The data log-likelihood ` is convex and can be optimized
by gradient ascent.

3.1 Baseline

We treat the simple combination of primary and auxiliary data as a baseline domain
adaptation technique. The data log-likelihood of the combined primary and auxiliary
training set becomes

`(w) =

NP∑
i

log σ(ypi w
Txpi ) +

NA∑
i

log σ(yai w
Txai ) (2)

With NA > NP , the effect of the auxiliary dataset in the training typically overwhelms
that of the primary dataset. When the model is applied to the primary test set, the classi-
fication accuracy will be low compared to a model trained with adequate primary data.
We use this intuition to develop algorithms which take the differences in domains into
account.
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3.2 Auxiliary Dataset Reweighting

In this algorithm, we decrease the importance of auxiliary dataset in training by a pre-
defined amount. This will cause the learned model be more aligned towards primary do-
main distribution while retaining the generalization properties provided by large auxil-
iary instances. In context of the logistic regression framework defined above, we reduce
the contribution of auxiliary instances in training by multiplying its label by a parameter
α ∈ [0, 1].

`(w,α) =

NP∑
i

log σ(ypi w
Txpi ) +

NA∑
i

log σ(yai w
Txai · α) (3)

When α is close to 0, log σ(yai w
Txai · α) will have a constant value and the auxiliary

training instances (xai , y
a
i ) are discounted from training. The importance of auxiliary

dataset in the training increases with α and when α = 1, we get our baseline algorithm.
Even though this algorithm is simplistic, it provides insights into learning with two

domains. The algorithm performs quite well in practice when there is little difference
between primary and auxiliary datasets. Identifying α̂which minimizes the primary test
error raises some interesting questions.

3.3 A1: Auxiliary Subset Selection

While the auxiliary dataset reweighting algorithm works usually well in practice, it
makes a simplistic assumption of treating all auxiliary instances equally. This can re-
sult in problems when we have a multi-modal auxiliary distribution and only part of
it matches the primary data. One strategy is to directly select the auxiliary instances
which have lower primary risk. As the information of primary distribution is not avail-
able, we approximate this by the primary empirical risk and identify subsets of auxiliary
dataset which minimize it. As there are 2NA possible subsets of instances which can be
selected, evaluating the primary empirical risk for each one of them is intractable. Even
if we restrict ourselves to subset of a fixed predefined size k, we are left with

(
NA
k

)
selections which is still very large as NA is large for most practical situations.

We propose a greedy algorithm called “A1”1 for selecting the auxiliary subsets in
an efficient way. Let S denote the size k set of auxiliary dataset to be selected. We start
with initializing S(0) to k randomly selected auxiliary instances. We use the complete
primary data and auxiliary data which is in S(t) for training the model w(t+1).

ŵ(t+1) = argmax
w

NP∑
i

log σ(ypi w
Txpi ) +

∑
(xai ,y

a
i )∈S(t)

log σ(yai w
Txai ) (4)

We apply this model w(t+1) to the auxiliary dataset and calculate the error between
predicted value and auxiliary label for each auxiliary instance. The top k auxiliary in-
stances minimizing this error are assigned to S(t+1).

S(t+1) = argmin
top ‘k′ i′s

|yai − 2σ(wTxai ) + 1| (5)

1 The choice of name is non-mnemonic.
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As the auxiliary labels are in {−1, 1}, we scale the predicted values given by the sig-
moid function which are in [0, 1] to that range. We repeat steps 4 and 5 until the selection
into S does not change. In practice we observe that this algorithm converges within a
few iterations.

As was the case with α in dataset reweighting, the value of selection parameter
plays an important role in the algorithm. If k is too small, it is similar to training on the
primary data which is small by itself. If k is too large, it is similar to optimizing the risk
function on the combined primary and auxiliary data. In this way, the optimal value of
k would be related to how similar the two domains are.

3.4 Soft A1 Algorithm

In the original A1 algorithm, we select k auxiliary instances for training and disregard
the rest. One possible improvement is to discount the auxiliary instances partially. In-
stead of a set S, we consider an auxiliary weight vector z ∈ [0, 1]NA . The value of
zi indicates how much (xai , y

a
i ) is discounted in training. In order to avoid the learned

model to discount all of auxiliary data, we fix
∑
zi = k. The parameter k has similar

properties as in the original A1 algorithm.
We start with a randomly initialized z(0), summing to k and compute the learned

model w(t+1).

ŵ(t+1) = argmax
w

NP∑
i

log σ(ypi w
Txpi ) +

NA∑
i

log σ(yai w
Txai · z

(t)
i ) (6)

We apply this model w(t+1) to the auxiliary dataset and calculate the error between
predicted value and auxiliary label for each auxiliary instance. We assign z(t+1)

i the
following value indicating how close was the predicted value to the true auxiliary label.

z
(t+1)
i = 1− |yai − 2σ(wTxai ) + 1| (7)

In order to maintain the
∑
zi = k constraint, we assign the zi values starting in the

decending order. Once the cumulative sum becomes k, we set the remaining zi = 0 as
shown below.

sum = 0;
for (j in 1 to Na) {

sum = sum + jth largest value in z;
if (sum > k) break;

}
set all values < jth largest value in z to 0;

3.5 Asymptotic Time Complexity Analysis

A unit step of the gradient ascent optimization in the logistic regression algorithm is
computation of the log-likelihood function ` and its gradient. This involves the dot
product wTxi and summing over all instances xi. In terms of the number of instances
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N and features d, the time complexity of this step is O(Nd). The gradient ascent opti-
mization terminates only after convergence in either ` or w, hence its asymptotic time
complexity is data dependent. The time complexity of the unit step in the baseline pro-
cedure is O((NP + NA) d). As the auxiliary dataset reweighting algorithm involves
multiplying the auxiliary instance term in the log-likelihood computation by a fixed pa-
rameter α, the time complexity of its unit step will also be O((NP +NA) d). The unit
step of computation in the A1 algorithm is executing logistic regression algorithm over
k auxiliary instances are used along with NP primary instances till convergence, which
in turn will have a unit step of time complexity O((NP +k) d). Hence, it is much more
expensive to execute the A1 algorithm than baseline or auxiliary dataset reweighting
algorithm. For the soft A1 algorithm, the unit step of computation is the logistic regres-
sion algorithm with NP primary instances and all NA auxiliary instances multiplied by
the z vector. This in turn will have a unit step time complexity same as the baseline of
O((NP +NA) d. Hence, the soft A1 algorithm is more expensive to compute than the
original A1 algorithm. To summarize, the order of asymptotic time complexities of the
algorithms will be: baseline = auxiliary dataset reweighting << A1 < Soft A1.

4 Theoretical Analysis

4.1 Domain Similarity

The central issue with domain adaptation is that we have limited primary data and auxil-
iary data is abundant but different from primary data. We aim to quantify the magnitude
of the difference in this section. There are many standard measures of differences be-
tween probability distributions like KL-divergence and `P distance. However, as we
do not have the knowledge of the exact distributions of the two domains beforehand,
we need to estimate these measures from finite primary and auxiliary training datasets
which will always have an associated error. To avoid the inconsistency in estimating the
distance between domains from finite data samples, we consider a distance metric de-
fined on hypothesis classes called dH distance, which was originally proposed by [13]
and [10]. It has been recently used by [8,9] as a foundation for investigating theoretical
properties of domain adaptation.

LetH be a hypothesis class having a finite VC dimension of a given instance space
X . Let AH ⊆ 2X be the set of subsets of X such that AH = {a|∃ h ∈ H s.t. a =
supp h}. Intuitively, AH contains sets of those x ∈ X which are labeled positively
by some h ∈ H. We calculate the absolute difference in probability of each subset
a ∈ AH, belonging to both the domain distributions DP and DA. The dH distance is
the maximum difference in probability across all such subsets. It indicates that given a
set of instances which are both classified in the same way, how different are the chances
that would they have been generated from the two distributions.

Definition 1. Let AH ⊆ 2X , {x|x ∈ X , h ∈ H, h(x) = 1} ∈ AH. dH distance
between two distributions DP and DA is defined as

dH(DP ,DA) = sup
a∈AH

|DP (a)−DA(a)|. (8)
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In this original formulation, the dH distance is not directly helpful when understanding
the behavior of classifiers. Given the hypothesis space H, we construct a symmetric
difference setH∆H = {h(x) xor h′(x)|h, h′ ∈ H}. For any two hypotheses h, h′ ∈ H
which disagree in their labels for some x ∈ X (h(x) = 1, h′(x) = 0 or h(x) =
0, h′(x) = 1), there exists a hypothesis in H∆H which labels x as 1. Similarly, if
(h(x) = h′(x) = 0, h(x) = h′(x) = 1), there exists a hypothesis in H∆H which
labels x as 0. As before, the support set AH∆H contains all x ∈ X such that h(x) 6=
h′(x) for some two hypothesis h, h′ ∈ H. However, computing dH∆H is NP-hard
even for hypothesis spaces with finite VC dimension [10]. Instead, we approximate
this by training a linear classifier to discriminate between the primary and auxiliary
domains. We evaluate the classifier over held-out data from the two domains and use
the accuracy of classification as an empirical estimate d̂H∆H ∈ [0, 1]. For domains that
are fully separable by a linear classifier, we will have d̂H∆H = 1. When both domains
are completely indistinguishable, we have d̂H∆H = 0.

4.2 Learning Bounds

We begin by establishing a bound between primary and auxiliary risk functions in terms
of the distance metric. The following useful theorem follows from using AH∆H as the
basis set for dH∆H distance. The proof of all theorems is given in the Appendix.

Theorem 1. Let h, h′ be any two hypothesis belonging to the hypothesis space H.
Given the two domains DP and DA, under the 0-1 loss function L01 and the corre-
sponding risk functions RP and RA defined over the two domains,

|RA(h(x), h′(x))−RP (h(x), h′(x))| ≤ dH∆H(DP ,DA) (9)

In section 3.1, we discussed the baseline domain adaptation algorithm which involves
training with combined primary and auxiliary data. Theoretically, this is equivalent to
minimizing the sum of primary and auxiliary risk together. The baseline hypothesis h∗

is given by

h∗ = argmin
h∈H

RP (h) +RA(h). (10)

We denote the risk of the baseline hypothesis by λ = RP (h
∗)+RA(h

∗). This quantity
is useful in getting an understanding of the domains. If λ is large, we cannot expect to
do well on the while minimizing the auxiliary risk.

In both the auxiliary dataset reweighting and A1 algorithms, we reduce the impor-
tance of auxiliary dataset in training by introducing the α and k parameters. As both the
parameters have the same effect of increasing the contribution of auxiliary data while
varying between 0 and 1, we refer to both of them by α. The situation is slightly dif-
ferent in the A1 algorithm as size of the effective auxiliary dataset changes, but the
theory generally holds in principle. We are working on developing this theory using
additional information about the algorithm. The learning procedure minimizes the fol-
lowing combined true and empirical risk functions which we call true and empirical α
risks.

Rα(h) = RP (h) + αRA(h), R̂α(h) = R̂P (h) + αR̂A(h) (11)
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We denote the hypothesis minimizing the empirical α risk R̂α(h) by ĥα. As was the
case before, when α = 0, Rα(h) is equivalent to the primary risk and when α =
1, Rα(h) is equivalent to the baseline risk. We now present a concentration of mea-
sure analysis to establish uniform convergence of empirical and true α risk. For clarity,
let us denote the total number of instances NP + NA by N and β as the fraction of
primary instances NP

N . The fraction of auxiliary instances will be 1−β. Using a similar
argument and linearity of expectations, we show that R̂α is unbiased in the following
lemma.

Lemma 1. For a given hypothesis h ∈ H, R̂α(h) is an unbiased estimator of Rα(h).

ER̂α(h) = Rα(h).

We use this result with the Hoeffding’s inequality to establish the following error
bound between the true and estimated α risk.

Theorem 2. Let H be a hypothesis space with V C(H) = C. Let N denote the total
training instances NP +NA. Let β denote the fraction of primary instances NP

N . Then,
with probability 1− δ, for every h ∈ H,

|R̂α(h)−Rα(h)| ≤

√(
1

β
+

α2

1− β

)
C log(2N/C)− log δ

2N
.

We use theorem 2 to formulate the following bound between the hypothesis ĥα
which minimizes the α risk and the hypothesis h∗P which minimizes the true primary
risk.

Theorem 3. Let H be a hypothesis space with V C(H) = C. Let N denote the total
training instances NP + NA. Let β denote the fraction of primary instances NP

N . Let
the true primary risk minimizer be h∗P = argmin

h∈H
RP (h) and the empirical α risk

minimizer be ĥα = argmin
h∈H

R̂α(h). Then, with probability 1− δ,

RP (ĥα) ≤ RP (h∗P )+
2

1 + α

√(
1

β
+

α2

1− β

)
C log(2N/C)− log δ

2N
+α[λ+dH∆H(DP ,DA)]

The auxiliary dataset reweighting and A1 algorithms are equivalent to training on the
primary dataset when α = 0. If we substitute α = 0 in the bound given by Theorem 3,
we have the original uniform convergence bound on training with primary data.

h∗P is the best hypothesis we can have as it will have the minimum true primary
risk. This hypothesis will have the minimum possible error on the on the primary test
data. As the auxiliary dataset reweighting algorithm minimizes the empirical α risk, the
classifier generated by this algorithm will satisfy the above theorem. The key result of
Theorem 3 is that we have a bound on how much excess error ĥ∗α can possibly have
on the primary test dataset compared to the best possible classifier. It is important to
note that this bound contains two terms: α2

1−β can be thought of excess error caused
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due to limited primary data (1 − β factor). In the second term, α interacts with dH∆H
which can be thought of excess error caused due to the difference between primary
and auxiliary distribution. Hence, the parameter α effectively tries to make a trade-off
between these two factors.

Theorem 3 gives us an upper bound on the excess primary risk of the hypothesis
minimizing empirical α risk as a function of α, say, f(α). We denote the α independent
expression inside the square root by c1. To find the value of α minimizing the excess
primary risk, we have:

∂

∂α
f(α) =

−2
(1 + α)2

√(
1

β
+

α2

1− β

)
c1 +

1

1 + α

[(
1

β
+

α2

1− β

)
c1

]−1/2
2αc1
1− β

+ λ+ dH∆H(DP ,DA) = 0. (12)

Due to the nature of the equation, there is no simple closed form solution for α. For a
given setting, as we do not know the value of true baseline risk λ beforehand, this would
only give us a theoretical expression for α. We can get an empirical estimate using an
estimate of λ from the primary and auxiliary datasets.

5 Experimental Results

We report experiences with our question answering (QA) system. For each question,
our QA system produces answer candidates which are scored with 296 feature scores
which are used to produce a ranked list of answers. We use question error, given by
the percent of questions for which an incorrect answer appears ranked first as a met-
ric to evaluate the ranking quality. We reduce the ranking of answer candidates to a
classification problem. In training, manually vetted answer keys are used to label each
question-answer pair as correct or incorrect. For testing, the probability of an answer
being correct is used to rank the answers per question. For the primary dataset we used
factoid questions from the Text REtrieval Conference (TREC) QA track [14]. TREC
8-10, which consist of 1,200 questions with 9,485 question-answer pairs, was used for
training while TREC 11, which consists of 500 questions and 4,742 question-answer
pairs, was used for test. As an auxiliary dataset we made use of a question set used for
internal development which covers a broad range of general reference knowledge top-
ics such as history, geography, arts and entertainment. This auxiliary QA set consists of
2,500 questions and 9,579 question-answer pairs.

We first evaluate the auxiliary data reweighting algorithm on this dataset. The pri-
mary test errors for different values of α are shown in Figure 1(a). We compare the
classifiers trained on primary datasets of two different sizes NP = 1897 (solid) and NP
= 4742 (dashed) both with full auxiliary data NA = 9579. The error for the larger pri-
mary dataset is lower than the error for the smaller dataset. The error when only using
the primary data α = 0 is lower than the error when using the primary and auxiliary
data together α = 1. This can be attributed to the qualitative differences in the two
datasets. We observe that the minimum test error for the algorithm in both cases is ob-
served around α = 0.4 and α = 0.2 for indicating that we require less contribution
from auxiliary data for training as our primary data increases.
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(b) Test error vs. k, NP = 1897.
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(c) Test error vs. k, NP = 4742.
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Fig. 1. Experimental results for QA data

We evaluate both the original and soft versions of A1 algorithm on this dataset. We
compare the primary test question error for the classifiers trained on primary datasets
of two different sizes NP = 1897 shown in Figure 1(b) and NP = 4742 shown in Figure
1(c), both with full auxiliary data NA = 9579. We see that the test error is clearly lower
when we use larger primary dataset. Similar to the auxiliary dataset reweighting, the test
error increases with increasing k up to a point and then starts increasing. This means
that as we go on adding auxiliary instances in training, the algorithm is able to identify
parts of the auxiliary data which are useful for training. Also, we see that the soft A1
algorithm performs a lot better than the original A1 algorithm. This can be attributed
to the relative flexibility of the algorithm in choosing the auxiliary instances. For the
larger primary dataset with NP = 4742, we see that the test error for the A1 algorithm
increases beyond a point after adding additional auxiliary instances. This means that the
primary data is sufficient for training and adding auxiliary instances introduces noise.
However, the soft A1 algorithm does not perform much better than the original A1
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algorithm, but it still has the minimum error at k = 0.2. Again, we observe that the
value of k which has the minimum error is lower for larger value of NP .

It is seen that the performance of both the algorithms is varies with the choice of
α and k parameters and the changing contribution of the auxiliary data in training.
As we have seen before, there is no simple closed form solution for the α parameter
minimizing the theoretical excess risk given by Theorem 3. However, we can choose
the parameter values empirically by performing cross-validation using different samples
of primary data and auxiliary data, and evaluating on remainder of the primary data.

We evaluate the bound given in Theorem 3 for this dataset. For the sake of com-
paring the primary datasets of two sizes, we assign λ + dH∆H a constant value 0.1. β
takes the values 0.2 and 0.5. Figure 1(d) shows the error bounds for this setup. We see
that the experimental results are very similar in shape to the bound values. For both the
curves, the minimum value α̂ is smaller for β = 0.5 as compared to β = 0.2 which
is confirmant with our theory. Note that the values of the bound are relative to the true
primary risk and not be directly compared to test error values. We see that the exper-
imental results are very similar in shape to the bound values. For both the curves, the
minimum value α̂ is smaller for β = 0.5 as compared to β = 0.2 which is confirmant
with our theory.

(a) NP = 1897.

Algorithm Parameter Test Error Time
Primary 0.588 32.52
Baseline 0.624 153.87
Reweighting α = 0.4 0.562 161.07
A1 k = 0.4 0.536 325.15
Soft A1 k = 0.4 0.528 721.38
M-Logit 0.554 448.62

(b) NP = 4742.

Algorithm Parameter Test Error Time
Primary 0.550 53.67
Baseline 0.608 260.75
Reweighting α = 0.2 0.532 274.03
A1 k = 0.2 0.538 629.87
Soft A1 k = 0.2 0.536 1132.23
M-Logit 0.546 627.52

Table 1. Primary test errors and execution times (in seconds) for QA data.

In Tables 1(a) and 1(b), we report the comparative performance of each algorithm
including primary test errors and execution times2 for the two primary dataset samples
of size NP = 1897 and NP = 4742. We used our implementation of M-Logit based on
[4] as a state of the art method for comparison. The errors were always found to be
lower when we train with the larger primary dataset. For NP = 1897, which is 20%
of the primary data, the soft A1 algorithm achieves a substantial 15.39% improvement
over the baseline and 10.20% improvement over training with primary data. This error
is even lower than the baseline approach with NP = 4742 which is 50% of the primary
data. We have a 13.16% improvement over the baseline and 4% improvement with
training with primary data alone. ForNP = 1897, the M-Logit algorithm performs better
than baseline and dataset reweighting algorithms, while forNP = 4742, the reweighting

2 Execution times are reported for the experiments conducted in the R programming environ-
ment running over a 64-bit GNU/Linux machine with dual 2 GHz processors and 3 GB RAM.



12 Manas A. Pathak and Eric H. Nyberg

algorithm performs better than M-Logit. In both cases, the A1 and soft A1 algorithm
have lower primary test errors than M-Logit. The A1 and soft A1 algorithms take much
longer to execute than the baseline and reweighting algorithms, which in turn are much
slower than training with primary data.

6 Conclusion

In this paper, we investigated the problem of domain adaptation which is learning with
little training data from the same distribution along with large amount of data from a
different distribution. We introduced our domain adaptation algorithms in the logistic
regression classifier framework. The auxiliary dataset reweighting algorithm modifies
the contribution of auxiliary data in training with the α parameter. The A1 algorithm
efficiently selects the instances from auxiliary data which are likely to minimize error
in training with primary data. We also discussed a soft variant of A1 algorithm which
partially discounts auxiliary instances from training by a fixed amount. We explored the
concept of domain similarity with the hypothesis class based dH∆H distance metric and
used it to develop a theoretical framework for analyzing domain adaptation methods.
We presented an error bound for the auxiliary dataset reweighting algorithm which
indicated a tradeoff between the domain similarity and size of the primary training
data. We presented an experimental analysis of our algorithms over data from a question
answering system. The experimental results were found to be closely aligned with our
theory.

A few directions for making further enhancements in this research include per-
forming a wider evaluation with other datasets and along with comparisons other tech-
niques. It would be interesting to compare our approach to other paradigms like semi-
supervised learning. As we alluded before, we are currently working towards estab-
lishing tighter error bounds for the A1 algorithm. We think there is also some real
potential for improvement by exploring the problem with other complexity classes like
Rademacher complexity. In all of the work here, we considered only simple cost func-
tions where all auxiliary instances and features are equal in training. Extending our
approaches to handle more complex cases would also be an interesting direction.
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Appendix

– Proof of Theorem 1.

∣∣RA(h(x), h′(x))−RP (h(x), h′(x))
∣∣ =

∣∣Ex∼AL01(h(x), h′(x))− Ex∼PL01(h(x), h′(x))
∣∣

=

∣∣∣∣∣∑
x∼A

L01(h(x), h′(x))DA(x)−
∑
x∼P

L01(h(x), h′(x))DP (x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈A

L01(h(x), h′(x))DA(x) +
∑
x/∈A

L01(h(x), h′(x))DA(x)

+
∑
x∈A

L01(h(x), h′(x))DP (x) +
∑
x/∈A

L01(h(x), h′(x))DP (x)

∣∣∣∣∣ (for some A ∈ AH∆H)

=

∣∣∣∣∣∑
x∈A

DA(x)−
∑
x∈A

DP (x)

∣∣∣∣∣ = |DA(A)−DP (A)| ≤ sup
A∈AH∆H

|DA(A)−DP (A)| = dH∆H(Dp,DA)

ut
– Proof of Lemma 1. We define the random variablesZ1, ...ZNP to take the values 1

β
|y−h(x)| ∈[

0, 1
β

]
corresponding to the primary instances x1, ..., xNP ∈ XP ∼ DP . Similarly, define the

random variables ZNP+1, ..., ZN to take the values 1
1−β |y−h(x)| ∈

[
0, 1

1−β

]
corresponding

to the auxiliary instances x1, ..., xNA ∈ XA ∼ DA. From the definition of α risk, we have

R̂α(h) = R̂P (h) + αR̂A(h) =
1

NP

∑
x∈XP

|y − h(x)|+ α

NA

∑
x∈XA

|y − h(x)|
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=
1

N

 N

NP

∑
x∈XP

|y − h(x)|+ Nα

NA

∑
x∈XA

|y − h(x)|

 =
1

N

 1

β

∑
x∈XP

|y − h(x)|+ α

1− β
∑
x∈XA

|y − h(x)|


=

1

N

NP∑
i=1

Zi +

NA∑
i=NP+1

Zi

 =
1

N

N∑
i=1

Zi = Z̄.

ER̂α(h) = E
[
R̂P (h) + αR̂A(h)

]
= E

 1

NP

∑
x∈XP

|y − h(x)|+ α

NA

∑
x∈XA

|y − h(x)|


=

1

NP

∑
x∈XP

E|y−h(x)|+ α

NA

∑
x∈XA

E|y−h(x)| = 1

NP

∑
x∈XP

RP (h) +
α

NA

∑
x∈XA

RA(h)

= RP (h) + αRA(h) = Rα(h).

ut
– Proof of Theorem 2.

P
[
|R̂α(h)−Rα(h)| > t

]
= P

[
|Z̄ − EZ̄| > t

]
≤ 2exp

[
−2N2t2∑N

i=1(max(Zi)−min(Zi))2

]

= 2exp

[
−2N2t2∑NP

i=1
1
β2 +

∑NP
i=1

α2

(1−β)2

]
= 2exp

 −2N2t2

NP
β2 + NAα

2

(1−β)2


= 2exp

[
−2N2t2

N
β

+ Nα2

1−β

]
= 2exp

[
−2Nt2

1
β

+ α2

1−β

]
.

The above result holds true for a single h ∈ H. To generalize for the whole hypothesis class,
we proceed with the standard uniform bound argument with VC dimensions as our growth
function. Let V C(H) = C.

∀h ∈ H,P
[
|R̂α(h)−Rα(h)| > t

]
≤
(

2N

C

)C
exp

[
−2Nt2

1
β

+ α2

1−β

]
.

It should be noted that as N → ∞, R̂α(h) → Rα(h) in probability. Hence, R̂α(h) is a
consistent estimator of Rα(h).
We equate the RHS by δ and solve for t.

t =

√(
1

β
+

α2

1− β

)
C log(2N/C)− log δ

2N
.

With this, we get the following relationship.

∀h ∈ H,P

[
|R̂α(h)−Rα(h)| >

√(
1

β
+

α2

1− β

)
C log(2N/C)− log δ

2N

]
= δ.

ut
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– Proof of Theorem 3. For any h ∈ H,

|Rα(h)−RP (h)| = α|RA(h)|

= α [|RA(h)−RA(h, h∗)|+ |RA(h, h∗)−RP (h, h∗)|+ |RP (h, h∗)−RP (h)|+RP (h)]

≤ α [|RA(h∗)|+ |RA(h, h∗)−RP (h, h∗)|+ |RP (h∗)|+RP (h)] (triangle inequality)

≤ α [(RA(h∗) +RP (h∗)) + dH∆H(DP ,DA) +RP (h)] (theorem 1)

= α [λ+ dH∆H(DP ,DA) +RP (h)] .

⇒ RP (h) ≤ Rα(h)− α[λ+ dH∆H(DP ,DA) +RP (h)]

(1 + α)RP (h) ≤ Rα(h)− α[λ+ dH∆H(DP ,DA)]

RP (h) ≤ 1

1 + α
Rα(h)− α

1 + α
[λ+ dH∆H(DP ,DA)] (13)

We apply this inequality for the empirical α risk minimizer ĥα.

RP (ĥα) ≤ 1

1 + α
Rα(ĥα)− α

1 + α
[λ+ dH∆H(DP ,DA)]

≤ 1

1 + α
R̂α(ĥα) +

1

1 + α

√(
1

β
+

α2

1− β

)
C log(2N/C)− log δ

2N

− α

1 + α
[λ+ dH∆H(DP ,DA)] (theorem 2)

≤ 1

1 + α
R̂α(h∗P ) +

1

1 + α

√(
1

β
+

α2

1− β

)
C log(2N/C)− log δ

2N

− α

1 + α
[λ+ dH∆H(DP ,DA)] (ĥ = argmin

h∈H
R̂α(h))

≤ 1

1 + α
Rα(h∗P ) +

2

1 + α

√(
1

β
+

α2

1− β

)
C log(2N/C)− log δ

2N

− α

1 + α
[λ+ dH∆H(DP ,DA)] (theorem 2)

≤ RP (h∗P ) +
2

1 + α

√(
1

β
+

α2

1− β

)
C log(2N/C)− log δ

2N

+ α[λ+ dH∆H(DP ,DA)].

ut
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